
THE JR PROGRAMMING LANGUAGE:
CONCURRENT PROGRAMMING
IN AN EXTENDED JAVA

RONALD A. OLSSON
Department of Computer Science
University of California, Davis

AARON W. KEEN
Department of Computer Science
California Polytechnic State University

Kluwer Academic Publishers
Boston/Dordrecht/London

Chapter 1

INTRODUCTION

Concurrent programming is concerned with writing programs having mul-
tiple processes that may execute in parallel. The topic originated in the 1960s
when the invention of independent device controllers (channels) led people to
organize operating systems as concurrent programs, even for single-processor
machines. Since then, rapid developments in computer architecture have led to
an increasingly large number of multiprocessor architectures, such as shared-
memory multiprocessors, multicomputers, and networks of workstations. The
operating systems for these architectures are all instances of concurrent pro-
grams. More importantly, multiprocessor architectures make it possible to
write application programs that exploit the concurrency inherent in the hard-
ware. Both distributed systems, multiprocessor systems, and hybrids (e.g.,
distributed systems that include some multiprocessors) are prevalent today and
they are likely to remain so.

A concurrent program specifies two or more processes that cooperate in per-
forming a task. Each process consists of a sequential program. The processes
cooperate by communicating, which in turn gives rise to the need for synchro-
nization. Communication and synchronization are programmed by reading and
writing shared variables or by sending and receiving messages. Shared vari-
ables are most appropriate for concurrent programs that execute on a single
processor or a shared-memory multiprocessor. Message passing is most appro-
priate for distributed programs that execute on multicomputers or networks of
workstations. (Message passing can also be used on shared-memory machines.)

This book describes the JR programming language and shows how it can
be used to write concurrent programs for a variety of hardware architectures
and software applications. JR is an extension of the Java programming lan-

2 Introduction

guage [28] with additional concurrency mechanisms based on those in the SR
(Synchronizing Resources) programming language [6, 9].

Java has proven to be a clean and simple (and popular) language for object-
oriented programming. Even so, the standard Java concurrency model is rather
limited. It provides threads, a primitive monitor-like mechanism, and remote
method invocation (RMI). Although these features are useful, they offer little
flexibility in the design and implementation of concurrent programs.

JR provides a richer and more flexible concurrent programming model than
Java. JR adapts the following features from SR: dynamic remote virtual ma-
chine creation, dynamic remote object creation, remote method invocation, dy-
namic process creation, support for rendezvous, asynchronous message passing,
semaphores, and shared variables. JR takes a novel object-oriented approach
to synchronization whereas SR is not object-oriented.

Thus, JR inherits and extends one of SR’s distinguishing attributes: its ex-
pressive power. The communication and synchronization mechanisms listed
above include most of the ones that have proven popular and useful. This makes
JR suitable for writing concurrent programs for both shared- and distributed-
memory applications and machines.

In addition to being expressive, JR is easy to learn and use for someone
who has some background with Java. Its variety of concurrent programming
mechanisms is based on only a few underlying concepts. Moreover, these
concepts are generalizations of ones that have been found useful in sequential
programs. The concurrent programming mechanisms are also integrated with
the sequential ones, so that similar things are expressed in similar ways. An
important design goal has been to retain the “feel” of Java while providing a
richer concurrency model.

Part I of this book describes the concurrent aspects of JR in detail and gives
numerous, smaller examples. Part II develops complete programs for sev-
eral larger applications: matrix multiplication, partial differential equations,
the traveling salesman problem, a distributed file system, and discrete event
simulation. These illustrate the use of JR for distributed programming using
message passing and parallel programming using shared variables. JR is imple-
mented on top of Java, so, in principle, it can run on any platform that supports
Java, including networks of workstations and shared-memory multiprocessors.
JR programs can also be executed on single processor machines, in which
case process execution is interleaved. The current JR implementation runs on
UNIX-based (Linux, Mac OS X, and Solaris) and Windows-based systems.

The remainder of this chapter gives a brief overview of JR. First we describe
the main components of the language. Then we present complete programs
that solve several familiar problems. The solutions illustrate the structure of
JR programs and some—but by no means all—of the language’s power and
flexibility. Finally, we describe how to create and execute JR programs.

1.1 Key JR Components 3

1.1 Key JR Components
As noted above, JR extends Java with additional mechanisms for supporting

concurrency. The key new features are virtual machines, remote objects, and
operations.

A JR virtual machine represents an address space, which is located entirely
on one physical machine. These virtual machines can be created dynamically
during program execution in a way similar to how objects are created. JR
virtual machines can be “populated” with remote objects, which are essentially
the usual instances of classes. In JR, a remote object is simply a Java object
that has been created in a way slightly different from the usual Java ����� . Thus,
JR object creation is dynamic, as in Java. A class in Java serves as the unit
of compilation and encapsulation; a class in JR serves a similar role. A JR
class may contain anything that a Java class may contain plus it may contain
additional JR features. The one difference in the use of classes is that in JR all
classes must be compiled together.

One such feature is the process, which represents a separate thread of con-
trol.1 JR provides a process abbreviation. Processes can be created dynamically
and can share variables in the same object, in the same class (static variables),
and in other classes on the same virtual machine (public static variables). Pro-
cesses can also communicate and synchronize by means of operations.

An operation can be considered a generalization of a method: It has a name
and can take parameters and return a result. An operation can be invoked in
two ways: synchronously by means of a call statement or asynchronously by
means of a send statement. An operation can also be serviced in two ways: by
a method or by input statements. These ways of servicing an operation support
local and remote method calls and rendezvous. As we shall see in Part I, this
variety of possibilities provides a great deal of flexibility and power for solving
concurrent programming problems.

JR contains several mechanisms that are abbreviations for common uses
of operations; these can be used to simplify many programs. Abbreviations
include process declarations, op-method declarations, receive statements, and
semaphores. JR also provides a few additional statements that are useful for
concurrent programming. The reply and forward statements provide additional
ways to use operations.

JR also provides a means to deal with program quiescence. A JR program
becomes quiescent when all of its processes have terminated or deadlocked. At
that point, the JR implementation will normally terminate the program’s exe-
cution. Instead, however, JR allows an operation to be registered as the “qui-

1JR uses the traditional term “process” to represent this abstraction. As we will see in later chapters, JR
processes are actually mapped to Java threads. To further confuse matters, the term “process” is often used
to represent an operating system process, which might contain multiple threads of execution.

4 Introduction

escence operation”; this operation will be invoked when the program becomes
quiescent. This feature is useful to avoid having to write code to determine
when processes have terminated.

JR programs can use all of the many packages provided for Java. For ex-
ample, these include common math functions and a variety of input/output
functions. JR programs can also interact with Java packages for building GUIs
(graphical user interfaces), such as AWT and Swing; Chapter 20 show some
examples of such interaction.

1.2 Two Simple Examples
One of the best ways to learn a new programming language is to start writing

programs. To do so, it helps to look at examples.
A standard first example in a programming language text is a program that

writes the message “Hello World!” on the standard output file. In JR, the
following program does the trick:

���������
	���
���������
������������������ ��!
�"�
#�$%���&�"$"���
�('%��$
$"��)%����$�
+*

�
�
#�$����&��	%��	����,�%���-
(�����/.�0�1�	
���/.
243�5+���
2%�%6,*
1�7��-	%�-�8���-��	��������/.�	�$-.90/:�'���$"$"��)����%$�
�;�:�6<!

=
=

It is nearly identical to the equivalent program in Java. The first difference is
that JR programs must import the JR package. However, to save space, most
examples in this book will omit that line; be sure to include it in any programs
that you actually try to compile, though! For the same reason, our code in
this book generally does not check for errors in input data or command-line
arguments. The second difference is that the JR program’s main method must
appear in a >�?A@8BDCAE class.

As noted earlier, the sequential aspects of JR are identical to those of Java
(with the exception of one extension seen in Chapter 3). However, JR provides
extensions to Java to simplify the writing of concurrent programs, as the next
example illustrates.

This program uses two processes to perform two independent computations:

�"�
#�$%���&�"$"���
�GF�H���I
�%�
�"���
�"�
�+*
����� ����	%�+��	%��	����,J��/.%��$+�/.�	K3�5MLMNM*,ODPRQ9PTS
SUPVS W = !
����� ����	%�+��	%��	����,J��/.%��$+�/.�	K3�5MXMNM*�SYQ9PTSYZDP[WAP]\ = !
����� ����	%�+��	%��	����,J��/.%��$+�/.�	_^&N,L���$"��.�2
	�`�!
����� ����	%�+��	%��	����G���%�
�"���
�G�aSV*

�/.�	+�-�"��N_bA!
J%���c0��/.�	d�TN&bA!e�GfG^9!g�-h
h�6G*

� �"��h
N_L�3i� 59!
=

1.2 Two Simple Examples 5

1�7��-	%�-�8���-��	��������/.�	�$-.90/:-�-�"� ��JML���� :Vh&�-�"�<6a!
=
����� ����	%�+��	%��	����G���%�
�"���
�(���M*

�/.�	+�-�"�+NMbA!
J%���c0��/.�	d�TN&bA!e�GfG^9!g�-h
h�6G*

� �"��h
N_L�3i� 5�� X�3i� 59!
=
1�7��-	%�-�8���-��	��������/.�	�$-.90/:��/.
.%���d���%��
�����	+��JML_HU� 	�`&X ����:Vh+�-���<6a!

=
�
�
#�$����&��	%��	����G�%���
,�����/.�0�1�	
���/.
243�5+���
2%�%6G*
=

=

Process >�� computes the sum of the elements in array � and outputs the result;
process >	� computes the inner product of the elements in array � with those in
array
 and outputs the result.

This program illustrates four important aspects of JR. Chapter 4 discusses
these aspects in detail.

The first aspect to note is that JR programs use the same scoping as Java
programs. Consequently, each process gets its own copy of variables declared
local to it (such as ��?
� and C), but the processes share variables and constants
(such as � and
) declared at the class level.

In this program, since the processes only read shared constants, there is no
potential for both processes updating a shared variable at about the same time
and interfering with each other in doing so. Such a race condition (or data
race) can occur with shared variables. An example illustrating a race condition
is given in Section 4.1. Processes can use synchronization to protect access to
shared variables. One such technique is demonstrated in Section 1.5. Others
are demonstrated in subsequent chapters; e.g., see Section 5.5 for an example of
how to use only shared variables to program synchronization and see Section 6.1
for an example of how to use semaphores.

The second important aspect of JR illustrated by the � ���
����� E � ��� � � program
involves the program’s output. It outputs two lines, one from each process, but
the order in which the lines appear is non-deterministic. The output might be
>�� ’s output followed by >�� ’s output, or vice versa. Which ordering occurs
depends on the order in which the two processes execute, which is also non-
deterministic.

The third aspect illustrated by the � ���
����� E � ��� � � program is that the pro-
cesses were declared to be �������8CAE . Non-static processes are also allowed,
but static processes are slightly simpler to use, so we use them in many of the
examples in this book.

The final aspect deals with program termination. As noted in Section 1.1, a
JR program terminates when all of its processes have terminated or deadlocked;
it will also terminate when it has executed a ����� ��� C � .

6 Introduction

1.3 Matrix Multiplication
Now consider the problem of multiplying two ����� real matrices � and
 .

We first present a sequential program to solve this problem and then show how
to modify the program to compute all �

�
inner products in parallel.

The following program first reads in the source matrices, then computes the
matrix product, and finally prints the result matrix. (The code omits the details
of reading in the matrices as that code just uses standard Java features.) The
main method reads in the arrays, instantiates a ������?�B
�8C�>8BDC � � object to do the
actual computation, and then invokes the > � C � � method in that object.

�"�
#�$%���&�"$"���
�	�
�������/.+*
�
�
#�$����&��	%��	����,�%���-
(�����/.�0�1�	
���/.
243�5+���
2%�%6,*

�/.�	_^9!
���(L+��.%
,X&���%�G^��
^

����"#�$"� 3�5�3�5&L9P XD!
���,���
�"
 �/._^��
^+���
�%��7��,LM��.%
_X
�
�
�
�����"��$�	��/��$%�����M�+NG.���H����
�
��$�	��Y��$%�����D0 L9P X9P ^�6<!
�8���
���/.�	90 6a!

=
=

�"�
#�$%���&�"$"���
�	�
���
��$�	��/��$%�����d*
�/.�	M^D!����,LM��.%
_XM���%�,^��"^

����
#�$"�K3�5�3�5��D!
�
�
#�$����������
��$�	��/��$������90�

���
#�$"� 3�5�3�5_L9P
��-�
#�$"�K3�5�3�5MX9P �Y.�	M^�6 *

	"`U���A� ^&N_^D!
�_NG.���H+
��-�
#�$"� 3 ^
5�3�^
5D!
���&���-���
��	��,^��
^d�Y.
.����M�����"
�����	%�
J%���c0��/.�	M�_N&bA! �+fG^9! ��h
h�6G*

J���� 0��/.
	��,NMb�!e�,f,^D!e��h
h�6(*
��3��
5�3 ��5+NMbD� bA!
J%��� 0��Y.�	��MNMbA!��+f(^9!���h"h�6G*
��3��"5�3���5�h"NML�3��
5�3��
5 �GX�3��"5�3���59!

=
=

=
=
�
�
#�$����,�%���-
G�����/.�	D0�6,*
���M�-��	"�
��	��
J%���c0��/.�	M�_N&bA! �+fG^9! ��h
h�6G*

J���� 0��/.
	��,NMb�!e�,f,^D!e��h
h�6(*
1�7���	%� �8������	9�������/.
	90���3��"5�3���5�h�: :�6a!

=
1�7���	%�-��������	�� �����/.�	%$-.�0�6a!

=
=

=

1.3 Matrix Multiplication 7

The code in ������?�B
�8C�>8BDC � � ’s constructor computes �
�

inner products using
nested for statements. The inner for statement computes the inner product of
row � of � and column E of
 and stores the result in ��� ��� �-E � . The code in the
> � C � � method prints matrix � , with each row printed on a separate line.

Since the inner products are independent of each other, we can compute all
�
�

in parallel, as shown below. This program will not be very efficient, since
each process does very little computation, but we could readily modify it to
use fewer processes (see Exercise 1.2 and also Chapter 15). The main class the
same as the previous main class, except it uses a quiescence operation to print
the result, as described later below.

�"�
#�$%���_�
$"���
���
�������/.+*
����� ����	%�+��	%��	����������"��$�	��/��$%�����M��!
�
�
#�$����&��	%��	����G�%���
,�����/.�0�1�	
���/.
243�5+���
2%�%6G*

�/.�	_^9! �
�,L+��.%
,X&���%�G^��
^

����"#�$"� 3�5�3�5ML9P XD!
���(�%�
�"
 �Y.&^��
^+���
�%��7��,LM��.%
_X
�
�
�
�+NG.���H �
���
��$�	��/��$%�����90 L9PeX9P ^�6<!
���(�%��2����-	%���+
���.%�&���("`%�����U���
�
�"��.������-�����%��	�����.
	
�
7&*

� ��� �%��2�����	%�������U�����"�"��.��"��L���	����-.�0�
%��.��%6 !
= ����	��-`K0��"
���������
��������A�������	���U�����"�"��.��"�-����2�����	
����	�����.�

���"����	U���-. ��6G*

�A�������/.
	%1�	%��� �
F
�%�����A0�6a!
=

=
����� ����	%�+��	%��	����M���_�%���-
M

��.��A0�6,*

�8���
���/.�	90 6a!
=

=

The ����� ?8B
��C�>�B9C �
� code now performs the matrix multiplication by using
E � �D>A? � � processes.

�"�
#�$%���_�
$"���
���
���
��$�	��/��$%�����d*
�/.�	M^D!����GL&��.%
_XM���%�,^��"^

����
#�$"�K3�5�3�5_L9P X9P��D!
�
�
#�$����������
��$�	��/��$������90�

���
#�$"�43�5�3 5ML9P
��-�
#�$"�K3�5�3�5MX9P �Y.�	M^�6 *

	"`U���A� L&N_LD! 	"`U���A� X+N,XD! 	"`U����� ^+N,^9!
�_NG.���H&

���
#�$"�K3 ^
5�3�^
5D!

=
���%�������
�&�"�-�
�
��	%�c0,0��/.�	M�MNMbA! �Mf,^9! �
h
h�6aP

0��/.�	��GNMbA!e�Gf,^9!e��h
h�6M6 *
���_�"�-���
�
	%�_	"`����Y.
.����_�
�%�"
����-	&J%��� ��3 �9Pi��5
��3��"5�3���5&NMbD��bA!
J%���c0��/.�	��_N&bA! �+fG^9!���h
h�6G*
�93��
5�3��-5�h
NML�3��"5�3��
5 �GX�3��
5�3��-59!

=

8 Introduction

=
�
�
#�$����,�%���-
G�����/.�	D0�6,*
���M�-��	"�
��	��������_�"�"
��+�"� ���M���T#���J%�����

=
=

The heading on E � �D>A? � � contains two quantifiers, so �
�

processes are created,
one for each combination of values for � and E . In fact, � and E are parameters
to each instance of E � �9>�? � � and are available in E � �D>A? � � ’s body. Each process
computes one inner product, just as each iteration of the innermost loop does
in the sequential program. The E � �D>A?�� � processes are created at the end of
execution of ������?�B
��C�>8BDC �
� ’s constructor.

When inner products are computed in parallel, � should not be printed out
until all processes have terminated. As mentioned in Section 1.1, a program
may register a quiescence operation, which is invoked when JR has detected
that the program has finished computation and is about to terminate. Hence, the
code associated with the quiescence operation is executed after the rest of the
computation terminates. In the program above, the main method registers

� � ���
as the program’s quiescence operation. Once the E � �D>A? � � processes terminate,
the code in

� � � � is executed to print out � . By using a quiescence operation, we
do not need to add synchronization code to the rest of the program to determine
when all the E � �D>A? � � processes have terminated. This feature of JR makes
many programs, including this one, easy to write. Chapter 15 describes how to
structure solutions to this problem in ways that do not require using a quiescence
operation.

1.4 Concurrent File Search
The programs given so far are very short, so they consist of a single class.

Often it is best to employ multiple classes. The last two examples in this chapter
illustrate how to do so.

The � � � > family of UNIX commands is commonly used to search for patterns
in files. For example, the following command searches each of the named files:

2
�%���d�-	
���/.�2_J���$"��.%�-����STJ���$"��.��-��� �K�
�
�

Each line containing ��� � C � � is printed on standard output. (If there is more
than one file, each line of output begins with the name of the file.) The � � � >
command searches each file sequentially.

The following JR program gives a simplified, concurrent implementation of
the above command. In particular, it searches the files in parallel, one process
for each file. The program has the same arguments as � � � > above: a pattern
string and one or more file names. (It does not implement the � � � > command’s
other useful features, such as searching for strings matching patterns specified
by regular expressions; see Exercise 1.5.) Like � � � > , the program prints all

1.4 Concurrent File Search 9

lines that contain the pattern string on the standard output. A string containing
the file name concatenated with a colon is printed at the front of each line. Since
searching and printing proceed in parallel, however, lines from different files
will be interleaved.

The program consists of two classes. Execution begins in the � � � > � �9C �
class, which creates a � � � > � � ��� � � object for each filename given on the com-
mand line.

�"�
#�$%���_�
$"���
�����%�������%�/. *
�
�
#�$����&��	%��	����G�%���
,�����/.�0�1�	
���/.
243�5+���
2%�%6G*

� J 0����
2�����$"��.�2"	"`df ��6(*
1�7���	%�-�������
��� �����/.�	%$-.�0

:�.��
�"
��_���
2"������.�	���� �%��	
	%����.&J���$"�-.��-���+*�J���$"��.��-��� = :�6a!
� ����� ���/	90/S�6a!

=
1�	
���/.�2_����	
	%���".�NM���
2��D3 b�59!
���_���%�
��	��&���"�%�-�
)���������� ��#��
���-	MJ%���+�"���-`+J���$���.��-���
J%���c0��/.�	��_N SU! �+f_���"2��A��$"�-.�2
	"`�!���h"h�6G*

.%��H��"�%�-�
)����������90 ����	
	%���".9PT���
2%�D3��
5�6<!
=

=
=

The constructor for class � � � > � � ��� � � has two parameters: >������ �
� � and� C B � � � � � . It saves the parameters into object variables. When the constructor
is done executing, the � � � in � � � > � �DC � completes and an instance of process
� � � � E	� in the newly instantiated � � � > ��� �
���
� object is created implicitly. The
� � � � E	� process finds all instances of >	�
��� � ��� in

� C B � � � � � and writes them
out; the file name and a colon are printed at the front of each line.

���������
	&�
���%�D�i���D� ��!
�"�
#�$%���_�
$"���
�����%���
)������%����*

1�	
���Y.�2M����	
	����".�P J���$"��.��-���A!
�
�
#�$������"�%���")������%���90�1�	
���/.�2+����	
	%���".�Pe1�	
���/.�2&J���$���.��-���%6,*

	"`U���A������	"	%���". NG�%��	
	%����.�!
	"`U���A� J���$���.��-���&NGJ���$"��.%�-���A!

=
����� ����	%�,���%�
�"���
�&�"�"�����-`�*

	
�
7&*
� ��$"�����"�"
����+J
�_N,.���H � ��$"�����"�"
����90 J���$"��.%�-����6a!
X���J
J%�����"
����
��
����+#��MN,.%��H&X"��J"J%���%�"
����
�"
����90 J
��6<!
1�	
���/.�2 $��/.��A!
H"`U��$"� 0"0i$%�/.��MNG#���� �%�"�"

���/.%�A0�6
6c; N,."��$
$%6G* ���,2%��	_.
��$
$,��.
�� �

� Jc0i$��/.��D� �Y.%
�� ����J90 ����	"	%���".U6��"N&b�6(*
1�7��-	%�-�8���-��	��������/.�	�$-.90 J���$"�-.��-���dhd:��Y:ThM$%�/.���6<!

=
=
J"�����
$"�
�"�A0�6a!

10 Introduction

= ����	��-`K0 � ��$"��^���	 � ���".%

���������	����-. J%��6(*
1�7���	%�-�������
��� �����/.�	%$-.�0/:-����.�� 	 ������. : h_J���$"�-.��-����6<!

= ����	��-`K0�� �
���������	����-. �-�
��6G*
1�7���	%�-�������
��� �����/.�	%$-.�0/:�� �
���������	����-.+J%��� : h_J���$"�-.��-����6<!

=
=

=

All objects in the above program execute on the same machine. However, we
can readily modify the program so that different instances of � � � > ���
�����
� exe-
cute on potentially different machines. For example, suppose a file name is spec-
ified on the command line as � �9E	� C ����� � C B � � � � � . Also, suppose that � �DC �
separates � �9E	� C ��� from

� C B � � � � � and stores the values in string variables
with those names. Then � �DC � can create a � � � > ��� �
���
� object on � �9E � C � � by
executing

���+�����"����!
�����"�-��NG.���HM����0�6G�-._�����-`��/.��A!
.���H&���-����	%� ���%���
)������%���90�����	
	%���".�PeJ���$"��.%�-����6_��._�����"���9!

A ��� in JR is a virtual machine (address space). The first line declares a reference
for a ��� . The second line creates a new ��� on the machine whose name is stored
in variable � �9E	� C ��� . The third line creates an instance of � � � > ��� �
���
� on the
newly created ��� , and hence on a potentially remote machine (as indicated
by the � � � � � � keyword). The effect of making the above changes is that each
� � � > object will open

� C B � � ��� � on the machine on which it is executing. (This
program assumes that, for reasons explained in Section 10.8, the names of the
files to be searched are specified as relative to home directory or are specified
as absolute pathnames on the remote machine.)

1.5 Critical Section Simulation
As a final example, we present a program that illustrates a few of the numerous

message-passing mechanisms available in JR. The program also illustrates how
one can construct a simple simulation of a solution to a synchronization problem.

The following program contains � ?
�9? � � � � instances of a ? � � � process, each
of which repeatedly executes a critical section of code and then a non-critical
section. At most one process at a time is permitted to execute its critical section.
If more than one process wants to enter its critical section at the same time, the
one with the highest priority is permitted to do so. Each ? � � � process has an
index C ; the lower the index value, the higher the priority of the process. We
simulate the duration of critical and non-critical sections of code by having each
? � �
� process “nap” for a random number of milliseconds.
���������
	��"���%�D���
	���$A���%��.%
��-��!
�"�
#�$%���&�"$"���
� �
1
1M*

1.5 Critical Section Simulation 11

����� ����	%�+��	%��	����M���_�%���-
��
1
��.�	%���90��/.�	�6a!
����� ����	%�+��	%��	����M���_�%���-
��
1
� ��� 	D0�6a!
����� ����	%�+��	%��	����G���%�
�"���
�_���"#U� 	
����	%��� *

H
`U��$"� 0 	
������6,*
�Y.
.U� �%�%�-
���1
�-.�	%���90 �/.�	 �-
�6T#
7d�-
M*

1�7���	%� �8������	9�������/.
	�$-.�0/: ���"��� :Th��-
_hd:,�/. � 	�� �
1M��	 : h
1�7���	%� �8���-���"�%��.�	
F��Y��� �U��$
$%����0 6
6a!

=
�����"��� ������1
� ���/	90�6a!

=
=
����� ����	%�+��	%��	����,J��/.%��$+�/.�	,.
�"�����������_N_\AP �%���
.�
%�_N,Q9!
�
�
#�$����&��	%��	����G�%���
,�����/.�0�1�	
���/.
243�5+���
2%�%6G*
=
����� ����	%�+��	%��	����G���%�
�"���
�(���"���90&0��Y.�	d� NdSU! �(f�N,.
�"�����"������!V� h
h�6M6G*

����.�
��-�+�&N(.���HM�%��.%
��-��0�6a! ���_�"�
�"
,H�� 	"`d��7��-	%�-�+	������
J%���c0��/.�	+�GN SU! �Mf"N,�����
.%
%� !e�"h
h�6G*

����$
$ ��1"��.�	%���D0��
6a! �
�_��.�	���� ����� 	����"��$&�"�
��	�����.
	"�
7+*

F"`��%�
��
9���
$"�"����0 ��� .�� �
	 �Y.�	90/S b"b�6
6a! �
�,
���$���7M�
�M	��dS b
b(���"���
= �"��	��-` 0	
����"�-��	�����. �%6G*
�D���
���/.�	%1�	%��� �
F"�%���"�A0 6a! =
����.%
���1"� ��� 	90 6a! �
�_� ���/	������ 	����"��$+�"���-	�����.
	"�
7+*

F"`��%�
��
9���
$"�"����0 ��� .�� �
	 �Y.�	90/S b"b
b�6
6a!	�
�,
���$���7M�
�M	��dS(�"������.%

= �"��	��-` 0	
����"�-��	�����. �%6G*
�D���
���/.�	%1�	%��� �
F"�%���"�A0 6a! =

=
=

=

The � ��� class contains an � � @ C � � �
� �
� process that implements two oper-
ations: � � � � � �
� and � � ��� C � . It first uses an input statement (C � � C) to wait
for an invocation of � � � � � �
� . This is JR’s rendezvous mechanism. If there is
more than one invocation of � � � � � � � , the one that has the smallest value for
parameter C � is selected, and a message is then printed. Next the � � @ C � � �
� � �
uses a receive statement to wait for an invocation of � � � � C � . Receive is a
special case of C � � C that can be used when one just needs to receive a message
or, in this case, simply a signal.

Each ? � � � process calls the � � � � � �
� operation to get permission to enter
its critical section, passing its index C as an argument. After “napping” the
process then invokes the � � � � C � operation. The � � � � � � � operation must be
invoked by a synchronous call statement because the ? � � � process has to wait
to get permission. However, since a ? � � � process does not need to delay when
leaving its critical section, it invokes the � � ��� C � operation by means of the
asynchronous send statement.

The program employs several methods in Java packages. The
��� ��� � � ��E�? ��� � � ���8C � � � C B�B9C�� method in the print statement returns the num-
ber of milliseconds since a particular epoch. The � � � � � � � �aB � � > method causes

12 Introduction

a process to “nap” for the number of milliseconds specified by its argument.
The � � � ��� � � method in the ��� � � � � class returns a pseudo-random integer
between 0 and its argument.

1.6 Translating and Executing JR Programs
To execute a JR program, one must first create one or more files containing

the program text. The names of these files must end with ��� � . Following
Java requirements, the JR class � must be placed in the file � ��� � if � is pub-
lic. For example, the “Hello world” program must be placed in a file named� � B�B ��� � � B � ��� � .

The standard tool to translate and execute a JR program is � � . Assuming
the directory containing � � is in a particular user’s search path, the user can
compile and execute the program in

� � B�B ����� � B � ��� � by using the command

� � � � B�B ����� � B �

Note that the ��� � suffix does not appear in this command; only the name of the
class containing the main method does. The � � command assumes that all ��� �
files in the current directory are part of the program. After the main class name,
additional arguments to � � are the command-line arguments to be passed to the
main method.

The � � command performs several actions. Assuming no errors, it invokes
each of the following:

the JR compiler (� � E) to generate Java code for each ��� � file (it also gen-
erates additional Java classes as needed by the program);

the Java compiler to translate that code to bytecode;

the RMI compiler to adapt the translated code to execute with RMI (which
JR uses to distribute programs); and

the JVM (Java Virtual Machine) to run the translated bytecode.

The � � command creates in the current directory a new subdirectory named
� �
	 � � (first deleting the old one if it already exists). It uses this directory for
all the files created by the above steps, e.g., ����� ��� and �-E B�� ��� files. The
programmer should have no need to be concerned with the contents of these
files but also should not modify them. However, � ��	 � � is needed to run a
program, so it should not be deleted by the user if the program is to be executed
several times.

Several other JR tools provide flexibility in applying the above steps. The
following table summarizes these tools:

1.7 Vocabulary and Notation 13

���
translates and executes a JR program���%�
translates a JR program���������<���
adapts JR-translated Java code to execute with RMI���"�"�
.
executes an already-translated JR program���"2%�
like

���
, but tries to determine the name of main class���"2%� �

like
���
�"�
.

, but tries to determine the name of main class

See Appendix C for further details on developing and executing JR programs.

1.7 Vocabulary and Notation
We begin by explaining the notation and conventions we will be using in the

remainder of the book. As already seen in this chapter, we typeset JR syntactic
tokens and programs in the Courier (typewriter) typeface.

JR’s syntax extends Java’s syntax with additional statements and forms of
declarations and expressions; these extensions introduce several new keywords.
The specific keywords and syntax will be introduced as we describe the various
language mechanisms. The exact syntax and the complete set of keywords is
given in Appendix A.

We will present the syntax of the JR extensions in a form in which each syntax
display conveys what an element of the JR grammar looks like in a program. For
example, consider how we might describe the syntax of a simplified version
of JR’s receive statement. (Chapter 7 gives the full description.) A receive
statement names an operation and gives a list of zero or more variables separated
by commas. It has the following general form:

�%���"���/�%�
op id

0
variable

P
variable

P
...

6

The keyword � � E � C � � , the parentheses, and the commas are JR tokens, so they
are typeset in Courier. The items op id and variable are non-terminals in the
JR grammar. When an item such as variable can be repeated, we will always
list two instances and two separators and follow them with an ellipsis. We will
also say whether there must be zero or more or one or more instances of the
item.

We will when possible follow common Java terminology in presenting JR
syntax. The key syntactic items we will use are summarized in the following
table.

block a block of zero or more statements enclosed within
*

and
=

expr an expression
id an identifier
variable a variable

Exercises
�

As noted in the Preface, source code for all programming examples and
the “given” parts of the programming exercises are available on the JR
webpage.

14 Introduction

1.1 Execute the � ���
����� E � ��� � � program several times to see whether the
order of output differs between executions. If not, then add an invocation
of � � � � � � � �aB � � > to force the other order of output.

1.2 Add to the � ��� ��� � E � ��� � � program a third process, which is to find the
maximum element in both of the arrays.

1.3 (a) Compare the execution times of the sequential and parallel matrix
multiplication programs for various size matrices. Which is more
efficient?

(b) Modify the parallel program so that it uses only � processes, each
of which computes one row of result matrix � . Compare the perfor-
mance of this program to your answers to part (a).

1.4 (a) Execute the concurrent file search program using different patterns
and files on a UNIX system. Compare the output to that of the � � � >
command. Now try piping the output of your JR program through
the � �
� � command, and compare the output to that of � � � > . What
happens if the file-name arguments to your JR program are given in
alphabetical order?

(b) Modify the program to create instances of � � � > on different ma-
chines, as described in Section 1.4. Experiment with this version of
the program.

1.5 Modify the concurrent file search program so that it allows the search
string to be a regular expression. To save yourself a lot of work, use an
existing Java regular expression package like � � ?�� � � � � � > .

1.6 Execute the critical section simulation program several times and exam-
ine the results. Also experiment with different nap intervals by modifying
the argument to the ����� ��� � � method. Modify the program by deleting
the phrase @ � C � in the � � @ C � � ��� �
� process, and execute this version
of the program several times. How do the results compare to that of the
original program? What if @ � C � is replaced by @ ��� C � ?

