
Toward a Definition of and Linguistic Support
for Partial Quiescence

Billy Yan-Kit Man1, Hiu Ning (Angela) Chan1, Andrew J. Gallagher1,
Appu S. Goundan1, Aaron W. Keen2, and Ronald A. Olsson1

1Department of Computer Science,
University of California, Davis,

Davis, CA 95616 USA
{many,chanhn,gallagha,goundan,

olsson}@cs.ucdavis.edu

2Computer Science Department,
California Polytechnic State University,

San Luis Obispo, CA 93407 USA
akeen@csc.calpoly.edu

Abstract. The global quiescence of a distributed computation (or dis-
tributed termination detection) is an important problem. Some concur-
rent programming languages and systems provide global quiescence de-
tection as a built-in feature so that programmers do not need to write
special synchronization code to detect quiescence. This paper introduces
partial quiescence (PQ), which generalizes quiescence detection to a spec-
ified part of a distributed computation. Partial quiescence is useful, for
example, when two independent concurrent computations that both rely
on global quiescence need to be combined into a single program. The pa-
per describes how we have designed and implemented a PQ mechanism
within an experimental version of the JR concurrent programming lan-
guage. Our early results are promising qualitatively and quantitatively.

1 Introduction

In distributed programs, multiple processes cooperate to perform some task and
communicate via messages to exchange information. One important, and well-
studied, problem for such programs is to determine when the program’s com-
putation has completed, i.e., it has terminated normally or deadlocked. This
quiescence problem is challenging because each process has only local informa-
tion, but to solve the problem requires information about all processes (i.e.,
global state information). More formally, global quiescence (GQ) is defined as
the state in which each process has terminated or deadlocked and there are no
messages in the communication channels [12]. Quiescence detection, then, is the
mechanism used to detect such a state in a distributed system.

Some programming languages and systems provide GQ detection as a built-
in feature. That is, programmers do not need to write special synchronization
code to detect quiescence. Instead, they can focus on writing application code.
When quiescence is reached, the program can perform various actions such as
simply terminating the program, outputting final results, gathering statistics
from the overall computation, or initiating a new phase of the program, which
might involve a new, corresponding phase of quiescence detection.

Although useful, GQ detection is limited to detecting the state of all processes
in a program. A more general detection mechanism would detect when a specified
part of the program has become quiescent. For example, suppose we have two
programs that use GQ that we want to combine into a single program in which
we want to perform different actions when each part of it becomes quiescent.
This motivation led us to explore partial quiescence (PQ).

This paper proposes possible ways of defining PQ. It then discusses the par-
ticular definition selected and implemented in an experimental version of the JR
concurrent programming language. (JR extends Java with a richer concurrency
model [7, 14, 6].) The paper also shows how PQ leads to a different programming
style for some problems. We compare the performance of using PQ detection and
GQ detection. PQ might be a useful feature for other languages and libraries
that define process or thread groups, as many do.

The rest of this paper is organized as follows. Section 2 provides background
on the general definition of GQ and how it has been incorporated as a built-in
feature in some programming languages and systems; it describes how GQ is de-
fined and implemented in JR and presents examples of programs that use GQ.
Section 3 discusses the different ways of defining PQ. Section 4 discusses the
definition of PQ we chose to provide in JR and gives examples of programs that
use PQ. Section 5 presents an overview of our implementation (which is par-
tially working and presently in progress) and discusses its performance. Finally,
Section 6 concludes. Further details appear in [11].

2 Background

2.1 Distributed Termination Detection (DTD)

As noted in Section 1, detecting the termination of a distributed computation
is an important and challenging problem. A nice survey [12] describes DTD as
follows. A distributed system consists of a collection of processes P such that
processes communicate with each other by sending activation messages via some
communication channels. An activation message is used not only for communica-
tion purposes among processes, but also for creation of a new process. A process
is active if it is working on some computation or processing activation messages
addressed to it. A process is passive if it is waiting for an activation message or
termination. All processes in the system behave based on the following rules:

1. Activation messages can be generated only by active processes.
2. An active process may change its state to passive at any time.
3. A passive process may change its state to active only if it receives an acti-

vation message.

The above rules ensure that no further activation messages can be created in a
system where all processes are passive: messages cannot be generated sponta-
neously. When the system has reached such a state, i.e., all processes are passive
and no activation messages are in transit, then the system is quiescent. Quies-
cence detection is defined as the mechanism used to detect the state in which

there are no messages in transit and all processes are waiting [12]. This definition
generalizes that of DTD to both detecting termination as well as deadlock: i.e.,
sensing when the system is in a state from which it can no longer continue. Two
main categories of DTD algorithms, as classified in [12], are wave algorithms
(e.g., [3, 4, 15]) and credit distribution and recovery algorithms (e.g., [13]).

2.2 Tools and Systems with Support for Termination Detection

In some languages and systems (e.g., Ada, Java, MPI, and Pthreads), programs
that reach a deadlock state wait indefinitely for the user to terminate them
manually. However, in some cases, tools can assist in such detection. For example,
Umpire [16] and MPI-CHECK 2.0 [10] detect deadlocks for MPI programs.

Some other programming languages or systems provide GQ detection as a
built-in feature. GARLIC [8] extends Ada 95 with distributed programming
features; it detects termination based on the algorithm proposed in [5]. JR [7,
14], SR [2, 1], and Charm [15] allow a quiescent program to output final results,
gather statistics from the overall computation, or simply terminate the program.
In this regard, JR and Charm are similar: when a program quiesces, it can
initiate new computation, for which the quiescence feature can be used again.
SR’s quiescence feature is not as powerful: it is intended only for the program
to clean up and terminate, and programs cannot use quiescence repeatedly.

Implementation of a Quiescence Feature in JR and SR. The implemen-
tation uses an approach that differs from the general DTD algorithms described
in Section 2.1 because of their particular model of computation. A distributed
program consists of a group of “virtual machines” (VMs). Each VM represents
an address space, or unit of program distribution, and contains several processes,
which can share variables within that address space or send message to other
processes on that VM or to processes on other VMs. Typically, the number of
VMs is not very large, but it varies as the program executes. The implementation
uses a centralized manager to record information about all VMs in one place so
as to make it easy to implement various services, such as an explicit exit (stop)
from the program code, which needs to shut down all VMs. The implementation
of DTD involves the RTS (run-time system) on each VM and the centralized
manager. When a VM can make no further progress (i.e., all of its processes
have terminated or are waiting to receive a message), it sends an idle message to
the manager. This message contains the number of messages this VM has sent
to each other VM and the number of messages this VM has received from each
other VM. If the manager has received an idle message from each VM, it checks
that no messages are in transit, specifically: for each VM V Ma, the number of
sends from V Ma to each other VM, V Mb, matches the number of receives from
V Ma reported by V Mb, If so, then the system is globally quiescent.

Example JR Program Using GQ. The program in Figures 1 and 2 (from [14])
performs matrix multiplication. Its MMMain class reads in two N × N matrices, in-
stantiates a MMMultiplier object, and registers the operation done as the quies-
cence operation.1 Its MMMultiplier class contains the processes that perform the

1 Technically, the registration needs to be within a try/catch block.

actual computation. These processes begin execution after MMMultiplier’s con-
structor completes its execution. GQ is used to determine when these compute

processes have finished their tasks. Once GQ has been detected, the registered
operation done is invoked and its code outputs the resulting matrix. Without
GQ detection, the programmer would need to write additional code to determine
when the computation has terminated.

public class MMMain {
private static MMMultiplier m;
public static void main(String [] args) {

double [][] A, B; int N; // A and B are NxN
// read in NxN arrays A and B
...
m = new MMMultiplier(A, B, N);
// register done as the quiescence operation
JR.registerQuiescenceAction(done);

}
private static op void done() { m.print(); }

}

Fig. 1. Matrix multiplication using GQ – MMMain class.

public class MMMultiplier {
double [][] A, B, C; int N; // A, B, and C are NxN
public MMMultiplier(double [][] A, double [][] B, int N) {

this.A = A; this.B = B; this.N = N; C = new double [N][N];
}
process compute ((int r = 0; r < N; r++), (int c = 0; c < N; c++)) {

// compute the inner product for C[r,c]
C[r][c] = 0.0; for (int k = 0; k < N; k++) { C[r][c] += A[r][k] * B[k][c]; }

}
public void print() { /* output C */ ... }

}

Fig. 2. Matrix multiplication using GQ – MMMultiplier class.

If no GQ operation is registered, then the program simply terminates when it
quiesces. The quiescence operation can initiate new activity and can re-register
the GQ operation (either the same or different operation), which will be invoked
when the newly initiated activity quiesces.

3 Definition of Partial Quiescence (PQ)

Although GQ is useful, it restricts the detection to determine the quiescent
state of all processes in a given program. Some notion of PQ, which addresses
the quiescence of part of the program, would be useful. We want, for example, to
combine two programs (i.e., two independent concurrent computations) that use
GQ into a single program in which we want to perform different actions when
each part of it becomes quiescent.

The first step is to define what PQ means. A natural approach is to apply
quiescence to a group of processes in a program. Modifying the definition of
quiescence from Section 2.1 to apply to a specific group of processes yields:

Quiescence of group A is defined as the state in which (1) there are no
messages in the system in transit to group A and (2) all processes in
group A have terminated or are waiting for a message.

This definition fits well if the process group is “closed” [9], i.e., only processes in
group A send messages to processes in group A. However, this definition is not
realistic if the process group is “open” [9], i.e., a message for a process in group
A can be generated by a process outside of the group; such a message appears,
from within group A, to have been generated “spontaneously”. More concretely,
a detection mechanism could detect that all processes in group A are passive and
no message in transit is destined for group A, and so it would decide that group
A is partially quiescent. However, that decision could be followed by a process
outside group A sending a message to a process in group A. (In contrast, such
spontaneous message generation is not possible for GQ (Section 2.1).)

A definition of PQ can deal with this spontaneous generation problem in
various ways. One way would be to alter the above definition with a third clause,
e.g., “and (3) no process outside of group A can possibly send to a process
in group A”. However, such a definition might not be useful: just because a
process outside of group A can send a message to a process in group A does
not guarantee that it ever actually will. Moreover, in general, keeping track of
such information in a system where communication paths between processes is
determined dynamically would be costly.

Therefore, we choose a weaker definition of partial quiescence, namely one
that modifies (1) from the earlier definition:

Quiescence of group A is defined as the state in which (1) there are no
messages in the system from group A in transit to group A and (2) all
processes in group A have terminated or are waiting for a message.

This definition fits well for closed process groups; the next sections illustrate
that it is practical for open process groups.

4 JR Extended for Partial Quiescence

We have extended JR to support PQ. Now, JR programs can define groups of
related processes and can register, for each process group, a partial quiescence op-

eration. This section begins with examples to illustrate how PQ in the extended
JR works and then discusses key aspects of the various mechanisms.

4.1 Expository Examples of PQ in JR

Multiple Matrix Multiplications. The main program in Figure 3 shows how
to use PQ to perform two simultaneous matrix multiplications. A nice attribute
of our PQ approach is that the same MMMultiplier class from Figure 2 works
here. The main program creates two process groups, one for each matrix multi-
plication. It uses JR.changeCreationGroup to specify the group in which newly
created processes will be placed for each new matrix computation. (There is
one default process group.) The main program then registers the PQ operation
for each process group. When either group quiesces, its PQ operation will be
invoked and that code outputs the results.

public class MMMain {
private static MMMultiplier m1, m2;
public static void main(String [] args) {

double [][] A1, B1, A2, B2; int N; // A1, B1, A2, B2 are NxN
// read in NxN arrays A1, B1, A2, B2
...
ProcessGroup m_g1 = new ProcessGroup("Multiply Group1");
ProcessGroup m_g2 = new ProcessGroup("Multiply Group2");
JR.changeCreationGroup(m_g1); // processes within m1 will be in m_g1
m1 = new MMMultiplier(A1, B1, N);
JR.changeCreationGroup(m_g2); // processes within m2 will be in m_g2
m2 = new MMMultiplier(A2, B2, N);
// register partial quiescence operation for each process group
JR.registerPartialQuiescenceAction(m_g1, done1);
JR.registerPartialQuiescenceAction(m_g2, done2);

}
private static op void done1() { m1.print(); }
private static op void done2() { m2.print(); }

}

Fig. 3. Multiple matrix multiplications using PQ – MMMain class.

In contrast, consider a variant of the original main program in Figure 1
that starts two matrix multiplications and that uses GQ. It would wait for both

computations to finish before outputting the result from either.
In Figure 3, two process groups might quiesce at about the same time, in

which case the outputs from their quiescence operation might be interleaved.
Their outputs can be serialized by deleting the present code for done1 and done2

(but keeping their op declarations) and adding the code in Figure 4 to the end
of the main method. This code uses JR’s multi-way receive statement (inni) to

for (int i = 0; i < 2; i++) {
inni void done1() {m1.print();}
[] void done2() {m2.print();}

}

Fig. 4. Code to serialize output from the multiple matrix multiplications.

wait for an invocation of either of the PQ operations; it services one at a time,
thus serializing their outputs.

Barrier Synchronization. PQ, as noted earlier for GQ, allows JR programs to
re-register a quiescence operation. Consider the program in Figure 5 (from [14]).
It shows a group of worker processes synchronizing their iterations via a barrier,
implemented with semaphores.2 The program also contains a coordinator process
that controls when workers begin their next iteration. The program uses an array
of semaphores, proceed (one for each worker), rather than a single semaphore,
to prevent a fast worker from “stealing” the message intended for a slow worker.
With a single semaphore, a slow worker might be context switched after V(done)
and before the P(proceed), which would allow a fast worker to finish its iteration
and get past the P(proceed). (See [14] for details.)

This program can be rewritten using PQ and fewer semaphores, as shown
in Figure 6. Worker processes no longer need to tell the coordinator that they

2 In JR, the semaphore primitives P and V are just special cases of the message passing
primitives receive and send.

public class Barrier {
private static final int N = 10; // number of workers
private static sem done = 0;
private static cap void () proceed[] = new cap void()[N];
static { for (int i = 0; i < N ; i++) { proceed[i] = new sem; } }
private static process worker((int i = 0; i < N; i++)) {

while (...) { // iterations remain
// code to implement one iteration of task i
...
// barrier
V(done); // tell coordinator "I did iteration i"
P(proceed[i]); // wait for coordinator to say "continue"

}
}
private static process coordinator {

while (...) { // iterations remain
for (int w = 0; w < N; w++) { P(done); }
for (int w = 0; w < N; w++) { V(proceed[w]); }

}
}
public static void main(String [] args) {
}

}

Fig. 5. Barrier synchronization using semaphores.

are done (via the done semaphore); instead PQ will detect that. The role of
the coordinator is no longer performed by a separate process. It is now the PQ
operation that is invoked when all worker processes quiesce. Also, the proceed

array of semaphores is now replaced with a single proceed semaphore: a fast
worker cannot overtake a slow worker since all workers must quiesce before the
coordinator operation is invoked and tells any worker it may proceed.

4.2 Key Aspects of Partial Quiescence

As seen in the examples in the previous section, process groups allow the pro-
grammer to specify parts of the program for separate PQ detection. The names
of process groups, specified by the string argument to the ProcessGroup con-
structor, are in a global namespace. For example, in a multi-VM program (Sec-
tion 2.2), processes created in process group "A" on two different VMs are in the
same process group. The programmer can also create a process group specific to
a VM by using a per-VM unique identifier in the name.

PQ detection for a process group does not begin until the PQ operation has
been registered. This avoids the following “startup problem”. Suppose a process
group has just been created, but no processes have yet been created within that
group, for example, if the main program in Figure 3 registered its PQ operations
before instantiating the MMMultiplier objects. Then, PQ detection would detect
that the group has quiesced, which would not be too useful for the programmer.
Just as in GQ, the PQ operation can start up new activity and can re-register
another PQ operation.

The precise definition of PQ for JR differs slightly from that given in Sec-
tion 3. The reason is that in JR a message is sent to an operation, which can
be serviced by processes that might belong to different process groups. The PQ

public class Barrier {
private static final int N = 10; // number of workers
private static sem proceed;
private static ProcessGroup WG;
static {

WG = new ProcessGroup("Worker Group");
JR.changeCreationGroup(WG); // all worker processes will belong to process group WG.

}
private static process worker((int i = 0; i < N; i++)) {

while (...) { // iterations remain
// code to implement one iteration of task i
...
// barrier
P(proceed); // wait for coordinator to say "continue"

}
}
private static op void coordinator() { // no longer a process -- it’s invoked on PQ.

for (int w = 0; w < N; w++) { V(proceed); }
if (...) // iterations remain

JR.registerPartialQuiescenceAction(WG, coordinator); // re-register PQ op.
}
public static void main(String [] args) {

JR.registerPartialQuiescenceAction(WG, coordinator); // register PQ op.
}

}

Fig. 6. Barrier synchronization using partial quiescence.

definition for JR, therefore, says “(1) there are no messages in the system that

are servicable by a process in group A from group A in transit to group A”.
A program that uses PQ can be nondeterministic. For example, a message

from outside a process group might be sent either before or after PQ is detected
for that process group, thus affecting program behavior. However, such nondeter-
minism does not occur in the examples in this paper (or other practical examples
we have written so far). It remains to be seen whether such nondeterminism is
a problem in further practice.

PQ is an extension to, not a replacement for, GQ. A program is globally
quiescent when all parts of it have become partially quiescent and the remaining
processes not associated with any group have terminated or deadlocked, and no
messages are in transit. Also, the extended JR has four additional PQ features
for more complicated programming situations as illustrated in [11]. First, the
program can disable or enable PQ detection features during execution. Second,
an optional argument to the process group constructor can specify the number
of processes expected in the group; quiescence of the group occurs when that
number of processes have terminated or deadlocked. Third, process groups can
be hierarchical. A parent group is defined to have become partially quiescent only
when all of its child process groups have become quiescent. Fourth, a process
can change its process group in the middle of execution.

5 Implementation and Performance

We have an initial, partly working implementation of PQ in an extension of JR
version 1.00061 (based on Java 1.4). It works for single VM programs, but only
for some multi-VM programs. We are presently working to finish and further
test the implementation, and will port it to JR version 2.x (based on Java 1.5).

5.1 Implementation

The implementation of PQ adapts the centralized manager implementation of
GQ described in Section 2.2. (The implementation of PQ for closed process
groups (Section 3) could follow the GQ implementation rather directly, but with
message counts specific to process groups.) When a process group is created on a
VM, the RTS (run-time system) on the VM sends a message to the manager. The
manager uses the process group name as the key into a hashtable; the hashtable
entry contains the list of VMs on which the process group has been created
and a capability for the PQ operation. When the PQ operation is registered,
it is sent by the RTS to the manager. The manager then creates a thread to
handle quiescent messages for this group (if such a thread has not already been
created). The thread executes until the group becomes quiescent (as described
in the following paragraph), at which point the thread invokes the PQ operation
and terminates. If the PQ operation is re-registered, a new thread is created
(Exactly when the thread is created is important so that the thread does not
detect quiescence before the operation has been (re-)registered, i.e., to avoid the
“startup problem” mentioned in Section 4.2.)

When the RTS on a VM detects that a process group on that VM becomes
quiescent (i.e., all of its processes have terminated or are waiting to receive a
message), it sends an idle message to the manager, where it is handled by the
thread that is managing the process group. If the manager has received an idle
message for the process group from each VM, it then sends a message to each
VM to confirm that the VM is indeed idle. If the manager receives such confir-
mation, then the process group is quiescent. Otherwise, it waits for idle messages
from those VMs who reported they were not idle before it attempts confirma-
tion again. This second, confirmation phase is necessary to account for one VM
reporting that the process group is idle just after it sends a message to another
process within the same process group on another VM that already reported
that it was idle, i.e., to implement the modified PQ definition in Section 4.2.

5.2 Performance

Because PQ is a new langauge feature, we have no direct basis of comparison to
assess the performance of our implementation. However, we have compared the
performance of PQ in several programs with the performance of GQ in roughly
comparable programs. Specifically, we compared the PQ matrix multiplication
program (Section 4.1) with a variant of the original main program in Figure 1
that starts two matrix multiplications and GQ. The results show that over a
range of different sized matrices PQ required only from 0.5% to 1.5% additional
time; the multi-VM versions of those programs required only from 1.5% to 1.7%
additional time. We also compared the (single VM) PQ and GQ versions of
the barrier programs (Figure 6). The times for the two versions over a range of
different numbers of workers were always within 2% of each other. We ran these
tests on various PCs (1.4GHz and 2.0GHz uniprocessors; 2.4GHz and 2.8GHz
dual-processors) running Linux; specific results, of course, varied according to
platform. (Actual code and execution times are available on the web [11].)

6 Conclusion

This paper introduced the notion of partial quiescence and showed how it can be
incorporated into a programming language. Having such a PQ mechanism can
lead to a different style of programming, which in some cases is simpler. This
paper also discussed the implementation of PQ and its performance, which differs
only slightly from GQ’s performance. Although our early results are promising,
further experience is needed with using PQ mechanisms and measuring their
costs. We plan to include PQ in the standard JR language release [6].

References

1. G. R. Andrews and R. A. Olsson. The SR Programming Language: Concurrency

in Practice. The Benjamin/Cummings Publishing Co., Redwood City, CA, 1993.
2. G. R. Andrews, R. A. Olsson, M. Coffin, I. Elshoff, K. Nilsen, T. Purdin, and

G. Townsend. An overview of the SR language and implementation. ACM Trans-

actions on Programming Languages and Systems, 10(1):51–86, January 1988.
3. E. W. Dijkstra and C. S. Scholten. Termination detection for disffusing computa-

tions. Inform. Process. Lett., 11(1):1–4, 1980.
4. N. Francez. Distributed termination. ACM Trans. Programming Languages and

Systems, 2(1):42–55, 1980.
5. J. Helary, C. Jard, N. Plouzeau, and M. Raynal. Detection of stable properties

in distributed applications. In PODC ’87: Proceedings of the Sixth Annual ACM

Symposium on Principles of Distributed Computing, pages 125–136, 1987.
6. JR distribution. http://www.cs.ucdavis.edu/~olsson/research/jr/.
7. A. W. Keen, T. Ge, J. T. Maris, and R. A. Olsson. JR: Flexible distributed

programming in an extended Java. ACM Transactions on Programming Languages

and Systems, pages 578–608, May 2004.
8. Y. Kermarrec, L. Pautet, and S. Tardieu. GARLIC: generic Ada reusable library

for interpartition communication. In TRI-Ada ’95: Proceedings of the Conference

on TRI-Ada ’95, pages 263–269, New York, NY, USA, 1995. ACM Press.
9. L. Liang, S. T. Chanson, and G. W. Neufeld. Process groups and group commu-

nications: classifications and requirements. IEEE Computer, 23(2):56–66, 1990.
10. G. R. Luecke, Y. Zou, J. Coyle, J. Hoekstra, and M. Kraeva. Deadlock detection in

MPI programs. Concurrency and Computation: Practice and Experience, 14:911–
932, 2002.

11. Billy Yan-Kit Man. The design and implementation of partial quiescence. Master’s
thesis, University of California, Davis, Department of Computer Science, in prepa-
ration 2006. preliminary version: http://www.cs.ucdavis.edu/~olsson/many/.

12. J. Matocha and T. Camp. A taxonomy of distributed termination detection algo-
rithms. The Journal of Systems and Software, 43(3):pp 207–221, 1998.

13. Friedemann Mattern. Global quiescence detection based on credit distribution and
recovery. Inf. Process. Lett., 30(4):195–200, 1989.

14. R. A. Olsson and A. W. Keen. The JR Programming Language: Concurrent Pro-

gramming in an Extended Java. Kluwer Academic Publishers, Inc., 2004.
15. Amitabh B. Sinha, L. V. Kalé, and B. Ramkumar. A dynamic and adaptive

quiescence detection algorithm. Technical Report 93-11, Department of Computer
Science, University of Illinois, Urbana-Champaign, 1993.

16. J. S. Vetter and B. D. de Supinski. Dynamic software testing of MPI applications
with Umpire. Technical report, Lawrence Livermore National Laboratory, 2000.

