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Abstract

Over the last decade, the popularity of Python has increased considerably. Python is

widely used and has been demonstrated to be effective over many problem domains including script-

ing, prototyping, and simulation. Python’s easy to use and concise syntax is highly expressive and

allows a developer to create considerably shorter and easier to understand programs than semanti-

cally equivalent programs written in languages like C, C++, or Java. An important aspect of any

language’s flexibility is a highly parallelizable environment that allows its users to write concur-

rent programs. However, Python is still lacking a high-level, expressive concurrent and distributed

programming environment. This thesis presents our experience creating PySy, a Python package

(based on the SR and JR concurrent programming languages), which provides an easy to use and

expressive concurrent environment, and allows for the distributed sharing of resources. Throughout

this thesis, we will discuss our design decisions, implementation, show qualitative and quantitative

analyses of well-known concurrent programs written in PySy, and evaluate our methodology.

–x–
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Chapter 1

Introduction

Over the last decade, the popularity of Python [22] has increased considerably.

Now, Python is widely and effectively used over many problem domains including scripting,

prototyping, web development, and simulation. Python’s easy to use and concise syntax is

highly expressive and allows a developer to create considerably shorter and easier to under-

stand programs than functionally equivalent programs written in languages like C, C++,

or Java. An important aspect of any language’s flexibility is a highly parallelizable environ-

ment that allows its users to write concurrent programs. Many programs achieve increased

performance and are more easily modeled using concurrency, e.g., web servers. Over the

years, many Python concurrency packages have been developed, including thread-based and

process-based implementations. The traditional threading solutions, e.g., threading1 [22],

do not allow for true concurrency in CPython because the interpreter provides mutual ex-

clusion using a global resource, the Global Interpreter Lock (GIL), to serialize access to its

internals. The GIL effectively bottlenecks competing threads trying to obtain access to the

interpreter’s internal data structures. multiprocessing [22], an example of a process-based

implementation, was developed to bypass the GIL limitation by executing each thread in

its own interpreter process. However, multiprocessing lacks expressiveness. Python is

widely used and adored because it provides libraries with high-level abstractions that allow

rapid prototyping, but the most widely used concurrency package, multiprocessing, only
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provides low-level features that the user must build upon to model complex concurrent

programs. We introduce PySy as a way to achieve true concurrency in Python and to pro-

vide an interface that easily expresses high-level concurrency and distributed programming

mechanisms.

This thesis presents our experience creating PySy, a Python package, which pro-

vides many of the JR [17] language features. Chapter 2 reviews relevant Python and JR

concepts. Chapter 3 discusses PySy’s feature design and demonstrates how to utilize these

features. Chapter 4 presents PySy’s implementation. Chapter 5 presents and analyzes

PySy’s performance results for several benchmarks and well-known concurrent programs.

Chapter 6 discusses ideas for future work on PySy and presents our conclusions.

1Python packages and modules are displayed in bold.
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Chapter 2

Background

This chapter reviews relevant background material. Section 2.1 reviews relevant

Python concepts. Section 2.2 reviews the JR concurrent programming language.

2.1 Python

This section gives an overview of advanced features and internal nuances of the

Python[22][5] language (version 2.x). We assume the reader is moderately familiar with

Python’s basic syntax and has object oriented programming experience in some language.

Most of PySy’s design uses basic, fundamental Python concepts, but it also uses some ad-

vanced techniques and subtle nuances of the language to enhance usability, which we will

discuss in this section. In some situations, we will directly refer to a specific Python imple-

mentation because PySy uses CPython, in which the Python interpreter is implemented in

C. Sections 2.1.1, 2.1.2, and 2.1.3 review relevant Python concepts. Section 2.1.4 reviews

Python’s scoping rules. Section 2.1.5 discusses the implications of the Global Interpreter

Lock in CPython. Section 2.1.6 reviews existing Python concurrency packages.
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2.1.1 Callables

A callable is a special type of Python object that refers to the user’s ability to

invoke a method using the traditional method invocation syntax. For example, if we have

function f 1 with three parameters, it may be invoked by f(p1,p2,p3)2. Python also sup-

ports default parameters and variable number of parameters as arguments. So, f(p1, p2) is

also valid if p3 has a default value or if f ’s definition takes a variable number of arguments,

e.g., def f(*args). Figure 2.1 shows the C source code that checks if a Python object is

callable. It has two cases: x is an object instance that defines the method call or tp call

is not NULL. The variable tp call [22] is an optional pointer to a function, which is NULL

if the object is not callable.

int PyCallable Check ( PyObject ∗x )
{

i f ( x == NULL)
return 0 ;

i f ( PyInstance Check (x ) ) {
PyObject ∗ c a l l = PyObject GetAttrStr ing (x , ” c a l l ” ) ;
i f ( c a l l == NULL) {

PyErr Clear ( ) ;
return 0 ;

}
Py DECREF( c a l l ) ;
return 1 ;

}
else {

return x−>ob type−>t p c a l l != NULL;
}

}

Figure 2.1: C API call for checking if a Python object is callable.

2.1.2 Python Methods

Python has three method types that its users interact with (whether the user is

aware of it or not): functions, unbound methods, and bound methods. Figure 2.2 highlights

2Variable and method names are italicized.
2Source code displayed directly in the text is in verbatim.
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the differences. When discussing the different method types, we may also refer to func-

tions as user-defined functions and the two method types as user-defined methods, where

appropriate, to avoid confusion with other usages of these terms.

def f ( ) : pass
print f

class Foo :
def g ( ) : pass

print Foo . g

foo1 = Foo ( )
print foo1 . g

#example output :
#<f unc t i on f a t 0x1004b5ed8>
#<unbound method Foo . g>
#<bound method Foo . g o f < main . Foo in s tance at 0x1004d3050>>

Figure 2.2: Examples of the three main types of Python methods.

A user-defined function is any function created by using the Python keyword def.

Table 2.1 [22] describes the special attributes belonging to functions. One of the interesting

special function attributes, from a developer’s perspective, is the dictionary func dict. Given

function f, it is legal in Python to create attributes for f and assign these attributes values.

So, the statement f.x=True is legal. A newly defined function is stored in the current scope’s

dictionary. If the function f is declared within a class C, then the function object will be

available through C’s dictionary C.__dict__[’f’]. C.f, however, returns an unbound

method and not the function f. This will be discussed later in this section.

A user-defined method is a special type of function with three extra read-only

attributes: im class, im self, and im func. im class is a reference to the class object that

encloses the function definition. im self is a reference to the class instance or None if

the method is unbound. im func is a reference to the callable object associated with the

method (usually of type function). The attributes associated with the callable im func are

now read-only. The statement f.x=True is now illegal and will throw an AttributeError
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Attribute Meaning Access

func doc The function’s documentation string, or None

if unavailable

Writable

func name The function’s name Writable

module The name of the module in which the function

was defined, or None if unavailable

Writable

func defaults A tuple containing default argument values for

those arguments that have defaults, or None if

no arguments have a default value

Writable

func code The code object representing the compiled

function body

Writable

func globals A reference to the dictionary that holds the

function’s global variables – the global names-

pace of the module in which the function was

defined

Read-only

func dict The namespace supporting arbitrary function

attributes

Writable

func closure None or a tuple of cells that contain bindings

for the function’s free variables

Read-only

Table 2.1: Special attributes for Python functions

exception, but the reference f.x is still legal. The main difference between unbound and

bound methods is the value inside of the variable im self.

Previously in this section, we mentioned that if class C has a function f,

then C.f returns an unbound method, but C.__dict__[’f’] returns the function ob-

ject. The expression C.f is translated to C.__dict__[’f’].__get__(None, C). Let

the variable c1 be an instance of class C. The expression c1.f is translated to

C.__dict__[’f’].__get__(c1, C). It is Python’s descriptor [22] protocol that transforms

a function object to an unbound or bound method object. This transformation happens

on every attribute access. This is why the simple optimization of assigning a heavily used

user-defined method to a local variable will improve performance (see Figure 2.3).
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import time

class Foo ( ob j e c t ) :
def i n i t ( s e l f ) :

s e l f . x = 0
def increment ( s e l f ) :

s e l f . x += 1
n i t e r s = 1000000

f = Foo ( )
s t a r t = time . time ( )
for i in xrange ( n i t e r s ) :

f . increment ( )
end = time . time ( )
origTime= end − s t a r t
print ”Or i g i na l t iming : %f ” % ( origTime )

f = Foo ( )
increment = f . increment
s t a r t = time . time ( )
for i in xrange ( n i t e r s ) :

increment ( )
end = time . time ( )
optimizedTime = end − s t a r t
print ”Optimized t iming : %f ” % ( optimizedTime )

print ”Overa l l speedup : %f percent ” % (
( 1 . 0 − ( optimizedTime / origTime ) ) ∗ 100)

””” output :
Or i g ina l t iming : 0.445786
Optimized t iming : 0.365727
Overa l l speedup : 17.959024 percent
”””

Figure 2.3: Example showing the descriptor protocol overhead

2.1.3 Decorators

Python supports the altering of methods or classes via decorators [20] [19] (as in

Aspect Oriented Programming). The decorator must be a callable object (see Section 2.1.1)

and must return a callable object. Python began using decorators in version 2.2 with the

usage of classmethod and staticmethod, but user-defined decorators were not supported

until version 2.4. Figure 2.4 shows two semantically equivalent ways to decorate a function

in Python. The first uses function composition, and the second utilizes the syntax of the

language, an @ symbol followed by a callable object. The user may decorate a function
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any number of times. To additionally add a decorator to the first method, the user simply

must add another function to the function composition. For the second method, the user

must use the decorator syntax on each line preceding the function. The order in which

the modifications are applied is similar to the evaluation of functional compositions in

mathematics. For example, (f ◦ g ◦ h)(x) is evaluated as f(g(h(x))).

The logFunctionCall method in Figure 2.4 takes m as a parameter, which corre-

sponds to the method we wish to decorate. Next, we create a new function wrapped that

will act as the new decorated method. wrapped gets its own read-only copy of m because

of Python closures. wrapped simply prints before and after we invoke m. The logFunction-

Call method returns a reference to wrapped. During the class creation of Foo, method x is

replaced with wrapped. Inspecting F.x yields an unbound method object associated with

wrapped, not with x, and not with logFunctionCall. The same applies to method y except it

will have its own separate wrapped function object and the creation of y uses the old, but

semantically equivalent, style for decorator creation.

def l ogFunct ionCa l l (m) :
def wrapped (∗ args ) :

print ” en t e r i ng %s” % m. name
m(∗ args )
print ” e x i t i n g %s” % m. name

return wrapped

class Foo :
def y ( s e l f , va l ) :

print ” in y %d” % val
y = logFunct ionCa l l ( y )

@logFunctionCal l
def x ( s e l f , va l ) :

print ” in x %d” % val

f = Foo ( )
f . x (1 )
f . y (2 )

Figure 2.4: Two equivalent ways to decorate a function in Python
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class LogFunctionCal l ( ob j e c t ) :
def i n i t ( s e l f , m) :

s e l f .m = m

def c a l l ( s e l f , ∗ args ) :
print ” en t e r i ng %s” % s e l f .m. name
s e l f .m(∗ args )
print ” e x i t i n g %s” % s e l f .m. name

@LogFunctionCall
def f ( ) :

print ” in f ”
f ( )
#outpu t s :
#en t e r ing f
#in f
#e x i t i n g f

Figure 2.5: Example showing how to use a Python class as a decorator.

2.1.4 Scoping

Python’s scoping is slightly simpler than that in languages like C, C++, and Java.

One of the main differences is that code blocks introduced by conditionals and loops do

not create a new scope. In Python, each file has its own global scope and only the method

construct (method definition or lambda definition) adds a new scope. When trying to resolve

a variable, the Python interpreter first inspects the current scope, next it iteratively checks

the parent scopes (ending with the global scope), and finally checks the Python built-ins.

An AttributeError is thrown when the interpreter cannot resolve a variable.

Python also provides lexical closures. When a function is declared, the function

inherits its parent’s local variables and is given read-only access to these variables referred

to as closed-over variables. The subsequent code examples demonstrate the behavior of

Python closures. In the program from Figure 2.6, Python is able to resolve x to the closed-

over variable x from main. In the program from Figure 2.7, Python complains that foo

is trying to read and write to a closed-over variable (print reads the value of x and the

assignment is trying to write to x ). The method foo, in the program from Figure 2.8, does

not use the closed-over variable defined in main. Instead, it creates a new variable x in its
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own scope and prints it out.

def main ( ) :
x = 2
def f oo ( ) :

print x
foo ( )
#expec ted output :
#2

Figure 2.6: Program showing a legal access under Python’s closure scoping.

def main ( ) :
x = 2
def f oo ( ) :

print x
x = 2

foo ( )
#expec ted output :
#excep t i on

Figure 2.7: Program showing illegal access under Python’s closure scoping.

def main ( ) :
x = 2
def f oo ( ) :

x = 3
print x

foo ( )
print x
#expec ted output :
#3
#2

i f name == ” main ” :
main ( )

Figure 2.8: Program showing a legal access under Python’s closure scoping, but behaves in a

counterintuitive way.
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2.1.5 GIL Limitations

The Python (CPython only) interpreter requires a global lock (Global Interpreter

Lock or GIL) to ensure thread-safety. The GIL is responsible for guaranteeing that only

a single thread has access to Python objects or is invoking Python/C API functions at

any given time. With this restriction, true thread-level parallelism is impossible. The

GIL, for each Python interpreter, will always be a bottleneck for competing threads. The

Python interpreter, however, tries to emulate parallelism by regularly switching threads

and attempting to release the GIL on potentially blocking operations (mostly I/O) or CPU

intensive computations (e.g., hashing).

2.1.6 Multithreading Alternatives

2.1.6.1 The Python threading Module

The Python threading module [22] is a higher-level interface for Python’s thread

module. threading provides a nice interface for the user to create simple concurrent pro-

grams. With threading, the user can create an object that derives from threading.Thread

or define a function to run in its own thread. Figure 2.9 shows how to execute the code of a

function in its own thread. The threading module allows the user to take advantage of writ-

ing concurrent programs, however, because of the GIL limitations in CPython, threading

will not generally provide improved performance in CPU-bound programs.

2.1.6.2 multiprocessing

The multiprocessing package overcomes the GIL limitations by spawning a new

interpreter process for each process declaration. This implementation allows for Python

programs to achieve true concurrency and reap potential performance improvements on

CPU-bound tasks. The multiprocessing interface is very similar to the threading inter-

face. Figure 2.10 shows how to execute the code of a function in its own process. multi-

processing also provides several distributed programming abstractions. See Appendix F
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import thread ing

lock = thread ing . Lock ( )
x = 0

def work ( ) :
global lock , x
for i in xrange ( 1 0 0 ) :

with lock :
x+=1

t1 = thread ing . Thread ( t a r g e t=work )
t2 = thread ing . Thread ( t a r g e t=work )
t1 . s t a r t ( )
t2 . s t a r t ( )
t1 . j o i n ( )
t2 . j o i n ( )
print x

Figure 2.9: Example using Python’s threading module.

for a distributed multiprocessing implementation of a Fast Fourier Transform (FFT)

algorithm.

from mul t i p ro c e s s i ng import Process , Lock , Value

def work (x ) :
for i in xrange ( 1 0 0 ) :

x . va lue+=1

i f name == ” main ” :
x = Value ( ’ i ’ , 0 , l o ck=True )

t1 = Process ( t a r g e t=work , args=(x , ) )
t2 = Process ( t a r g e t=work , args=(x , ) )
t1 . s t a r t ( )
t2 . s t a r t ( )
t1 . j o i n ( )
t2 . j o i n ( )
print x . va lue

Figure 2.10: Example using Python’s multiprocessing module.
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2.1.6.3 River/Trickle

River [9] [26] is a Python framework for distributed computing developed at the

University of California, San Francisico. It borrows some of its concepts from the SR [4] [28]

language, the predecessor to JR [17] [27], on which PySy is based. While there are a lot

of similarities between PySy and River, PySy employs a slightly more complex model and,

because of this, is capable of expressing higher-level concurrency mechanisms, e.g., an input

statement and dynamically scheduling the servicing of invocations. River only explicitly

provides asynchronous message passing, but can simulate synchronous message passing.

The River messaging model sends messages to specific processes, while PySy sends messages

to a specific object within a process.

A River program consists of at least one Virtual Machine (VM), which is a Python

interpreter process. River users manually launch VM processes on the local and remote

machines used in the distributed computation. The River run-time system coordinates

the allocation and deployment of the VMs through a user-interface in the main program.

The River framework is highly extensible, which has allowed its developers to implement

a task-based parallelism extension Trickle and a standard MPI concurrency extension with

rMPI [26]. Trickle hides a lot of the necessary River start-up code from the user and provides

an easy to use interface to inject code and distribute work onto many machines. We provide

qualitative and quantitative analysis of several River/Trickle programs in Chapter 5.

2.1.6.4 Other Alternatives

Over the years, many third-party Python concurrency packages have been de-

veloped, implementing various concurrency models. PyCSP [23] implements the Com-

municating Sequential Processes [11] (CSP) model. In CSP, programs are written with a

fixed number of sequential processes and communicate solely through synchronous message

passing. This differs from the PySy model because PySy provides both synchronous and

asynchronous message passing and dynamic process creation. Also, several Python pack-

ages have implemented the standard MPI [2] concurrency model. The MPI packages include
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mpi4py [21], pypar [24], and rMPI. Finally, much recent work has focused on task-based

parallelism in Python, e.g., Celery [18]. Celery allows the user to mark specific functions as

tasks and push these tasks to a work queue that is shared by all of the nodes connected to

the system. The features provided by task-based systems are a subset of PySy’s features.

2.2 JR

JR [17] [27] is an extended Java language that provides a concurrency model based

on the SR [4] [28] language. It is used at several universities worldwide as both a research

and an educational tool in undergraduate and graduate courses.

2.2.1 Virtual Machines

JR provides users the ability to write distributed programs. This is possible

through the concept of Virtual Machines (VMs). A JR VM is an address space on a

physical machine (possibly remote). The JR VM is a Java VM with an additional layer to

provide the functionality for JR’s concurrency model. Each JR program contains at least

one VM called the main VM. The execution of JR programs begins inside of the main VM,

and resides on the physical machine on which the user initiated the program. The user may

explicitly create new VMs by using the vm keyword and calling the VM constructor (see

Figure 2.11). By default, VMs are created on localhost, but the user may also specify the

hostname of the system to create the new VM or a reference to an existing VM.

JR also provides parameterized VMs. JR provides the user the ability to derive

its own classes from the vm class, define new operations for the VM, and pass user-specified

parameters to the constructor. Figure 2.12 shows an example of parameterized VMs in JR.

2.2.2 Remote Object Creation

In JR, the user creates remote objects utilizing the remote keyword. Figure 2.13

shows how the user may specify which VM to create the new object on or, by default, create
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public class j rVMInstant iat ion {
public stat ic void main ( St r ing [ ] a rgs )
{

vm c = new vm( ) ; // crea t ed a new vm on l o c a l h o s t
vm d = new vm( ) on ”pc12” ; // crea t ed a new vm on pc12
vm e = new vm( ) on d ; // crea t ed another new vm on pc12

}
}

Figure 2.11: Example showing how to create VMs in JR.

public class Main {
public stat ic op void myOp( int x ) ;
public stat ic cap void ( int ) myCap ;
public stat ic void main ( St r ing [ ] a rgs ) {

myCap = myOp;
// t e s t c a p a b i l i t y
vm vm1 = new Myvm(10 , ”vm1” , myCap ) ;
System . out . p r i n t l n (vm1 . GetID ( ) ) ;

}
}

public class Myvm extends vm {
private int vm id ; // t e s t p r im i t i v e type
private St r ing vm name ; // t e s t s t r i n g
private cap void ( int ) vm cap ; // t e s t c a p a b i l i t y and opera t ion

public Myvm( int vm id , S t r ing vm name , cap void ( int ) vm cap ) {
this . vm id = vm id ;
this . vm name = vm name ;
this . vm cap = vm cap ;

}

public op int GetID ( ) {
return vm id ;

}

public op St r ing GetName ( ) {
return vm name ;

}

public op cap void ( int ) GetCap ( ) {
return vm cap ;

}

}

Figure 2.12: JR example showing the creation of a parameterized VM.
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the new object on the main VM.

public class RemoteInstant iat ion {
public stat ic void main ( St r ing [ ] a rgs ){

vm lh = new vm( ) ; //vm on l o c a l h o s t
vm rem = new vm( ) on ”pc11” ; //vm on hos t pc11
remote Foo foo = new remote Foo ( ) ; // crea t ed on the current VM
remote Foo fooRem = new remote Foo ( ) on rem ; // crea t ed on vm rem

}
}

public class Foo{
public Foo (){}
public proce s s p1{

System . out . p r i n t l n ( ”p1” ) ;
}

}

Figure 2.13: How to create one remote object in JR on localhost and another on a remote

machine.

2.2.3 Operations

When writing a concurrent program, there must be a way for each parallel code

segment to communicate (e.g., shared memory or message passing) with the others. JR pro-

vides process-level shared memory (all threads on a particular VM share static variables),

as well as several other message passing communication mechanisms through the operation

abstraction. JR defines two types of operations: OpMethods (or ProcOps) and InniOps.

The name of each of these operations is derived from how the operation is serviced. That

is, OpMethods are serviced by methods (procedures) and InniOps are serviced by an input

statement (called an Inni statement in JR). The act of sending a message via an opera-

tion is called an invocation. Operations are invoked using the call statement or the send

statement. A synchronous invocation is accomplished through the call statement, while

an asynchronous invocation is accomplished through the send statement. Synchronously

invoking an operation named op has the form:
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call op(param_1, param_2,..., param_n) or

op(param_1, param_2,..., param_n)

The second option is used when the user wants to use the operation’s return value. Asyn-

chronously invoking an operation named op has the form:

send op(param_1, param_2,..., param_n)

The overall effect of an invocation is determined by how the operation is invoked

and how the invocation is serviced. Table 2.2 outlines the various possible behaviors using

operations. Synchronously invoking an operation forces the invoker to wait until the ser-

vicer contacts the invoker, allowing it to proceed. Asynchronously invoking an operation

immediately transmits the message and the invoker does not wait for a response. Instead,

the invoker continues execution with the next statement.

Invocation Service Effect

call OpMethod procedure call (possibly remote)

call Inni rendezvous

send OpMethod dynamic process creation

send Inni asynchronous message passing

Table 2.2: Possible ways an operation is invoked and serviced.

2.2.3.1 OpMethods

OpMethods are very similar to Java function calls. From the user’s perspective, the

main difference from the Java method declaration syntax is that an OpMethod declaration

adds an extra keyword op. The OpMethod declaration is followed by a block of code

that will be executed when the OpMethod services an invocation. When servicing a send

invocation, the OpMethod will execute the OpMethod’s code block in a different thread of

control (dynamic process creation). If the OpMethod servicing the send invocation contains
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a return statement, then the overall effect of the return is a no-op because the invoker is

not waiting for a response. When servicing a call, again the OpMethod’s code block is

executed, but after the block is finished executing, the servicer transmits a message to

the invoker containing a return value, if any, and the invoker continues execution (Remote

Method Invocation). Figure 2.14 shows how to define and invoke OpMethods.

public class jrOpMethod{
public stat ic void main ( St r ing [ ] a rgs ){

send twotimes ( 1 2 ) ;
System . out . p r i n t l n ( twotimes ( 1 3 ) ) ;
c a l l twotimes ( 1 4 ) ;

}
public stat ic op int twotimes ( int x ){

System . out . p r i n t l n ( ” in twotimes , got ” + x ) ;
return 2∗x ;

}
/∗
p o s s i b l e output :
in twotimes , go t 12
in twotimes , go t 13
26
in twotimes , go t 14
∗/

}

Figure 2.14: How to define and invoke an OpMethod in JR.

JR also allows the user to designate a single thread or multiple threads to start

up with the construction of an object. This is done through the process keyword. JR

processes are different from the OS definition of a process. In JR, a process is a separate

thread of execution within the address space of a virtual machine. The process construct

is declared in two possible ways:

process process_id block or

process process_id( (quantifier), (quantifier), ... ) block

See Section 2.2.8 for a review of the quantifier syntax and its uses. The first declaration

allows for a single process to be created per object, while the second declaration may

potentially create many processes. The user may also modify the process declaration with
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the static keyword, which only creates a new process (or processes if the process is defined

with a quantifier) once per VM.

public class j rP r o c e s s e s {
public stat ic void main ( St r ing [ ] a rgs ){

new Test ( ) ; new Test ( ) ;
}

}
class Test{

public Test ( ){}
public proce s s p1{

System . out . p r i n t l n ( ” pr in ted once per Test i n s t a n t i a t i o n ” ) ;
}
public stat ic proce s s p2{

System . out . p r i n t l n ( ” pr in ted once per VM” ) ;
}
public proce s s p3 ( ( int i = 0 ; i < 6 ; i++; i % 2 == 0)){

System . out . p r i n t l n ( ”p3 : ” + i ) ;
}

}
/∗ p o s s i b l e output :
p r in t ed once per VM
p3 : 0
p3 : 2
p r in t ed once per Test i n s t a n t i a t i o n
p3 : 4
p3 : 2
p3 : 4
p r in t ed once per Test i n s t a n t i a t i o n
p3 : 0
∗/

Figure 2.15: JR example that demonstrates how to use the process construct.

2.2.3.2 InniOps

InniOps are shared queues used to pass messages between processes. By invoking

an InniOp, synchronously or asynchronously, an invocation is placed into a queue, called the

invocation list. During synchronous invocations, the invoker will wait until the invocation

is serviced by an input statement or a receive (equivalent to a one arm input statement).

Otherwise, in an asynchronous invocation, the invocation is immediately added to the queue,

and the invoker continues execution with the next statement.
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2.2.3.3 Semaphores

Semaphores [8] are a well-studied concurrent programming mechanism to restrict

access to resources. JR provides the semaphore abstraction to its users in the guise of an

InniOp. In its most simple form, a semaphore is a counter for the number of available

resources. Underneath, an InniOp is a synchronized shared queue (the invocation list). We

can simulate a semaphore by allowing the number of invocations in the queue to represent

the number of available resources. Traditionally, semaphores define two operations: P

and V. The P operation tests the availability of a resource and decrements the counter if a

resource is available and blocks otherwise. The V operation releases a resource and, likewise,

increments the number of available resources. Figure 2.16 shows a simple JR program where

a semaphore is required to achieve the desired behavior.

public class Sem{
public stat ic sem s = 1 ;
public stat ic int count = 0 ;
public stat ic op void done ( ) ;
public stat ic void main ( St r ing [ ] a rgs ){

r e c e i v e done ( ) ; r e c e i v e done ( ) ;
System . out . p r i n t l n ( count ) ;

}
public stat ic proce s s pq ( ( int pi = 0 ; p i < 2 ; p i++)){

for ( int i = 0 ; i < 50 ; i++){
P( s ) ;
count += 1 ;
V( s ) ;

}
send done ( ) ;

}
}

Figure 2.16: JR example that demonstrates the semaphore construct.

2.2.4 Input Statement

The input (Inni) statement is JR’s most powerful statement and gives the user

great flexibility. The Inni statement services InniOp invocations. Syntactically, the Inni

statement contains one or more op commands separated by a box token with either an
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optional else or else after arm:

inni op_command1 [] op_command2 [] ...

Each op command is referred to as an arm and consists of an operation and an optional

such that clause and by expression. The such that clause is a synchronization expression

that only allows an invocation to be serviced when the user-defined expression evaluates to

true. The by expression modifies the scheduling of invocations. When a by expression is

present, the invocation with the lowest evaluation is serviced first. Section 2.2.5 discusses

invocation selection further.

When an Inni statement is used to service an invocation, the selected arm’s code

block is executed. For synchronous invocations, the the Inni transmits a message to the

invoker after a reply or return statement is executed and the invoker continues execution.

The overall effect is synchronization between the invoker and the servicer (rendezvous).

Otherwise, no message is sent to the invoker and the effect is asynchronous message passing.

Figure 2.17 shows a JR program with an input statement with two arms. The main

program adds two invocations to f’s invocation list and one invocation to g’s invocation

list. Process P1’s Inni statement services all of the invocations for the operations in its

arms. When no serviceable invocations exist, the program has reached a quiescent state

(see Section 2.2.9), and JR terminates the program. Figure 2.18 shows a JR program

with an input statement that has a by clause and a such that expression. The invocation

selection for Inni statements with by expressions and such that clauses changes. The by

expression orders the serviceable invocations by the lowest evaluation, while the such that

clause selects the first serviceable invocation. The next section presents JR’s invocation

selection semantics.

2.2.5 Invocation Selection

Recall from Section 2.2.3 that operations are invoked either asynchronously or

synchronously, and serviced by methods or an input statement. The way a language (or

package) chooses to select invocations for servicing will change its semantics, notably, in-
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public class j r Inni2Arms
{

public stat ic op void f ( int ) ;
public stat ic op void g ( int ) ;
public stat ic void main ( St r ing [ ] a rgs )
{

send f ( 2 ) ; send f ( 3 ) ; send g ( 1 ) ;
c a l l g ( 6 ) ;

}
public stat ic proce s s P1{

while ( true ){
i n n i void f ( int x ){

System . out . p r i n t l n (x ) ; }
[ ] void g ( int x ){

System . out . p r i n t l n (x ) ; }
}

}
/∗
expec ted output :
2
3
1
6
∗/

}

Figure 2.17: JR Inni statement with two arms.

public class jrInniByST
{

public stat ic op void f ( int ) ;
public stat ic void main ( St r ing [ ] a rgs ){

send f (−2); send f ( 3 ) ; send f ( 1 ) ; send f (−1); send f ( 2 ) ;
while ( true ){

i n n i void f ( int x ) s t x > 0 by −x {
System . out . p r i n t l n (x ) ;

}
}

}
/∗
expec ted output :
3
2
1
∗/

}

Figure 2.18: JR Inni statement with by clause and such that expression.
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vocation fairness and servicing fairness (called process fairness in [16]). Invocation fairness

describes the fairness associated with how the servicing algorithm selects the next invocation

to be processed. Servicing fairness describes the fairness associated with selecting which

Inni statement services an invocation. Both of these concepts are key to understanding how

a concurrent program will behave. They describe the guarantees given to the programmer

concerning expected program behavior. Consider the program in Figure 2.19. Imagine the

user was given no guarantees about which process will service invocations. In this case, it

would be possible, however unlikely, for P3 (or, similarly, P2) to be completely starved. The

type of guarantees the user wants may vary from program to program, but it is important

to provide an environment that encompasses the general desires of the intended user. JR,

in particular, selects the next invocation loosely based on first-come, first-served (FCFS).

Like Java, JR does not add any new thread scheduling semantics. So, JR provides servicing

fairness if and only if the underlying operating system provides a fair thread scheduler.

Before we discuss the invocation selection algorithm, we must define what FCFS

means with respect to invocations. In JR, when an operation is invoked, the resulting

invocation is assigned a timestamp based on its VM’s estimation of the current time –

called distributed time. The receiving InniOp appends each invocation to its invocation

list. The queued ordering of an InniOp’s invocation list describes the explicit order in

which its invocations will be serviced (assuming no such that clauses or by expressions).

For each attempt by an Inni statement to service an invocation, JR sorts the Inni statement’s

arm(s) based on the distributed timestamp of the earliest invocation. We will refer to this

sorting procedure as “arm sorting.” If there is no such that clause or by expression, then

the general servicing is extremely fast. We simply take the first element from the earliest

arm’s invocation list (from the ordering of the arm sorting). The servicing algorithm is now

O(a log a), where a is the number of arms. Through empirical study of JR’s verification

suite [27], JR’s book [17], and the experience obtained from taking and being a teaching

assistant for ECS140B at UC Davis, I have noticed that the number of arms is generally

less than four (not including the usages of quantifiers; see Section 2.2.8). So, we may safely
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public class j r I nvFa i r n e s s {
public stat ic op void f ( int ) ;
public stat ic op int g ( int ) ;
public stat ic void main ( St r ing [ ] a rgs ){

send f ( 1 ) ; send f ( 2 ) ; send f ( 6 ) ;
}
public stat ic proce s s P1{

int count = 0 ;
while ( count < 10){

i n n i void f ( int x ){
int y = g (x ) ;
System . out . p r i n t l n ( ”x : ” + x + ” y : ” + y ) ;
send f ( x+1);

}
[ ] else {break ;}

count += 1 ;
}

}
public stat ic proce s s P2{

while ( true ){
i n n i int g ( int x ){

return x+1;
}
}

}
public stat ic proce s s P3{

while ( true ){
i n n i int g ( int x ){

return x∗x ;
}

}
}

}

Figure 2.19: JR program with multiple processes competing for invocations.

treat the arm sorting as a constant operation in invocation selection, and only consider the

number of invocations we try to service in our time bound.

We have just discussed how JR handles invocation selection in the most basic case.

However, the input statement may have a by expression, a such that clause, or both. We

will now discuss how the invocation selection process changes for such that clauses and by

expressions, and describe the effect of these changes on our run-time bounds. First, let

us examine the such that clause. The selection algorithm still performs the arm sorting.

In the best case, the earliest invocation satisfies the such that clause and we are done.
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Otherwise, the selection algorithm must iterate over all invocations in the selected arm until

a serviceable invocation is found or all of the selected arm’s invocations are not serviceable.

If the invocation is not found in the first arm, then the algorithm must iterate over the

remaining arms until a serviceable invocation is found or, in the worst case, all invocations

are not serviceable. The invocation selection with a such that clause has a worst case

running time of O(n), but may, in the best case, run in constant time.

Next, let us examine the by expression. After the arm sorting, the by expression

must be evaluated for each invocation in the selected arm’s invocation list, and, select the

invocation with the lowest value. With a by expression, the invocation selection algorithm

is guaranteed to find a serviceable invocation in the first arm. So, our running time, in this

case, would be θ(n).

Finally, consider the case where we have a such that clause and a by expression.

After the arm sorting, the selection algorithm iterates over all invocations in the earliest

arm testing both the such that clause and evaluating the by expression. If any invocations

in the first arm satisfy the such that clause, then the selection algorithm will choose the

invocation with the lowest by expression evaluation. Otherwise, it will iterate over the other

sorted arms and return the serviceable invocation, if any, with the lowest by evaluation in

the arm. The overall time complexity for this process is O(n).

Some may wonder why JR does not provide true FCFS. This is, undoubtedly, for

performance reasons. If JR was to provide true FCFS, then the invocation lists of each arm

must be merged and sorted by distributed time on each servicing attempt. Let n denote

the number of invocations, the selection process will take O(n log n) time or approximately

the time to sort all of the invocations by distributed time. This is just for selecting the

first invocation to attempt to process. There would be additional overhead with the more

complicated Inni statements. Implementing the servicing in this way would severely hinder

performance.

See Appendix A for more explanation of invocation selection and a walkthrough

of an example.
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2.2.6 Reply

The reply statement is used on the servicing side of an invocation. It has the

form:

reply or

reply expr

The reply statement returns a value to a synchronous invoker and allows the invoker to

proceed. Unlike with the return statement, after a reply the servicing thread continues

executing the next statement. The reply statement is defined for any invocation, but

the invoker is only contacted in the case of a synchronous invocation. For asynchronous

invocations, the overall effect of a reply is a no-op since the invoker is not waiting for a

response. The reply statement is useful in many situations. One example is if the servicing

side needs to perform some expensive post-processing code after the return value has already

been computed. Making the invoker wait until after the post-processing code completes

would hurt performance. With the reply statement, the servicing side can contact the

invoker with the return value and, only then, execute the post-processing code. The user

may use the reply statement any number of times per invocation, but the effect of the

reply statement described above occurs only for the first reply statement executed for the

invocation; subsequent executions of reply are effectively no-ops.

2.2.7 Forward

The forward statement passes the responsibility for servicing a synchronous in-

vocation to another operation. It has the form:

forward operation(param_1, param_2, param_n)

The servicing side is unaware that the invocation it is servicing is the product of a forward

or call. A useful example for forwarding invocations can be seen in the typical client-server

model. Each client has a reference to an operation on the server. The server simply acts

as an intermediary and dispatches all invocations to a threadpool or some other resource

to handle the computation. To do this, the server can use the forward statement to push
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the responsibility for servicing the incoming invocations to another resource. The forward

statement may be used any number of times per invocation, but the effect of the forward

described above only occurs for the first forward. Each subsequent execution is treated as

a new send invocation.

2.2.8 Quantifiers

The quantifier syntax is nearly identical to Java’s for loop syntax except for the

quantifier’s optional such that expression:

(initialization_expr; termination_expr; increment_expr) or

(initialization_expr; termination_expr; increment_expr; st_expr)

The such that expression defines an expression that must be satisified

for the quantifier to create a new process. For example the process quantifier,

(int i = 0; i < 10; i++; i%2 == 0) will create five total processes, one for each i in

the set {0, 2, 4, 6, 8}. Quantifiers are very useful for creating families of operations.

2.2.9 Quiescence

Terminating programs is much more difficult in a concurrent environment than

in a sequential program. In a sequential program, like in Java, when the main function

completes, the program is terminated. In a concurrent program, the completion of one

thread does not necessarily imply the program is completed. In most concurrent environ-

ments, the user is forced to explicitly write code to terminate the program. Quiescence

detection [14] [15] takes this responsibility away from the user and gives it to the run-time

system. A program is said to be quiescent if and only if no threads are able to run3 and

all network messages that have been sent have also been received. In addition, quiescence

detection can also determine if a program is deadlocked. Quiescence detection lessens the

amount of the code that the user must write to synchronize the program for termination,

but is traded off with a significant performance hit. The JR book [17] discusses the quies-
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cence detection’s performance in its appendix and we will discuss it further in Chapter 5.

By default, quiescence detection is enabled in JR programs.

JR also provides its users the ability to register a quiescence action to be exe-

cuted when quiescence is detected. The quiescence action is the last code executed before

beginning shutdown procedures and can be used to execute post-processing or clean up

procedures for a program.

2.2.10 Concurrent Invocation Statement

The concurrent invocation statement [6] [4] or Co statement starts up a group of

invocations. The Co statement allows the user to group operation invocations (also allows

for quantifiers) and normally terminates when all invocations have been serviced. The Co

statement also allows for the user to specify post-processing code and a mechanism for

terminating the Co statement early. Figure 2.20 shows an example of JR’s Co statement.

3Threads that are napping via JR.nap() still count as runnable threads. A thread is not runnable if it is
waiting on a JR resource.
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import edu . ucdavis . j r . JR ;
public class CoExample{

public stat ic void main ( St r ing [ ] a rgs ){}
public stat ic proce s s p{

System . out . p r i n t l n ( ” be f o r e co” ) ;
co c a l l f ( 2 ) ;
[ ] c a l l g ( 3 ) ;
System . out . p r i n t l n ( ” a f t e r co” ) ;

}
public stat ic op void f ( int x ){

System . out . p r i n t l n (x ) ;
JR . nap (1000 ) ;
System . out . p r i n t l n ( ” l e av ing f ” ) ;

}
public stat ic op void g ( int x ){

System . out . p r i n t l n (x ) ;
JR . nap ( 2 0 0 ) ;
System . out . p r i n t l n ( ” l e av ing g” ) ;

}
/∗ expec ted output :
b e f o r e co
2
3
l e a v i n g g
l e a v i n g f
a f t e r co
∗/

}

Figure 2.20: Example showing a JR program with a co statement.
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Chapter 3

Design

PySy is based on the JR concurrent programming language [17][13]. However,

there are some interesting differences between the two. The most obvious difference is that

PySy is in the form of a package; JR is its own language. The JR language is able to

leverage the Java compiler to do a lot of its work, but PySy does not have this luxury.

Instead, PySy propagates this work to the user and the developer. Comparatively, an

input statement in PySy (Section 3.6) is much more complicated to use from the user’s

perspective than in JR (Section 2.2.4). In JR, the user simply uses the syntax of the

language to utilize the input statement’s functionality. In PySy, however, the user must

break the input statement into a list of InniArm objects to achieve equivalent functionality.

The InniArms are subsequently sent as parameters to PySy’s Inni object constructor. Next,

the user invokes the Inni’s service() method to attempt to service an invocation for one of

the Inni’s arms. This is a recurring pattern throughout PySy’s design. In other words,

PySy incrementally builds JR constructs by having the user create a construct’s lowest

level subparts first. Next, it passes these subparts to the constructor of the next higher

level abstraction. This procedure iterates until the highest level abstraction, which matches

the functionality of the JR mechanism, is completely created. RJ, a Java package that

provides JR functionality, is also currently being developed at UC Davis and implements

this methodology. Currently, RJ does not have its own webpage, but it will be referenced
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shortly from the JR webpage [27].

This chapter outlines PySy’s design for each adapted JR feature. In the following

sections, we will present a written description of each feature, give code examples, and

describe the user interface. Initially, we will show the necessary package import statements,

but to save space, subsequent feature uses will omit the necessary imports. The full source

code for all of the examples in this thesis can be found at http://csiflabs.cs.ucdavis.

edu/~twilliam/PySy/thesis/PySyCodeExtract.tar.gz. The structure of this chapter

roughly parallels the structure of the JR section in the previous chapter.

Before we discuss PySy’s features, we would like to point out some of the notice-

able differences. Currently, PySy has adopted almost all of JR’s features and has made a

concerted effort to maintain JR’s semantics. The following are the main differences between

PySy and JR.

• Quantifiers are not yet implemented (see Section 6.2.1.1).

• Parameterized VMs are not yet implemented (see Section 6.2.1.2).

• The return value from a synchronous invocation allows for multiple values of any

pickleable data type (see Section 3.5).

• Creating remote objects requires invoking a special PySy API function createInstance

(see Section 3.3).

The end goal of PySy is to provide its users with a useful and expressive environ-

ment for implementing concurrent and distributed programs. Like JR, fault tolerance is not

a priority. Currently, the user is responsible for handling remote exceptions and responding

accordingly. That is, if a portion of a PySy program crashes the system will not attempt

to recover from the crash and will likely terminate abruptly and leave a zombie process

running on the system.

http://csiflabs.cs.ucdavis.edu/~twilliam/PySy/thesis/PySyCodeExtract.tar.gz
http://csiflabs.cs.ucdavis.edu/~twilliam/PySy/thesis/PySyCodeExtract.tar.gz
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from PySy import ∗

PySy . i n i t ( )
def main ( ) :

print ” h e l l o world”

Figure 3.1: This example shows a “Hello World” PySy program.

3.1 Running PySy Programs

Figure 3.1 demonstrates the most basic PySy program. From the user’s per-

spective, PySy programs appear nearly identical to regular Python programs. The most

noticeable differences occur in the global scope. The user is required to import the PySy

package, invoke the method PySy.init(), and to declare a main method. PySy.init() ensures

that a Pyro (see Section 4.1) nameserver is currently running on the local subnet and ini-

tializes PySy’s internal data structures, most notably, the Virtual Machine Manager (see

Section 4.2.1) and the main VM. It is recommended that the user uses the “from” import

syntax to avoid numerous imports. Appendix B presents a list and a brief description of

the imported functions and objects. Once the system is started, program execution begins

on the main VM in main(). To pass in command line arguments, the user simply needs to

add the expected incoming parameters (or *args) to the formal parameter list of main().

PySy automatically handles the forwarding of command line parameters.

3.2 Virtual Machines

PySy, like JR (see Section 2.2.1), provides its users the ability to write distributed

programs through the VM construct. Each PySy VM corresponds to a separate Python

interpreter process, which gives each VM its own address space. This relationship is equiv-

alent to the relationship JR VMs have with Java VMs. Also, like JR, every PySy program

has at least one VM – the main VM. The main VM is located on the same physical machine

where the user launched the PySy program. Each PySy program begins execution inside
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the global scope’s main method. Additionally, the user may create new VMs, either locally

or remotely, by calling PySy.createVM() (see Figure 3.2 for the function signature).

def createVM( host=” l o c a l h o s t ” , username=None , sshPort =22): pass

Figure 3.2: Method signature for creating new VMs in PySy.

3.3 Object Creation

PySy treats local object creation similar to JR. The user simply calls the ob-

ject’s constructor and, afterwards, may use the object normally. However, the PySy

API provides PySy.createInstance to provide remote object creation. The user must in-

voke PySy.createInstance (see Figure 3.3) to create remote objects. The user should

also use PySy.createInstance for objects intended to be used both locally and remotely.

PySy.createInstance takes two parameters: a fully qualified class name and an optional VM

reference where the user wants to create the object. A fully qualified class name is the path

to the class definition delimited by ‘.’. This is similar to the Python syntax for importing

modules except enclosed in quotation marks. For example, the fully qualified class name

“foo.Foo” will search for the file foo.py in sys.path and ensure that class Foo is defined

within. An exception is thrown if Python cannot find the module or if the class does not

exist inside the module. The source code for foo.py does not need to be located on the

remote machine. PySy handles transferring the source code, importing the module, the

object creation, and the returning of a remote reference. If no VM reference is specified

to PySy.createInstance, then the remote objects are created on the main VM. Figure 3.4

shows how to create remote objects in PySy.
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def c r e a t e In s t anc e ( fqcn , ∗ args , ∗∗kwargs ) :
”””
@summary : Creates a new ins tance o f o b j e c t $ f qcn
@param fqcn : Fu l l y q u a l i f i e d c l a s s name o f o b j e c t to c r ea t e
@type fqcn : s t r i n g
@param args : arguments to the cons t ruc t o r o f the o b j e c t denoted

by $ f qcn
@type args : t u p l e
@keyword vm: the vm to c rea t e the new o b j e c t on . By d e f a u l t

i f vm i s not s p e c i f i e d o b j e c t s are crea t ed on l o c a l h o s t
in the main VM. Otherwise the vm s p e c i f i e d w i l l be used .

@return : <RemoteRef>
”””

pass

Figure 3.3: PySy API method signature for creating remote objects

def main ( ) :
#l o c a l h o s t i s d e f a u l t hos t
lhVM = PySy . createVM ()
remVM = PySy . createVM(” l o c a l h o s t ” )
#crea ted on main VM
f 1 = PySy . c r e a t e In s t an c e ( ” foo . Foo” )
f 2 = PySy . c r e a t e In s t an c e ( ” foo . Foo” , vm=remVM)
print ” lh : %d” % f1 . mult . c a l l (3 , 2)
print ” lh2 : %d” % f2 . mult . c a l l (3 , 2)

class Foo ( PSObject ) :
def i n i t ( s e l f ) : pass
@OpMethod
def mult ( s e l f , inv ) :

x , y = inv . getParameters ( )
return x∗y

Figure 3.4: How to instantiate a remote object in PySy on localhost and another on a remote

VM.

3.4 Invocations

Section 2.2.3 defines the JR term invocation as the act of sending a message via

the operation interface. Internally, an invocation contains contextual information including

the invocation parameters and, if the invocation is synchronous, a reference to the invoker.
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In JR, this context is managed internally, but PySy users must interact with invocations

on the servicing side. The servicing side takes inv as its first actual parameter. inv is an

instance of Invocation (see Figure 3.5 for the Invocation interface). Figure 3.6 demonstrates

how to retrieve parameters from an invocation object. The reply construct is discussed in

Section 3.7 and the forward construct is discussed in Section 3.8.

def getParameter ( s e l f , index ) :
”””
@summary : Returns the parameter at index <index> in the

invoca t i on
@precondi t ion : index >= 0 , index < l en ( s e l f . params )
@raise Asser t ionError : Raises an a s s e r t i on error i f the

exp re s s i on index < l en ( s e l f . params ) == False
@param index : index o f a r eque s t ed parameter in the l i s t

s e l f . params
@type index : i n t
@return : the o b j e c t a t s e l f . params [ index ]
”””

def getParameters ( s e l f ) :
”””
@summary : Returns a l l the parameters in the invoca t i on
@return : Tuple c on s i s t i n g o f a l l t he paramters in s e l f . params
”””

def forward ( s e l f , fwdOp , inv=None ) :
”””
@summary : Forwards an invoca t i on to $fwdOp . I f inv i s None

then s e l f i s forwarded to $fwdOp , otherwise , inv i s
forwarded

@param fwdOp : The opera t ion to s e r v i c e the forward ing o f t h i s
invoca t i on .

@type fwdOp : <Operation>
@param inv : The invoca t i on to forward to $fwdOp . None , i f

we wish to forward s e l f as the invoca t i on
”””

def r ep ly ( s e l f , ∗ args ) :
”””
@summary : Sends r e p l y message to the invok ing o b j e c t
@param args : Var iab l e number o f parameters to be used in the

r e p l y invoca t i on
”””

Figure 3.5: The user interface for PySy’s invocation object.
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def main ( ) :
inv1 = Invocat ion (1 )
inv2 = Invocat ion (4 , 5 , 6 )
print inv1 . getParameter (0 ) #re turns the 1 s t parameter
print inv1 . getParameters ( ) #re turns a t u p l e o f a l l o f the parameters
x , y , z = inv2 . getParameters ( ) #as s i gn s 1 s t parameter to 1 s t item on l h s

#and so on
print x , y , z
w = inv2 . getParameters ( ) #re turns a t u p l e o f a l l parameters
print w
#expec ted output :
#1
#(1 , )
#4 5 6
#(4 , 5 , 6)

Figure 3.6: Example showing how to retrieve parameters from an invocation object.

3.5 Operations

Section 2.2.3 discussed OpMethods and InniOps and their usage. This section will

present PySy’s realization of the operation features. Appendix C shows the user interface

for OpMethods and InniOps.

The return value of synchronous invocations in PySy is different than in JR. In

JR, synchronously invoking an OpMethod allows the user to return any value, including

primitives, back to the caller. Since JR is based on Java, an operation can only return a

single value. Python is not as restrictive in both the types of return values and the number

of return values. PySy embraces this flexibility and allows for the return of multiple values.

Figure 3.7 shows the syntax for returning multiple values from a synchronous invocation

follows normal Python conventions.

3.5.1 OpMethod

An OpMethod is a JR construct (see Section 2.2.3.1) for interprocess-communication

via method calls (possibly remote). Figure 3.8 demonstrates the creation and the usage of

OpMethods. The OpMethod decorator injects the IM OP attribute into p1. At creation
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class Foo ( PSObject ) :
@OpMethod
def multNSum( s e l f , inv ) :

x = inv . getParameter (0 )
y = inv . getParameter (1 )
return x∗y , x+y

def main ( ) :
f = Foo ( )
product , sum = f .multNSum . c a l l (3 , 2)
print product
print sum

Figure 3.7: Returning multiple values from an Operation

time, the PSObject replaces p1 with an OpProxy object, which exposes the Operation in-

terface to the user. With this approach, we are able to keep p1 as an instance method

of Maine and give the OpMethod access to all instance variables through self. PySy also

provides the decorator StaticOpMethod, which provides an OpMethod for a class and

not a specific instance.

class Maine ( PSObject ) :
def i n i t ( s e l f ) :

s e l f . y = s e l f . p1 . c a l l ( 4 )
print ”p1 returned : %d” % s e l f . y

@OpMethod
def p1 ( s e l f , inv ) :

x = inv . getParameter (0 )
print ”p1 got : %d” % x
return x+1

def main ( ) :
m = Maine ( )
m. p1 . send (m. y+1)

#expec ted output :
#p1 got : 4
#p1 re turned : 5
#p1 got : 6

Figure 3.8: Example showing the usage of OpMethods in PySy.
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3.5.2 Processes

PySy processes are modeled after JR processes (Section 2.2.3). In the implemen-

tation of JR and PySy, processes are a special kind of OpMethod. PySy processes, however,

cannot be static. Figure 3.9 and Figure 3.10 show how to define processes in JR and PySy,

respectively.

public class Proce s s e s {
public stat ic void main ( St r ing [ ] a rgs ){new Test ( ) ; new Test ( ) ; }

}
class Test{

public Test ( ){}
public proce s s p1{

System . out . p r i n t l n ( ” pr in ted once per Test i n s t a n t i a t i o n ” ) ;
}
public stat ic proce s s p2{

System . out . p r i n t l n ( ” pr in ted once per obj ” ) ;
}

}

Figure 3.9: Creating processes in JR.

class Foo ( PSObject ) :
def i n i t ( s e l f ) :

s e l f . s t a r tP r o c e s s e s ( )
@Process
def x ( s e l f , inv ) :

print ” in Foo proce s s ”
def main ( ) :

f = Foo ( )

Figure 3.10: Creating processes in PySy.

As seen in Figure 3.10, a PySy process is created by using the Process decorator.

This decorator adds a new attribute, IM PROCESS, to the function x. The creation of a

process is similar to the description given above for OpMethods. However, at some point

after the instantiation of the object, the user must explicitly call the object’s startProcesses

method to start the declared processes in the object. This is unfortunate, but necessary
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because Python does not allow the user to run arbitrary code after a class has been fully

created. This is also why PySy cannot have static processes. See Section 4.2.2 for further

explanation.

3.5.3 InniOps

Recall from Section 2.2.3.2, InniOps are a shared queue implementation used for

inter-process communication. Figure 3.11 demonstrates the creation and the usage of an

InniOp.

class Maine ( PSObject ) :
def i n i t ( s e l f ) :

s e l f . f oo = InniOp . c r e a t e ( )
s e l f . p1 . send ( )

@OpMethod
def p1 ( s e l f , inv ) :

i = 0
print ”+loop ”
while True :

i f i == 4 :
break

x = s e l f . f oo . r e c e i v e ( )
print x
i += 1

print ”−loop ”

def main ( ) :
m = Maine ( )
m. foo . send (4 )
m. foo . send (6 )
m. foo . send (12)
m. foo . c a l l ( 1 )

#expec ted output :
#+loop
#4
#6
#12
#1
#−l oop

Figure 3.11: Example showing the usage of an InniOp in PySy.
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3.5.4 Semaphores

Section 2.2.3.3 discusses JR’s implementation of the semaphore abstraction. Fig-

ure 3.12 shows how to create and use a semaphore in PySy.

PySy’s semaphore abstraction also interfaces with the Python with statement,

which is normally used with Python’s locks to execute a critical section of code. Entering

and exiting a with block executes pre-processing and post-processing code. The user pro-

vides the pre-processing and post-processing code by overloading the enter and exit

methods, respectively. The with statement has an optional as command that binds the

with object to a separate identifier and deletes the identifier from the current scope upon

leaving the with block. A common Python locking idiom is seen in Figure 3.13. Entering

the with acquires the lock and exiting the with releases the lock. The benefit of using the

lock in the with statement is that exit is guaranteed to run regardless of a thrown ex-

ception inside the with code block. This idiom prevents a very common mistake by novice

concurrent programmers: surrounding a critical section with the acquiring and releasing of

a lock without enclosing the release in a try...finally block. When an exception is thrown

without the try...finally block, the lock may still be acquired after leaving the critical sec-

tion. PySy stays in the spirit of Python and provides this functionality with the semaphore

abstraction. Entering the with block for a semaphore is the equivalent to a P operation

and exiting the with block is equivalent to a V operation. Figure 3.14 shows a semaphore

used in a with statement and shows the with statement’s optional as command.

3.6 Inni

Recall from Section 2.2.4, the Inni statement has the form:

inni op_command1 [] op_command2 [] ...

We will refer to each op command as an InniArm. PySy models an Inni statement

as a list of InniArms with an optional else arm or else after arm. The else arm is executed
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n i t e r s = 10000
class Foo ( PSObject ) :

x = 0
def i n i t ( s e l f ) :

s e l f . mutex = InniOp . createSem (1)
s e l f . done = InniOp . c r e a t e ( )
s e l f . s t a r tP r o c e s s e s ( )

@Process
def p1 ( s e l f , inv ) :

for i in xrange ( n i t e r s ) :
s e l f . mutex .P( )
Foo . x += 1
s e l f . mutex .V( )

s e l f . done . send ( )
@Process
def p2 ( s e l f , inv ) :

for i in xrange ( n i t e r s ) :
s e l f . mutex .P( )
Foo . x −= 1
s e l f . mutex .V( )

s e l f . done . send ( )

def main ( ) :
f = Foo ( )
for i in xrange ( 2 ) :

f . done . r e c e i v e ( )
print Foo . x

#expec ted output :
#0

Figure 3.12: How to create and use a semaphore in PySy.

when there are no serviceable invocations. The else after arm is executed when there are no

invocations after waiting for a user-specified amount of time (similar to a timeout). The Inni

object only provides one user method – service. service attempts to service an invocation

for one of the arms. PySy uses the same invocation selection algorithm as JR (described in

Section 2.2.5). service returns a control status value that reflects the occurrence of a break

or a continue statement inside of the Inni arm. We discuss this topic more in Section 3.10.
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import thread ing
lock = thread ing . Lock ( )
sharedX = 0
n i t e r s = 10
def t1 ( ) :

global sharedX , n i t e r s , l o ck
for i in xrange ( n i t e r s ) :

with lock :
sharedX += 1

tOne = thread ing . Thread ( t a r g e t=t1 )
tTwo = thread ing . Thread ( t a r g e t=t1 )
tOne . s t a r t ( )
tTwo . s t a r t ( )
tOne . j o i n ( )
tTwo . j o i n ( )
print sharedX

Figure 3.13: Example usage of the Python with statement.

class Foo ( PSObject ) :
def i n i t ( s e l f ) :

s e l f . sem1 = InniOp . createSem (1)
s e l f . done = InniOp . c r e a t e ( )
s e l f . x = 0
s e l f . p1 . send ( )
s e l f . p1 . send ( )

@OpMethod
def p1 ( s e l f , inv ) :

for i in xrange ( 1 0 ) :
with s e l f . sem1 as sem :

sem .V( ) #unnecessary , but used to show the
#usage o f sem a f t e r the ’ as ’ command

sem .P( )
s e l f . x += 1

s e l f . done . send ( )

def main ( ) :
f = Foo ( )
f . done . r e c e i v e ( ) ; f . done . r e c e i v e ( )
print f . x

Figure 3.14: Example usage of the semaphore abstract used in the with statement.
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3.6.1 InniArm

In JR, the InniArm has the form:

r_type op_name(<param_list>)[st st_expr][by by_expr]code_block

PySy only requires the InniArm constructor to take one parameter for the InniOp.

The code block, such that clause, and by expression are all optional parameters. By default,

the InniArm is given a function with an empty code block. Figure 3.15 and Figure 3.16

show an equivalent JR program with an Inni statement written in PySy.

public class Inni2Arms
{

public stat ic op void f ( int ) ;
public stat ic op void g ( int ) ;
public stat ic void main ( St r ing [ ] a rgs )
{

send f ( 2 ) ; send f ( 3 ) ; send g ( 1 ) ;
c a l l g ( 6 ) ;

}
public stat ic proce s s P1{

while ( true ){
i n n i void f ( int x ){

System . out . p r i n t l n (x ) ; }
[ ] void g ( int x ){

System . out . p r i n t l n (x ) ; }
}

}
/∗
expec ted output :
2
3
1
6
∗/

}

Figure 3.15: JR Inni statement with two arms.

3.6.2 InniElse

An else clause inside of an Inni statement behaves exactly like the else clause in a

list of conditional statements. When an Inni statement is servicing an invocation, the else



44

class Foo ( PSObject ) :
def i n i t ( s e l f ) :

s e l f . f = InniOp . c r e a t e ( )
s e l f . g = InniOp . c r e a t e ( )
s e l f . s t a r tP r o c e s s e s ( )

@Process
def p1 ( s e l f , inv ) :

#the code b l o c k f o r each arm
@ArmCode
def f ArmCode ( inv ) :

print inv . getParameter (0 )
@ArmCode
def g ArmCode ( inv ) :

print inv . getParameter (0 )

f arm = InniArm ( s e l f . f , f ArmCode )
g arm = InniArm ( s e l f . g , g ArmCode )
i nn i = Inn i ( f arm , g arm )
while True :

i nn i . s e r v i c e ( )
def main ( ) :

foo = Foo ( )
foo . f . send (2 )
foo . f . send (3 )
foo . g . send (1 )
foo . g . c a l l ( 6 )

Figure 3.16: PySy Inni statement with two arms.

branch is executed if there are no serviceable invocations. Figure 3.17 and Figure 3.18 show

an equivalent JR and PySy program with an Inni statement and an Inni else arm.

3.6.3 ElseAfter

The else after clause acts as a timeout for an Inni statement. Figure 3.19 and

Figure 3.20 show an equivalent JR and PySy program with an Inni statement an an else

after arm.

3.6.4 SuchThat/Synchronization Expression

Figure 3.21 and Figure 3.22 show an equivalent JR and PySy program with an

Inni statement and a synchronization expression.



45

public class I nn iE l s e {
public stat ic op void f ( int ) ;
public stat ic void main ( St r ing [ ] a rgs ){

send f ( 3 ) ; send f ( 6 ) ;
}
public stat ic proce s s P1{

while ( true ){
i n n i void f ( int x ){

System . out . p r i n t l n (x ) ; }
[ ] else {

System . out . p r i n t l n ( ” e l s e ” ) ; break ;}
}

}
}

Figure 3.17: JR Inni statement with else arm.

def main ( ) :
#crea t e the opera t ion
fOp = InniOp . c r e a t e ( )
fOp . send (3 )
fOp . send (6 )

#the code b l o c k s f o r each arm
@ArmCode
def f ArmCode ( inv ) :

print inv . getParameter (0 )
@ArmCode
def else ArmCode ( inv , c on t r o l ) :

print ” e l s e ”
c on t r o l . s t a tu s = Control .BREAK

f arm = InniArm ( fOp , f ArmCode )
e l s e a rm = Inn iE l s e ( else ArmCode )
i nn i = Inn i ( f arm , i n n i e l s e=e l s e a rm )
while True :

c on t r o l S t a tu s = inn i . s e r v i c e ( )
i f con t r o l S t a tu s == Control .BREAK:

break

Figure 3.18: Equivalent PySy Inni statement with else arm.

3.6.5 By/Scheduling Expression

Figure 3.23 and Figure 3.24 show an equivalent JR and PySy program with an

Inni statement and a scheduling expression.
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public class I nn iE l s eA f t e r {
public stat ic op void f ( int ) ;
public stat ic void main ( St r ing [ ] a rgs ){

send f ( 3 ) ; send f ( 6 ) ;
}
public stat ic proce s s P1{

while ( true ){
i n n i void f ( int x ){

System . out . p r i n t l n (x ) ; }
[ ] e l s e a f t e r (1000){ // wai t 1 second

System . out . p r i n t l n ( ” e l s e a f t e r ” ) ; break ;}
}

}
}

Figure 3.19: JR Inni statement with else after arm.

3.7 Reply

Recall from Section 2.2.6 that the reply statement is a mechanism for the servicer

to communicate the return value to a synchronous invoker without terminating the servicing

thread. Figure 3.25 shows a program that opens a file, reads the files contents into a string,

and uses the reply mechanism to return the string to the invoker. The file handle is not

appropriately closed until after the reply occurs and sends the return value back to the

caller. PySy preserves the JR semantics for multiple usages of reply.

3.8 Forward

Recall from Section 2.2.7 that the forward statement passes the responsibility of

servicing to another operation. Figure 3.26 shows an example of PySy’s forward mechanism.

Also, PySy preserves the JR semantics for multiple usages of a forward.

3.9 Concurrent Invocation Statement

Section 2.2.10 described the JR Co statement. PySy provides the user a similar

construct, but without quantifiers. The Co statement, like the Inni, is broken into a list of
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def main ( ) :
#crea t e the opera t ion
fOp = InniOp . c r e a t e ( )
fOp . send (3 )
fOp . send (6 )

#the code b l o c k s f o r each arm
@ArmCode
def f ArmCode ( inv ) :

print inv . getParameter (0 )
@ArmCode
def else ArmCode ( inv , c on t r o l ) :

print ” e l s e a f t e r ”
c on t r o l . s t a tu s = Control .BREAK

f arm = InniArm ( fOp , f ArmCode )
e l s e a rm = InniArmElseAfter ( 1 . 0 , else ArmCode )
i nn i = Inn i ( f arm , e l s e a f t e r=e l s e a rm )
while True :

c on t r o l S t a tu s = inn i . s e r v i c e ( )
i f con t r o l S t a tu s == Control .BREAK:

break

Figure 3.20: Equivalent PySy Inni statement with else after arm.

public class InniST{
public stat ic op void f ( int ) ;
public stat ic void main ( St r ing [ ] a rgs ){ send f ( 2 ) ; send f (−1);}
public stat ic proce s s P1{

while ( true ){
i n n i void f ( int x ) s t x > 0{

System . out . p r i n t l n (x ) ; }
}

}
}

Figure 3.21: JR Inni statement with such that clause.

arms called CoArms. Each CoArm contains an operation, an invocation, and the type of Co

invocation (CoCall or CoSend). The type of invocation defaults to a CoCall. Subsequently,

the CoArms are passed to the Co constructor. The Co constructor may be instantiated

with two different sets of parameters. The first way passes the constructor any number of

CoArms (similar to the Inni). The second way passes the constructor a list of CoArms. After
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def main ( ) :
#crea t e the opera t ion
fOp = InniOp . c r e a t e ( )
fOp . send (2 )
fOp . send (−1)

#the code b l o c k s f o r each arm
@ArmCode
def f ArmCode ( inv ) :

print inv . getParameter (0 )
@SuchThat
def f g reaterThanZero ( inv ) :

return inv . getParameter (0 ) > 0
f arm = InniArm ( fOp , f ArmCode , s t=f greaterThanZero )
i nn i = Inn i ( f arm )
while True :

i nn i . s e r v i c e ( )

Figure 3.22: Equivalent PySy Inni statement with such that clause.

public class InniBy{
public stat ic op void s t a r t ( ) ;
public stat ic op void f ( int ) ;
public stat ic void main ( St r ing [ ] a rgs ){

send f ( 6 ) ; send f ( 1 2 ) ; send f ( 8 ) ;
send s t a r t ( ) ;

}
public stat ic proce s s P1{

r e c e i v e s t a r t ( ) ;
while ( true ){

i n n i void f ( int x ) by −x{
System . out . p r i n t l n (x ) ; }

[ ] else {break ;}
}

}
/∗ expec ted output :
12
8
6
∗/

}

Figure 3.23: JR Inni statement with by expression.

instantiation, the user invokes the Co’s go method to perform the computation. Figure 3.27

shows how to use PySy’s Co statement to perform matrix multiplication.
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def main ( ) :
fOp = InniOp . c r e a t e ( )
fOp . send (6 )
fOp . send (12)
fOp . send (8 )
#wr i t e the code b l o c k s f o r each arm
@ArmCode
def f ArmCode ( inv ) :

print inv . getParameter (0 )
@By
def f byDecreas ing ( inv ) :

return −inv . getParameter (0 )
f arm = InniArm ( fOp , f ArmCode , by=f byDecreas ing )
i nn i = Inn i ( f arm )
while True :

i nn i . s e r v i c e ( )

Figure 3.24: Equivalent PySy Inni statement with by clause.

class Foo ( PSObject ) :
@OpMethod
def r e adF i l e ( s e l f , inv ) :

f i l ename = inv . getParameter (0 )
f = open ( f i l ename , ’ r ’ )
r e s u l t = ’ ’ . j o i n ( [ l i n e s for l i n e s in f . r e a d l i n e s ( ) ] )
inv . r ep ly ( r e s u l t )
f . c l o s e ( )

def main ( inFi lename ) :
try :

f = Foo ( )
contentsAsStr = f . r e adF i l e . c a l l ( inFi lename )
print contentsAsStr

except Exception as e :
PySy . t raceback ( e )

Figure 3.25: Example showing the usage of the reply mechanism inside of an OpMethod.

3.10 Control Flow

In this section, we discuss how PySy preserves the semantics of the JR language

for executing break, continue, or return statements inside of an ArmCode. In JR, the

behavior of break and continue is consistent with the expected Java behavior. However, a
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class Tester ( PSObject ) :
@OpMethod
def p1 ( s e l f , inv ) :

inv . forward ( s e l f . p2 )

@OpMethod
def p2 ( s e l f , inv ) :

return inv . getParameter (0 ) ∗ 2

def main ( ) :
try :

f = Tester ( )
re tVal = f . p1 (2 )
print re tVal

except Exception as e :
PySy . t raceback ( e )

#expec ted output :
#4

Figure 3.26: Example showing the usage of the forward mechanism inside of an OpMethod.

return statement inside of an Inni arm returns a value to the calling invocation and breaks

out of the Inni statement and continues execution with the next statement after the Inni.

The control flow semantics are highlighted in Figure 3.28.

Recall from 3.6, ArmCode is implemented as a method. In Python, it is a syntax

error to use break and continue statements outside of a loop. Because of this, the user

must propagate control flow manually to the caller. This is achieved by using the ArmCode

method’s optional formal parameter control to store any desired control flow changes and

pass the changes back to the Inni statement. After invoking the Inni’s service method, it

is the user’s responsibility to use the returned control status to provide the desired control

flow, as shown in Figure 3.29.
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r = random .Random( )

class MatrixMult ( PSObject ) :
MAXCOEF = 50
N = 25
def i n i t ( s e l f ) :

s e l f . s o l u t i o n = 0
s e l f .A = s e l f . genMatrix (MatrixMult .N)
s e l f .B = s e l f . genMatrix (MatrixMult .N)
s e l f .C = s e l f . genMatrix (MatrixMult .N, i sZe r o=True )
arms = [ ]
for r in xrange (MatrixMult .N) :

for c in xrange (MatrixMult .N) :
inv = Invocat ion ( r , c )
arms . append (CoArm( s e l f . compute , inv , coKind=CoArm. CoKind .COCALL) )

co1 = Co( arms )
co1 . go ( )
#pr in t s e l f .C

@OpMethod
def compute ( s e l f , inv ) :

r , c = inv . getParameters ( )
for k in xrange (MatrixMult .N) :

s e l f .C[ r ] [ c ] += s e l f .A[ r ] [ k ] ∗ s e l f .B[ k ] [ c ]

def genMatrix ( s e l f , n , i sZ e r o=False ) :
r e s u l t = [ ]
for i in xrange (n ) :

r e s u l t . append ( [ ] )
for j in xrange (n ) :

va l = 0 i f i sZ e r o else r . rand int (0 , MatrixMult .MAXCOEF)
r e s u l t [ i ] . append ( va l )

return r e s u l t

def main ( ) :
MatrixMult ( )

Figure 3.27: Example showing the usage of the co statement to perform matrix multiplication.
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public op void f ( int ) ;
public proce s s P1{

while ( true ){
// cont inue s ta tement i n s i d e inn i cont inues here
i n n i void f ( int x ){

System . out . p r i n t l n (x ) ;
. . . // code t ha t may conta in a break , continue ,

// or re turn s ta tement
}
// re turn s ta tement i n s i d e inn i cont inues here

}
// break s ta tement i n s i d e inn i cont inues here

}

Figure 3.28: A simple Inni statement with a single arm that does a break, continue, or

return.

def main ( ) :
f = InniOp . c r e a t e ( )
f . send (0 )
f . send (6 )
@ArmCode
def f ArmCode ( inv , c on t r o l ) :

i f inv . getParameter (0 ) > 0 :
c on t r o l . s t a tu s = Control .BREAK

else :
c on t r o l . s t a tu s = Control .CONTINUE

f arm = InniArm ( f , f ArmCode )
i nn i = Inn i ( f arm )
while True :

c f S t a tu s = inn i . s e r v i c e ( )
i f c f S t a tu s == Control .BREAK:

print ” breaking ”
break

e l i f c f S t a tu s == Control .CONTINUE:
print ” cont inu ing ”
continue

Figure 3.29: Example showing how to use the control parameter returned from Inni to enforce

the desired control flow behavior changes.
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Chapter 4

Implementation

This chapter presents the inner workings of PySy. Section 4.1 presents Pyro and

discusses its role in providing network communication for PySy VMs and RMI-like capabi-

ities for remote objects. Section 4.2 introduces the implementation of PySy remote objects.

Section 4.3 discusses PySy’s locking mechanisms for local and remote objects. Section 4.4

demonstrates how PySy provides Process-safe output. Section 4.5 discusses PySy’s quies-

cence detection algorithm. Section 4.6 presents the challenges with providing PySy users

similar scoping rules as Python, while still providing a familiar user experience.

4.1 Pyro

Pyro [25], Python Remote Objects (version 3.x), is a Python package that provides

the necessary functionality to share objects between processes and across different machines.

To run Pyro, the user must have a Python interpreter (version 2.5-2.7) and a system that

supports TCP/IP networking.

PySy uses Pyro to provide RMI-like capabilities for all remote objects (see Sec-

tion 4.2.1). Each Pyro program that uses remote objects must have at least one Pyro dae-

mon running. The Pyro daemon is a server-side Pyro object that accepts and dispatches

RMI calls to registered objects. The user registers an object with the daemon and is given
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back a Pyro Unique Resource Identifier (URI). The URI encodes the IP address, port num-

ber, and object name of the daemon and has the form PYRO://hostname:port/objName.

The URI is used to create proxies for remote resources. The Pyro proxy is the interface be-

tween the user and the daemon. Each Pyro proxy represents a separate network connection

to a Pyro daemon. Proxies are not reclaimed unless the user invokes the release() method

or specifies a timeout. When invoking a method through a proxy, a message is sent to the

daemon containing the object’s URI, the method name, and the arguments for the remote

method call. The daemon forwards the call to the appropriate object, executes the method,

and returns the result back to the caller. The RMI is completely transparent to the user. In

the case of an unhandled exception occurring during an RMI call, Pyro will propagate the

error back to the client. During a PySy program, if the user does not handle an exception,

it is possible for zombie processes to remain.

A typical Pyro program follows the client-server model. The server creates and

publishes remote objects and the client obtains proxies to the remote objects and uses them

accordingly. The client is required to know the URI at run-time. This means that the URI is

hardcoded into the program or the server communicates the URI to the client. It is obvious

that hardcoding names for objects does not scale and would require changes if the hostname

or port number of the daemon changed. To make this process easier, Pyro provides a name-

server that maps a user-defined name to a Pyro URI. The nameserver is a special Pyro object

that acts as a central location for storing how to acquire a proxy for each registered Pyro

object. The user registers an object with a name (PYRONAME://:Test.MyObject) or lo-

cation (PYROLOC://hostname:port/objectname) and this name is used by the nameserver

as a key in an internal dictionary to locate and communicate with the daemon responsible

for handling the RMI requests.

Pyro provides PySy with an easy to use interface to handle the network commu-

nication for the distributed computation. Our overall experience is a positive one. Over

the course of this research, we have found several bugs in the Pyro implementation and the

author has always been available and quick to find fixes.
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4.2 PySy

4.2.1 Remote Objects

To provide support for distributed computing, a package or language must define

precise semantics for how each component interacts and communicates with other compo-

nents. PySy’s implementation uses three kinds of remote objects: Virtual Machine Man-

ager(VMM), Virtual Machine (VM), and a remote receiver. This section discusses the role

of each of these remote objects.

The Virtual Machine Manager (VMM) is created when the user calls PySy.init().

The VMM is synonymous to JR’s JRX. The VMM has several responsibilities. The most

obvious is the managing of PySy VMs (see Section 3.2). Its other responsibilities include

the management of remote locks, monitoring the health of all VMs, and being the central

node for program-level quiescence.

After the VMM is created, it automatically creates the main VM. Recall from

Section 3.2, the main VM is the default location for PySy object creation and executes

the code provided by the user in main(). As the program executes, if there are requests

to create additional VMs, then the VMM processes these requests, starts up the new VM

processes via ssh (even for localhost VMs), and returns a reference to the new VM.

Another role for the VMM is managing remote locks. Initially, the invocation list

lock for an InniOp is local. However, as InniOps are used in conjunction with other InniOps

in an Inni statement their locks may change from being a local lock to a remote lock (see

Section 4.3). If this happens, there must be a way for other VMs to retrieve the remote

locks. Since VMs are oblivious to the existence of other VMs, the VMM is an obvious choice

to manage the remote locks.

If a VM crashes unexpectedly, it may be difficult or even impossible for a program

to recover. The VMM keeps a watchful eye on all VMs and will attempt to gracefully

shutdown the program in the case a VM unexpectedly crashes. The VMM periodically

pings each of the VMs (every five seconds) to ensure the VM is still running. If a VM
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misses three pings, then the VMM will gracefully exit the program.

Terminating concurrent programs is slightly more involved than sequential pro-

grams. Generally, in concurrent programs, the user must explicitly program logic to join

all program segments before termination. The VMM acts as the central node for provid-

ing automatic program termination and deadlock detection. This is discussed further in

Section 2.2.9.

Each VM and the VMM has a remote receiver object. The receiver acts as a

server for dispatching RMI calls to the correct object. When a user creates a remote object

using foo = PySy.createInstance("foo.Foo"), the returned object contains a reference

to each operation enclosed in foo. All subsequent invocations of foo’s operations must

somehow be forwarded to the correct operation. Before the remote reference is returned to

the caller, it is added into a dictionary in the VM’s receiver, which maps an operation’s

unique identifier to an operation. When a remote reference’s operation is invoked, an RMI

call is made to the receiver. The RMI call contains the UID of the operation that the user

wants to invoke, which allows the receiver to correctly forward the invocation. The receiver

asynchronously processes each RMI request to avoid bottlenecking.

4.2.2 PySy Objects

Python’s object instantiation behaves differently from its counterparts in languages

like Java or C++. When the constructor is called for a Python object, a two part process

begins. First, the parent object’s new method is invoked, which, by default, details how

the object is created and returns a memory reference for the new object. Next, the object’s

init method is called to initialize its instance variables.

Consider the Python class and its instantiation in Figure 4.1. opm1() is intended

to be an OpMethod. After o is instantiated, opm1() may be invoked by o.opm1() (same as

when calling normal Python methods). However, this is not the interface that we want to

provide the user. As discussed in Section 2.2.3, OpMethods may be invoked synchronously

and asynchronously via call and send, respectively. Under the default behavior for class
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creation, the interface we want to expose to the user is not possible. That is, we would like

to be able to invoke call and send this way: o.opm1.send() or o.opm1.call(). To do this, we

need to do modify how objects, which contain OpMethods (and its variants, e.g., Process)

are created.

class Obj ( ob j e c t ) :
def i n i t ( s e l f , va l ) :

s e l f . va l = va l
def opm1( s e l f ) :

print s e l f . va l
o = Obj (6 )

Figure 4.1: Simple Python class declaration and instantiation of an object.

Python allows its users to modify the creation of a user-defined object by overrid-

ing the object’s new method. In PySy’s case, we wanted to hide the custom creation

implementation details from our users, so we created our own base class, PSObject. Fig-

ure 4.2 shows how to create a PySy object. The two main differences from Figure 4.1 are

Foo inheriting from PSObject and the OpMethod decorator. The OpMethod decorator

adds a new attribute IM OP to mult. During the instantiation process of the PSObject in

new , we iterate over all methods of the class and check for the existence of the IM OP or

the IM PROCESS attribute. If these attributes exists, then we replace the original method

with an OpProxy object. All invocations of mult are now sent to the proxy first. Thus, ex-

posing the proper interface to the user. Since the OpProxy class derives from the Operation

base class (see Appendix C) mult is now invoked using mult.send() or mult.call().

Section 3.5.2 mentions that PySy cannot provide static processes and the user must

invoke the PSObject method startProcesses to begin each process. Before we discuss this,

let us discuss how Python creates new-style objects. The first step involves calling the static

method new to create the object. The return value of new is an instance of the class

and is passed on to init to initialize its attributes. The im class and im self attributes do

not have a reference in memory until new returns. So, if we were to attempt to start an

object’s processes in new , then we would have a race condition. Unfortunately, Python
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does not provide any procedures for adding post-processing code after object creation, so

we were forced to have the user invoke the startProcesses method.

class Foo ( PSObject ) :
@OpMethod
def mult ( s e l f , inv ) :

x = inv . getParameter (0 )
y = inv . getParameter (1 )
return x∗y

def main ( ) :
f = Foo ( )
print f . mult . c a l l ( 2 , 4 )

Figure 4.2: PySy Object with OpMethod as an instance method.

4.2.3 OpMethods

PySy uses the following decorators to add attributes at run-time to a PSObject:

OpMethod, StaticOpMethod, and Process. Each decorator adds a specific attribute to the

function that allows the PSObject to replace the method with the appropriate OpProxy.

4.3 Locking and Equivalence Classes

The utmost concern for concurrent programs is data safety. An increase in per-

formance means nothing if we cannot guarantee the intended behavior. When users are

running distributed programs over heterogeneous systems or simply just running a multi-

threaded program on a single system, there must be a way of ensuring changes to shared

data are performed atomically. This section discusses the concept of equivalence classes in

regards to the locking mechanisms of InniOps.

The InniOp (refer to Section 2.2.3.2) represents potentially shared data between

multiple processes. It is possible, maybe even likely, that an InniOp is being shared between

multiple threads on different machines and being accessed by multiple input statements. It
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is imperative to ensure the integrity of the contents of an InniOp’s invocation list. We

use the concept of equivalence classes to accomplish this task. The equivalence class of an

operation is the set of operations that share the same lock. Initially, each operation has its

own lock and is, by default, in its own equivalence class. As operations are used together

inside of an Inni statement, their equivalence classes are merged. After the merge, all of the

operations belong to the same equivalence class. This section discusses some methodologies

for computing equivalence classes. We first begin with JR’s predecessor, SR and discuss

SR’s static equivalence class implementation. Finally, we will discuss the JR’s dynamic

solution (also implemented in PySy).

The SR language computes the equivalence classes[3] of its operations statically. At

compile time, the compiler computes which operations appear together in input statements.

The set of operations that appear together in any input statement is called the operation’s

equivalence class. An operation is in the singleton equivalence class if and only if it appears

in single arm input statements throughout the entire program.

The algorithm for computing equivalence classes changed in SR version 2.2 (and

later versions). The equivalence classes are still computed statically, but SR now allowed

for dynamic operations and the servicing of capabilities (reference to an operation) inside

of an input statement. A dynamic operation is defined as an operation created at run-time

via the new expression. Throughout the lifetime of a program, a capability may refer to

different operations. These additions warrant the algorithm change and require the following

restrictions:

• The input statement has one arm, no synchronization expression, and no scheduling

expression.

• The capability references an operation in the current VM.

JR allows for a more flexible environment than the previous SR implementations.

JR completely eliminates the restrictions imposed by SR version 2.2+. However, the equiv-

alence class computation process (referred to as merging equivalence classes or, simply,
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merging) is much more complex, and must be computed dynamically. Each InniOp ini-

tially belongs to its own equivalence class. When multiple InniOps appear in the same

input statement, their equivalence classes are merged. The resulting equivalence class is

the union of all the InniOps of the input statement. The input statement must determine

if a merge is necessary on each service attempt because the equivalence class of one of the

operations may have been changed by another input statement since the previous service

attempt. In the general case, however, JR can optimize this computation considerably by

caching the equivalence class representation on each service attempt. On the next service

attempt, JR checks to see if the current equivalence class differs from the previous one. If

not, the equivalence classes do not need to be merged. Otherwise, JR must recompute the

equivalence classes. PySy adopts JR’s dynamic equivalence computation algorithm. The

rest of this section will discuss this algorithm in-depth.

Recall (Section 3.5.3) the role of InniOps, a shared queue implementation, in in-

terprocess and remote communication. Figure 4.3 shows a program with multiple processes

on the same machine, which share an operation, and service invocations via an Inni state-

ment. To ensure correct behavior, only one of the processes should be able to access f ’s

invocation list at any given time. This exclusion is accomplished by protecting the InniOp’s

invocation list with a lock. Initially, each InniOp has its own individual lock. Before either

Inni statement in Figure 4.3 can attempt to service any pending invocations, it must first

grab f ’s lock. If pending invocations exist, then the first serviceable invocation is removed

from the invocation list (see Section 2.2.5 for more on the invocation selection process), the

lock is released, and the invocation is serviced by the code block associated with f ’s arm.

Now, consider the JR program with two processes, two shared operations, and two

Inni statements (one per process) in Figure 4.4. Figure 4.5 depicts a potential execution

trace that results in deadlock for the program in Figure 4.4.

Figure 4.5 illustrates the inherent problem with acquiring multiple locks. However,

we will discuss a few ways to solve this problem. One solution is to ensure that locks are

acquired in a predictable, deterministic fashion by providing a strict ordering of locks. We
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public class Inni1ArmRival{
public stat ic void main ( St r ing [ ] a rgs ){}
public stat ic op void f ( int ) ;
public stat ic proce s s P1{

send f ( 1 ) ;
while ( true ){

i n n i void f ( int x ){
System . out . p r i n t l n ( ”P1 s e r v i c ed : ” + x ) ;
send f ( 1 ) ;

}
}

}
public stat ic proce s s P2{

send f ( 2 ) ;
while ( true ){

i n n i void f ( int x ){
System . out . p r i n t l n ( ”P2 s e r v i c ed : ” + x ) ;
send f ( 2 ) ;

}
}

}
}

Figure 4.3: Two separate processes with Inni statements sharing an operation.

could assign each lock a unique ID (UID) and enforce that the associated locks for each

Inni arm’s operation are acquired according to this strict ordering. For example, f and g

in Figure 4.4 may be given UIDs of 0 and 1, respectively. Assume we have added logic to

the Inni to sort the Inni arms by their operation’s UID of the operation. Now, f ’s lock will

always be acquired before g ’s lock. The problematic situation described in Figure 4.5 will no

longer happen and, consequently, this program will no longer deadlock. While this solution

works, it does seem to be a bit inefficient. How much would the performance of the program

suffer if both f and g were remote operations instead of local? In that case, we would have

to invoke one remote method to acquire the lock for each distinct operation in the Inni

statement. A good rule to achieve maximum performance in distributed programming is to

minimize the number of messages sent over the network. Acquiring each lock separately in

a strict order sends out n messages for each invocation serviced, where n is the number of

distinct operations in the Inni arms.

It turns out there is a way to significantly decrease the number of messages sent
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public class Inni2ArmRival{
public stat ic op void f ( int ) ;
public stat ic op void g ( int ) ;
public stat ic void main ( St r ing [ ] a rgs ){}
public stat ic proce s s P1{

send f ( 1 ) ;
while ( true ){

i n n i void f ( int x ){
System . out . p r i n t l n ( ”P1 s e r v i c ed : ” + x ) ;
send g ( 1 ) ;

}
[ ] void g ( int x ){

System . out . p r i n t l n ( ”P1 s e r v i c ed : ” + x ) ;
send f ( 1 ) ;

}
}

}
public stat ic proce s s P2{

send f ( 2 ) ;
while ( true ){

i n n i void g ( int x ){
System . out . p r i n t l n ( ”P2 s e r v i c ed : ” + x ) ;
send f ( 2 ) ;

}
[ ] void f ( int x ){

System . out . p r i n t l n ( ”P2 s e r v i c ed : ” + x ) ;
send g ( 2 ) ;

}
}

}
}

Figure 4.4: Two separate processes with Inni statements sharing two operations.

• P1 executes until it gets to its Inni statement and grabs f ’s lock.

• A context switch occurs, and P2 is now allowed to run.

• P2 grabs g ’s lock and attempts to acquire f ’s lock, but f ’s lock has been acquired by
P1, so P2 waits until f ’s lock is released.

• P1 wakes up and tries to get g ’s lock, but g ’s lock is also unavailable.

• P1 is waiting for P2 and vice versa. Deadlock.

Figure 4.5: Execution trace showing deadlock in a JR program.
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over the network for remote operations. JR and PySy achieve this by utilizing an approach

that uses equivalence classes [16]. As mentioned above, the equivalence class of an operation

is the set of operations that share the same lock. Figure 4.6 illustrates many of the details

involved with merging equivalence classes. Again, initially all InniOps have their own

individual locks, and, thus, are in their own equivalence class. We define a remote operation

as an operation that is not local to the current VM. Also, a remote lock is a lock associated

with at least one remote operation. Consider the program in Figure 4.6 after all the processes

have started, P1 is executing, and reaches its Inni statement. f is the only arm in this Inni

statement, so we do not need to merge equivalence classes. P1 grabs f ’s lock and services an

invocation. Next, P2 is executing and reaches its Inni statement. P2 notices that it has two

arms that have different equivalence classes and must perform a merge. The equivalence

class for f and g are merged and now belong to a new equivalence class denoted {f,g}.

The merging process does not create a new local lock for f and g. The algorithm chooses

the equivalence class with the largest cardinality. In this case, there is a tie. The merge

algorithm breaks the tie by choosing the first equivalence class it checked (g). So, g ’s lock

is chosen and f ’s lock is forwarded to g ’s lock.

Continuing with the example, P3 is executing and it arrives at its Inni statement.

It has two arms, one with a remote operation (f is remote since it is local to the main vm)

and one local operation, h. f has an equivalence class of {f,g} and h is in its own equivalence

class. We merge the equivalence class for f and h to yield {f,g,h}. In the case, where at

least one of the operations is remote, but all locks are local we need to create a new remote

lock and share it with all elements of the new equivalence class. The implementation uses

the VMManager to control the management of all remote locks. The VMManager serializes

multiple merge requests to ensure that only one merge operation is occuring globally. At

this point, the VMManager is contacted by the merging operation to create a new remote

lock and f, g, and h will have their locks forwarded to this new remote lock.
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4.4 Thread/Process-safe Output

Concurrent programming adds additional challenges because of its non-

deterministic behavior. Reliable output is important for development, regression testing,

and usability. Obviously, we cannot guarantee the ordering of output in a concurrent pro-

gram, but it is important, if possible, to provide mechanisms that will ensure thread-safe

output. The Python interpreter, however, interfaces with the C write function. write()

does not provide thread-safe output or process-safe output and relies on the underlying

operating system to handle the file I/O. Internally, write() [1] outputs n bytes of a buffer

to the current offset of a file descriptor. This is where a race condition occurs. A simple

Python print statement executes two buffer writes. The first is the string to be printed

and the second is a newline character. Consider the Python program in Figure 4.7, below

illustrates a possible execution trace that will result in interleaved output:

1. t1 writes to the buffer (context switch)

2. t2 writes to the buffer (context switch)

3. t1 prints its newline character (context switch)

4. t2 writes its newline character to the buffer.

To provide thread-safe printing, we must force the trailing newline character to be

written to the write buffer directly following the specified string. PySy solves the thread-

safe problem by creating a wrapper for the file stream for each process that uses a recursive

lock to protect the data buffer. Thus, ensuring that only one thread per process writes to

the buffer. The solution, however, risks deadlock. Figure 4.8 shows a sample program where

the deadlock will occur. Figure 4.9 gives an execution trace for the deadlock. Practically,

we do not believe this complication to be too troublesome or restrictive for the user. If the

user is cognizant of this restriction, then they should be able to avoid it entirely.

The above thread-safe output solution only describes how to ensure safety within

a single process, but not necessarily within multiple processes. Consider a multiprocess
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PySy program where each process has its own file descriptor to the same standard output

file and each process writes to stdout using the OS write method. On Linux, write(), by

default, is not process-safe. First, write() writes n bytes to stdout beginning at the current

file offset, and,if successful, increments the current file position. However, these two steps

are not atomic. It is possible for another process to corrupt the output file by writing to

the same current file offset multiple times before the offset is updated. This is remedied by

opening the standard output file with the append only flag, which forces the current file

position to be incremented before any data is written, and making PySy programs provide

process-safe output.

4.5 Quiescence

PySy provides quiescence detection [14] [15] to its users. PySy uses the same

quiescence detection algorithm as JR. Each VM keeps a local count of the number of active

threads and the number of messages sent. Recall that we are defining an active thread as a

thread that is not waiting on a PySy resource. When no active threads are running inside

of a VM, it communicates its idle status to the VMManager. Next, the VMManager will

query the status of each of the VMs. If all VMs are idle and the total number of messages

sent is equivalent to the number of messages received, then program is quiescent. If not,

the program continues its execution.

4.6 Scoping

Chapter 3 described how most JR features are modeled nicely as objects in PySy.

Intuitively, it makes a lot of sense to use a design that follows basic object oriented principles.

Unfortunately, it has the negative side effect of making data sharing difficult between PySy

object constructs and the outer scopes. For a review of Python scoping rules and lexical

closure behavior, see Section 2.1.4.

Consider the program in Figure 4.10. The user intends to share variables from
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main’s scope with the class f ArmCode, but, alas, cannot. Instead, with the armCode

implemented as a class, the only way to share data between main and the armCode is to

pass the necessary shared data to the armCode’s constructor (see Figure 4.11). Additionally,

the user must also wrap any shared primitives with a wrapper class for the modified value to

be reflected in the outer scopes (see Figure 4.11). This solution has significant drawbacks in

terms of usability and scalability and would make the modeling of complex programs with

many shared variables extremely unpleasant.

Initially, PySy implemented ArmCodes as discussed above. However, the lack of

usability forced us to look for a better solution. Currently, PySy uses lexical closures to

allow a more user friendly environment. Closures provide a partial solution to the scoping

problem introduced by using classes to represent abstractions like ArmCode. Unfortunately,

however, closures do not allow write access to the closed over variables. The user may

circumvent the no write restriction by wrapping the primitive and modifying the wrapped

value via the wrapper’s interface, as in Figure 4.12. PySy also provides a synchronized

version of the primitive wrapper. The primitive wrappers will no longer be necessary when

PySy is ported to Python 3.x. Python 3.x provides a new keyword, nonlocal, that allows

the user to specify the names of variables declared in an enclosing scope to be used as if

they were local. Any subsequent changes to a nonlocal variable will be reflected outside of

the local scope.
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public class InniMergeEC{
public stat ic void main ( St r ing [ ] a rgs )
{

Loca lC l i en t l c = new Loca lC l i en t ( ) ;
vm rvm = new vm( ) on ”pc12” ;
remote RemoteClient rc = new remote RemoteClient ( l c . f ) on rvm ;

}
}
class Loca lC l i en t {

public stat ic op void f ( int ) ;
public stat ic op void g ( int ) ;
public Loca lC l i en t ( ){}
public stat ic proce s s P1{

send f ( 1 ) ;
while ( true ){

i n n i void f ( int x ){
System . out . p r i n t l n ( ”P1 s e r v i c ed : ” + x ) ;
send g ( 1 ) ;

}
}

}
public stat ic proce s s P2{

send f ( 2 ) ;
while ( true ){

i n n i void g ( int x ){
System . out . p r i n t l n ( ”P2 s e r v i c ed : ” + x ) ;
send f ( 2 ) ;

}
[ ] void f ( int x ){

System . out . p r i n t l n ( ”P2 s e r v i c ed : ” + x ) ;
send g ( 2 ) ;

}
}

}
}

public class RemoteClient{
public stat ic op void h( int ) ;
public stat ic cap void ( int ) f ;
public RemoteClient ( cap void ( int ) f ){ this . f = f ;}
public stat ic proce s s P3{

while ( true ){
i n n i void h( int x ){

System . out . p r i n t l n ( ”P3 s e r v i c ed : ” + x ) ;
send f ( 3 ) ;

}
[ ] void f ( int x ){

System . out . p r i n t l n ( ”P3 s e r v i c ed : ” + x ) ;
send h ( 3 ) ;

}
}

}
}

Figure 4.6: JR program with local and remote operations within Inni statements.
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import thread ing
def t1 ( ) :

for i in xrange ( 2 0 ) :
print ” t1 ”

def t2 ( ) :
for i in xrange ( 2 0 ) :

print ” t2 ”

tOne = thread ing . Thread ( t a r g e t=t1 )
tOne . s t a r t ( )
tTwo = thread ing . Thread ( t a r g e t=t2 )
tTwo . s t a r t ( )
tOne . j o i n ( )
tTwo . j o i n ( )

Figure 4.7: Simple multithreaded program that may result in interleaved output.

class Foo ( PSObject ) :
@OpMethod
def op1 ( s e l f , inv ) :

print ” h e l l o ” , s e l f . op2 . c a l l ( )
@OpMethod
def op2 ( s e l f , inv ) :

print ”world”

def main ( ) :
f = Foo ( )
f . op1 . send ( )

Figure 4.8: PySy program that deadlocks because of output thread-safety.
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1. op1() begins a print statement and grabs the output buffer lock for its thread. The

string ”hello” gets written to the buffer, but the lock is not released because the

newline character has not been read. (context switch)

2. self.op2.call() is executed.

3. op2() tries to begin its print statement.

4. op2() fails to get the output lock because calls and sends are handled in a different

thread of control, and op1 still holds the lock. op2() waits.

5. op1() and op2 are waiting for each other to finish. Deadlock.

Figure 4.9: Execution trace for thread-safe output that results in deadlock.

def main ( ) :
x = 2
class f ArmCode (ArmCode ) :

def codeBlock ( s e l f , inv ) :
#x i s not v i s i b l e here
return x ∗ 2

Figure 4.10: Program illustrating the scoping problem.

class IntWrapper ( ob j e c t ) :
def i n i t ( s e l f , va l ) :

s e l f . va l = va l
def main ( ) :

x = IntWrapper (2 )
f = InniOp . c r e a t e ( )
f . send ( )
class f ArmCode (ArmCode ) :

def i n i t ( s e l f , x ) :
s e l f . x = x

def codeBlock ( s e l f , inv ) :
s e l f . x . va l = s e l f . x . va l ∗ 2

f arm = InniArm ( f , f ArmCode (x ) )
i nn i = Inn i ( f arm )

i nn i . s e r v i c e ( )

Figure 4.11: How to share data from outer scopes with ArmCode as a class implementation.
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class IntWrapper :
def i n i t ( s e l f , va l ) :

s e l f . va l = va l
def s t r ( s e l f ) :

return s t r ( s e l f . va l )

def main ( ) :
x = IntWrapper (2 )
def f oo ( ) :

print x
x . va l = 3

foo ( )
print x

#outpu t s :
#2
#3

Figure 4.12: Program showing how to circumvent the no write restriction in a closure by using

a wrapper.
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Chapter 5

Performance

Section 5.1 presents PySy’s performance results from several micro-benchmarks

that measure the performance for individual PySy operations and macro-benchmarks that

compare the performance of PySy to River/Trickle and Python’s threading and multi-

processing modules for well-known parallel and distributed algorithms. We will give an

in-depth analysis of these results and, where appropriate, we will indicate potential bottle-

necks and offer solutions to alleviate these bottlenecks. Section 5.2 presents a qualitative

analysis of PySy with respect to multiprocessing and River/Trickle.

5.1 Benchmarks

Each of the experiments discussed in this section were executed on UC Davis’s

Computer Science Instructional Facility (CSIF). The CSIF is a network of computers used

by UC Davis’s computer science students for classwork. For single process experiments, the

tests were completed on pc25, which is a 3.0GHz dual core Intel Xeon processor with 3GB of

RAM running Fedora Core 15 with Linux kernel 2.6.42.12-1, using NFS on a gigabit network,

and Python 2.7.2. For the distributed tests, we used several other identical CSIF systems.

Besides the CSIF, each benchmark was also run on different hardware configurations, where

the general pattern of timing results matches the results from the CSIF. However, in this
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chapter, we will only display the CSIF results. Each experiment was performed late in

the evening to minimize the system load. The timing results for each experiment were

averaged to attain the mean time per operation (for micro-benchmarks) or program (for

macro-benchmarks). Each repeated experiment was consistent with the original experiment

and had low variance.

5.1.1 Micro-benchmarks

The micro-benchmarks perform experiments on invocations and invocation servic-

ing. For each experiment, we monitor the total lapsed time until completion. We found the

average time per experiment and display those results in Table 5.1. The results also show

PySy’s performances with and without quiescence detection. In many cases, the difference

is staggering. We will explain this phenomenon throughout the discussion of the results.

Table 5.2 shows the overhead for basic Python operations, such as thread creation, lock

acquisition, and method calls.

The inOpSend(local) test repeatedly invokes a local InniOp’s send() method. The

send() invocation is relatively fast compared to call() because of asynchrony. This is seen

in the experiments with and without quiescence detection. Since send() never blocks, the

thread executing the invocation will never have to wait on a PySy resource. Because of this,

the send() implementation does not require any code to interface with quiescence detection.

The inOpSend(remote) test’s timing is consistent with the above description except for a

.35 ms difference, which is due to the cost of sending an asynchronous message on the local

subnet.

The inOpRecv(local) test repeatedly invokes a local InniOp’s receive() method and

monitors the time to retrieve the first element of the invocation list. Before each experiment

starts, we populate the InniOp’s invocation list with asynchronous invocations. The results

show a huge disparity between the experiments with quiescence detection enabled and

disabled. With quiescence detection enabled, the receive() implementation contacts the

VMManager on at least three occasions. QD comprises the vast majority of the timing
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results. In the future, we would like to investigate decreasing the number of messages we

send to the VMManager (see Section 6.2.2.2). Also, we plan on reimplementing quiescence

detection’s message passing from a synchronous message to an asynchronous message and

serialize the message processing on the VMManager. This should roughly cut the cost of

these messages by 50%.

The Inni(local) experiment repeatedly services an InniOp with an input statement

with one arm and is pre-populated with invocations. The experiment monitors the time to

completely service an invocation with the Inni statement. This experiment shows that an

Inni is six times slower than a receive without quiescence detection and roughly the same

cost with quiescence detection. The Inni is slower than a receive because on every service

attempt the Inni must acquire the global merge lock from the VMManager to merge equiv-

alence classes (see Section 4.3). This requires a network message. Also, the Inni performs

a merge of equivalence classes on every service() operation. We should be able to signif-

icantly improve performance by monitoring equivalence class changes or, more precisely,

lack thereof. If an operation’s equivalence class has not changed since the last service(),

then the merge operation is unnecessary. It is important to note that the performance of

the Inni, however, is not constant. The Inni statement’s performance will decline as the

number of arms increases (especially in the remote case). The optimization discussed above

will be very effective in the remote case, where the cost of acquiring a lock is significantly

higher.

The inOpCall(local)[Receive] experiment repeatedly makes synchronous invoca-

tions to a local InniOp and services the invocation with a receive from a local process. This

experiment shows the significant cost of a PySy call() to an InniOp.

The inOpCall(local)[Inni] experiment repeatedly makes synchronous invocations

to a local InniOp and services the invocation with an Inni statement in a local process. This

experiment reaffirms the results from inOpCall(local).

The opMethodSend(local) experiment repeatedly performs a send() to a local

OpMethod with an empty code block. A send() invocation to an OpMethod spawns a
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Test Name Invocation Service Time with

QD (ms)

Time w/o

QD (ms)

inOpSend(local) send to local InniOp None .05 .05

inOpRecv(local) None receive 2.49 .07

Inni(Local) None Inni 2.82 .33

inOpCall(local)[Inni] call to local InniOp Inni 2.94 .79

inOpCall(local)[Receive] call to local InniOp receive 3.52 .79

inOpSend(remote) send to remote InniOp None .40 .39

inOpRecv(remote) None receive 3.44 .44

inOpCall(remote)[Inni] call to remote InniOp Inni 4.07 1.27

inOpCall(remote)[Receive] call to remote InniOp receive 4.55 1.17

opMethodSend(local) send to local OpMethod OpMethod .14 .13

opMethodCall(local) call to local OpMethod OpMethod 3.40 .40

opMethodSend(remote) send to remote OpMethod OpMethod .48 .47

opMethodCall(remote) call to remote OpMethod OpMethod 4.41 .79

InniOpCreation Creating a local InniOp N/A .05 .05

Table 5.1: PySy’s performance for micro-benchmarks.

new thread (using the threading module) to service the invocation and executes the Op-

Method’s code block. We may be able to slightly improve performance by implementing a

threadpool for each VM to avoid the continual cost of creating threads for each asynchronous

invocation.

The opMethodCall(local) experiment repeatedly performs a synchronous invoca-

tion on a local OpMethod with an empty code block. This experiment shows that a call()

is three times slower than a send() to an OpMethod.

Appendix D presents the same experiments from this section, but implemented

using JR. In most cases, PySy is about 10x slower than JR. We understand that a direct

comparison between PySy and JR is not completely fair because of language specific issues,

i.e., interpreted vs. compiled. With that said, we believe these performance numbers are

quite reasonable.
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Test Name Description Time (ms)

PyMethodCall Time to invoke a method with empty code block in Python. .002

PyAcquireLock Time to acquire a lock from Python’s threading module. .001

threadCreation(thr) Time to start up a new thread using Python’s threading module. .11

threadCreation(mp) Time to start up a new process using Python’s multiprocessing module. 1.30

Table 5.2: Timing results for basic Python functionality.

5.1.2 Macro-benchmarks

This section compares the performances of PySy, multiprocessing, and

River/Trickle on three standard concurrent programming benchmarks: Readers/Writers,

Fast Fourier Transform (FFT), and Matrix Multiplication. As an overview of the perfor-

mance results, the results varied between the aforementioned packages. For embarrassingly

parallel programs (FFT and Matrix Multiplication), PySy tends to be two times slower

than multiprocessing, but for programs that require significant synchronization (Read-

ers/Writers), PySy is significantly faster (5-6 times faster). The performance comparison

between PySy and River/Trickle also depends on the amount of required synchronization

and the problem. The rest of this section provides greater detail and analysis of our results.

5.1.2.1 Readers/Writers

The first macro-benchmark we will present is the well-known Readers/Writers

problem [7]. The program simulates multiple clients reading from and writing to a resource

with the restriction that a reader can only access a resource if and only if there are cur-

rently no writers accessing it. Also, a writer can only access a resource if and only if no

readers and no writers are currently accessing it. We measure the time it takes for n readers

and m writers spread across s servers to perform o operations. Appendix E provides the

PySy, River, and multiprocessing implementations for the Readers/Writers problem. The

timing results for PySy with and without quiescence detection, River, and multiprocess-

ing are presented in Table 5.3. We were not able to implement a Readers/Writers River
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program that uses threading to create multiple readers and writers on a single machine

(as in our implementations for multiprocessing and PySy). Our attempts to implement

Readers/Writers in this fashion ran into inexplicable deadlocks. For this reason, Table 5.3

does not include River performance numbers for some of the experiments. Our River im-

plementation, instead, creates one reader or writer per River VM. Besides this, the River

implementation is semantically equivalent to multiprocessing and PySy implementations.

To help aid the comparison, we added an experiment to measure the start-up

cost for each package. River programs differ from PySy and multiprocessing programs

in their start-up. River VMs are started prior to launching the program by the user,

so they do not incur as much start up cost as PySy or multiprocessing (processes are

created dynamically). More specifically, PySy forks a new process that uses ssh to create

a new PySy VM process on the specified machine. The columns in Table 5.3 with the

number of operations set to zero show the approximate start up cost for fifteen servers

using multiprocessing, River, and PySy. This shows how truly expensive it is to start up

a PySy program with a large number of VMs. However, PySy does provide more dynamism

than River and an easier interface to create new VMs than multiprocessing. PySy users

are able to dynamically create new processes on different hosts, while River users must

manually start up VMs from the command line or a shell script. This makes starting River

programs with large amounts of VMs cumbersome and less dynamic. The user must predict

the number of required VMs apriori. This may be difficult to predict, especially if the user

desires to execute multiple independent River programs. After removing the start-up costs

for PySy, the River Readers/Writers implementation is about three times faster. The PySy

Readers/Writers implementation uses an input statement to synchronize the reader or writer

with the resource allocator. This method is more expensive than a synchronous message

(as in the River implementation), but also provides additional flexibility, i.e., the ability to

prioritize readers or writers or different scheduling algorithms.
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Package Readers Writers Servers Operations Time (s)

multiprocessing 10 5 1 100 33.412

PySy with QD 10 5 1 100 22.763

PySy without QD 10 5 1 100 4.051

multiprocessing 10 5 2 100 33.410

PySy with QD 10 5 2 100 32.072

PySy without QD 10 5 2 100 4.580

multiprocessing 10 5 1 500 164.896

PySy with QD 10 5 1 500 129.913

PySy without QD 10 5 1 500 24.410

multiprocessing 10 5 2 500 164.742

PySy with QD 10 5 2 500 157.289

PySy without QD 10 5 2 500 24.780

multiprocessing 10 5 15 0 0.754

River 10 5 15 0 0.007

PySy with QD 10 5 15 0 5.004

PySy without QD 10 5 15 0 5.001

multiprocessing 10 5 15 100 35.286

River 10 5 15 100 1.322

PySy with QD 10 5 15 100 92.809

PySy without QD 10 5 15 100 8.537

River 10 5 15 500 6.666

PySy with QD 10 5 15 500 432.569

PySy without QD 10 5 15 500 22.720

Table 5.3: Performance results for PySy and multiprocessing for the Readers/Writers program.

5.1.2.2 Fast Fourier Transform

This section compares PySy to the Python packages threading, multiprocess-

ing, and Trickle for calculating the first N coefficients of the function (x + 1)x defined on

the interval [0, 2] using a Fast Fourier Transform (FFT) algorithm modified from the Java

Grande Forum’s benchmarks [12]. Appendix F contains the source code for this algorithm

implemented using PySy, Trickle, and multiprocessing. Each program is parameterized

with the number of coefficients to calculate and the number of server threads/processes we
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would use to divide up the work. We divided the work using the pre-calculated strips idiom.

This experiment measures the total elapsed time for each program to run to completion.

Table 5.4 displays these results.

This experiment clearly shows the cost of quiescence detection (QD). With QD,

PySy is 10-15 times slower than the threading and multiprocessing implementations

and 4-5 times slower than Trickle. However, without QD, PySy is 1.5-2 times slower (for

one server) than multiprocessing and threading, but 10-15% faster than Trickle. As

the number of servers increases, multiprocessing, Trickle, and PySy see an improvement

in performance (all approach maximum linear speedup), while threading becomes slightly

slower. This shows the benefit of using multiple processes in CPython over a multithreaded

implementation.

5.1.2.3 Matrix Multiplication

This section compares PySy to multiprocessing and Trickle for a naive matrix

multiplication algorithm for an NxN matrix. Appendix G provides the Matrix Multipli-

cation implementation for PySy, Trickle, and multiprocessing. Each program divides

the work using pre-calculated strips to divide the work amongst a user-specified number

of servers. This experiment measures the total elapsed time to complete the NxN matrix

multiplication.

This experiment shows the cost for starting up new VMs in PySy. In the case

of N=100, the cost of doing a 100x100 matrix multiplication increases as the number of

servers increases. This is because the parallelization is overcompensated by the start up

costs for the PySy VM. As the size of the array increases, this is no longer true. Also, this

experiment shows that Trickle has considerably less start up costs than PySy because the

user is required to manually launch River processes on the local network prior to executing

a Trickle program with multiple VMs.

Another interesting phenomenon illustrated by this experiment is the equality

between PySy programs with quiescence detection enabled and disabled. This was not true
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Package N Number of servers Time(s)

threading 10000 1 22.838

multiprocessing 10000 1 20.984

Trickle 10000 1 41.724

PySy with QD 10000 1 195.405

PySy without QD 10000 1 36.684

threading 10000 2 28.575

multiprocessing 10000 2 11.007

Trickle 10000 2 20.897

PySy with QD 10000 2 138.308

PySy without QD 10000 2 18.785

threading 10000 5 27.964

multiprocessing 10000 5 4.940

Trickle 10000 5 14.118

PySy with QD 10000 5 44.678

PySy without QD 10000 5 9.049

threading 100000 1 215.351

multiprocessing 100000 1 200.850

Trickle 100000 1 405.988

PySy with QD 100000 1 1101.736

PySy without QD 100000 1 336.778

threading 100000 2 277.705

multiprocessing 100000 2 102.011

Trickle 100000 2 209.059

PySy with QD 100000 2 961.051

PySy without QD 100000 2 169.028

threading 100000 5 280.548

multiprocessing 100000 5 41.917

Trickle 100000 5 83.387

PySy with QD 100000 5 444.323

PySy without QD 100000 5 69.404

Table 5.4: Performance results for threading and multiprocessing for calculating the first N

coefficients of the function (x+ 1)x defined on the interval [0, 2].
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in the FFT example in Section 5.1.2.2 or in the micro-benchmarks shown in Table 5.1.

This stems from matrix multiplication being embarrassingly parallel and not requiring any

synchronization. As the number of necessary synchronization mechanisms increases (e.g.,

bag of tasks instead of pre-calculated strips), the worse PySy with quiescence detection will

perform.

Table 5.5 shows the results for multiprocessing, Trickle, and PySy. Overall,

PySy is shown to be about 1.5-2 times slower than multiprocessing and Trickle.

5.2 Qualitative

The quantitative analysis in Section 5.1 has shown PySy (without quiescence de-

tection) to be a factor of two slower than Python’s multiprocessing module and mixed

results with Trickle. Despite this, PySy provides a more expressive interface than both

multiprocessing and River (and Trickle), more control over invocation selection, an easier

and more dynamic interface for user interaction with creating and interfacing with pro-

cesses, and quiescence detection. This section presents a qualitative analysis of PySy and

compares the implementation of concurrent programs using PySy, River, and multipro-

cessing. This section does not directly make comparisons between PySy and threading,

however, because the interfaces for threading and multiprocessing are extremely similar,

so most of the analysis is applicable to both.

The most glaring qualitative difference between PySy and multiprocessing is

the creation and synchronization of remote processes. In PySy, the user invokes the API

method createVM to start a new remote process. Next, the user creates objects on the VM

by using createInstance. The object’s operations control the synchronization between the

main VM and the remote VM processes. When creating remote processes using multipro-

cessing, the user must create a Manager object (see Figures G.3, G.4, and G.5) and register

synchronization mechanisms (in the Matrix Multiplication example, shared queues). Next,

the user creates the new processes. The final step is to create the client to connect with the
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Package N # of servers Time (s)

multiprocessing 100 1 1.160

Trickle 100 1 .326

PySy with QD 100 1 1.441

PySy without QD 100 1 1.435

multiprocessing 100 2 1.026

Trickle 100 2 .187

PySy with QD 100 2 1.257

PySy without QD 100 2 1.361

multiprocessing 100 5 .969

Trickle 100 5 .152

PySy with QD 100 5 2.236

PySy without QD 100 5 2.140

multiprocessing 500 1 38.423

Trickle 500 1 40.225

PySy with QD 500 1 78.326

PySy without QD 500 1 77.125

multiprocessing 500 2 20.617

Trickle 500 2 20.325

PySy with QD 500 2 39.483

PySy without QD 500 2 39.168

multiprocessing 500 5 9.393

Trickle 500 5 15.826

PySy with QD 500 5 17.233

PySy without QD 500 5 17.505

multiprocessing 1000 1 318.634

Trickle 1000 1 327.474

PySy with QD 1000 1 558.001

PySy without QD 1000 1 552.607

multiprocessing 1000 2 159.294

Trickle 1000 2 166.502

PySy with QD 1000 2 281.746

PySy without QD 1000 2 279.971

multiprocessing 1000 5 66.554

Trickle 1000 5 66.963

PySy with QD 1000 5 115.753

PySy without QD 1000 5 115.255

Table 5.5: Performance results for PySy and multiprocessing for multiplying NxN matrices.
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manager. Overall, the PySy Matrix Multiplication implementation (see Figures G.1 and

G.2) is 97 lines of code, the Trickle implementation is 58 lines of code, and the multipro-

cessing implementation requires 162 lines of code. The Trickle implementation requires

considerably less code partly because the user does not have to write any code to dynami-

cally create remote processes. The Trickle (and River) remote processes are created before

running the program, which makes the Trickle start up costs considerably smaller, but, on

the other hand, provides little dynamism and, in the case of a large number of processes,

makes its usage cumbersome. Also, problems using the pre-calculated strips idiom like our

Matrix Multiplication and FFT implementations are modeled nicely in Trickle because it

provides a very simple user interface that easily distributes jobs across remote machines.

PySy, River, and multiprocessing provide shared queue implementations, but

with different terminology. PySy provides a shared queue in the guise of an InniOp, River

has a message queue for each VM, and multiprocessing uses the aptly named Queue.

Fundamentally, they all provide a first-come, first-serve mechanism for synchronization be-

tween concurrently executing program segments. However, PySy is able to combine its

shared queue implementation with its input statement to allow a process to provide syn-

chronization over multiple shared queues, synchronize the servicing of invocations (River

provides this feature, too), and dynamically schedule the servicing of invocations. multi-

processing and River do not provide multi-way receive functionality.

We mentioned above that the shared queue implementations from PySy, River,

and multiprocessing provide invocation selection using a first-come, first-serve guarantee.

PySy, with the use of an Inni, is able to modify the invocation selection semantics using a

by expression or a such that clause. River, however, does not provide an input statement,

but does provide an equivalent to PySy’s such that clause. multiprocessing’s Queue does

not provide any of these features because it does not allow arbitrary access into the queue

(the user must remove invocations from the head of the queue) and cannot easily provide

these additional invocation selection semantics.

PySy also provides automatic program termination, which is not available (to
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the author’s knowledge) in any other Python concurrency package. Terminating concurrent

programs with PySy’s quiescence detection requires no user effort. In very simple programs,

this may not be too useful to the user, but in complicated concurrent programs, ones with

many interacting processes, quiescence detection trivially simplifies the termination process.
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Chapter 6

Conclusion and Future Work

This chapter reflects upon our methodology and provides a roadmap for future

development. Section 6.1 presents our conclusions and final thoughts on the topics discussed

throughout this thesis. Section 6.2 gives an overview of our ideas for future work.

6.1 Conclusion

This thesis has discussed the design and implementation of the PySy programming

package for Python 2.x. We have discussed our methodology for adapting the features of the

extended Java language JR to PySy, demonstrated the usage of each PySy feature, discussed

our implementation, and shown PySy’s performance across several micro-benchmarks and

well-known concurrent programs.

The development process was a balancing act. The ideologies of Python and Java

are quite opposing. In the imperative programming world, Python and Java appear to be

polar opposites. Java provides an environment that focuses on statically enforcing type

safety and general object oriented programming structure, while Python is dynamically

typed (yet still type safe) and puts the onus on its users to correctly manage the interaction

between objects. So, adapting a product of Java to Python was bound to have interesting

issues.
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With that said, PySy is not a direct mapping of JR to Python. Throughout the

development process, we attempted to merge the functionality of JR into Python without

losing the spirit of JR and without deviating from conventional Python programming prac-

tices. This is evident in our solutions for the scoping problem discussed in Section 4.6,

the interface for the semaphore abstraction (see Section 3.5.4), and the return values of

synchronous invocations to OpMethods (see Section 3.5.1).

PySy provides a reasonable alternative to other Python concurrency program-

ming packages. The quantitative results in Chapter 5 show that PySy (without quiescence

detection) is 1.5-2 times slower than Python’s multiprocessing package for distributed

programs that utilize a Fast Fourier Transform algorithm and perform matrix multiplica-

tion. We believe that we can drastically improve PySy’s performance by implementing a

few optimizations. We discuss several of these optimizations in Section 6.2.2.1.

While PySy is admittedly slower than multiprocessing, we feel that PySy pro-

vides an easier and more expressive environment than multiprocessing for many dis-

tributed programs. For example, PySy provides a simple and seamless interface to create

new processes on remote machines, while the multiprocessing package requires a more

coordinated effort by the user to get the same functionality. Appendix F and Appendix G

show the user code for two distributed programs using PySy and multiprocessing and

illustrate how significantly easier it is to implement these programs using PySy than mul-

tiprocessing.

As a developer, one of the utmost concerns with any product is its usefulness and

its ease of use. Most of PySy is intuitive, expressive, and well conceived, while other parts

are quite confusing, e.g., Inni. PySy’s source code contains significant documentation that

will be distributed with an HTML Pydoc [22] along with numerous examples highlighting

the usage of each feature. Also, this thesis and the JR book [17] are excellent supplemen-

tary resources. Through the latter stages of PySy’s development, we had two UC Davis

undergraduate students helping out with the project. This gave us an excellent opportunity

to observe the difficulty in learning PySy. Neither student had previous experience with
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Python, JR, or concurrent programming. While working on PySy, they learned all three

concurrently. They mainly used the JR book as a guide to learn about the provided concur-

rent programming mechanisms and the PySy source and examples to see the realization of

the JR features. The feedback was positive with some criticisms surrounding the complexity

of some constructs, e.g., Inni and the required user interaction with the Invocation struc-

ture (see Section 3.4) for OpMethods. Unfortunately, most of the criticisms just cannot be

completely solved because of the functionality’s complexity. A lot of the struggles endured

during PySy’s interface design have provided a new appreciation for the absolute power of

an elegant language design and the potential drawbacks and pitfalls, especially from the

user’s perspective, for providing complex language features in package form.

6.2 Future Work

The development of PySy has concentrated on providing JR-like functionality and

establishing a friendly user-interface. Chapter 3 describes both of these topics. However,

there is still more work to be done. This section discusses several of our ideas for PySy’s

future development.

6.2.1 Features

6.2.1.1 Quantifiers

Chapter 3 discussed the design and user interface for each adapted JR feature.

Currently, PySy does not implement the JR quantifier construct. The development of

quantifiers is currently being planned for the inni statement, the co statement, and, possibly,

for the process construct. The actual implementation for adding quantifiers should not be

terribly difficult, but it does present some challenges from a user interface perspective.

This is especially true for the process construct. Recall from Section 3.5.2, the process

is a Python method decorated with the Process decorator. If we were to implement the

quantifier feature for the Process decorator, then we would likely create a quantifier object
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and pass it as a parameter to the Process decorator. Remember the quantifier syntax for

JR looks like:

(initialization_expr; termination_expr; increment_expr) or

(initialization_expr; termination_expr; increment_expr; st_expr)

For example, a quantifier in JR that looks like: (int i = 0; i < 10; i++; i%2 == 0)

would result in the creation of a new process for each i that satisfies the such that expression

and adds i into each process’s scope with the appropriate value. Achieving this in Python

may be messy. The most glaring aspect is the creation of the quantifier. Is the quantifier

just a reference to a lambda expression for each of the components of the quantifier? Also,

how does a quantified process construct change the current method signature for processes?

How do we handle the injection of new attributes into local scope? These are just a few

questions we will have to answer in order to successfully provide quantifiers in PySy.

6.2.1.2 Parameterized VMs

Section 2.2.1 shows the usage of JR’s parameterized VM. PySy does not currently

support parameterized VMs. PySy users must use our generic VM construct, which is a Pyro

proxy, and cannot add user-defined attributes or operations to the VM. This slightly limits

the VM’s flexibility. The user is forced to create a VM and, subsequently, instantiate objects

through PySy.createInstance(). With the current implementation, objects created on a VM

are only accessible through the remote reference returned from PySy.createInstance().

6.2.2 Performance

In Chapter 5, we presented PySy’s performance results for micro-benchmarks and

several macro-benchmarks. Our results showed that PySy (without quiescence detection)

was generally 1.5-2 times slower than multiprocessing. This section discusses several

ideas for improving our performance and closing the gap with other Python concurrent

programming alternatives.
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6.2.2.1 Optimizations

Table 5.1 shows the cost for the PySy’s Inni construct. The example used in

the micro-benchmarks was an Inni with one arm with a local InniOp. The cost of the

merge increases, however, with remote operations. Each equivalence class lock must be

acquired, a new lock must be selected, and the old locks must be forwarded to the new lock.

This procedure is executed on every service() operation, even in the situation where the

equivalence class has not changed. We would like to implement an optimization to monitor

the changing of equivalence classes, which will allow us to determine if a merge is necessary

in one message (even in the remote case).

PySy currently creates a new thread for each call and send invocation. This is

not only expensive (and unnecessary), but also may cause issues on systems that severely

limit the number of user-created threads. We would like to create a threadpool (or even

a Process pool using multiprocessing) for each VM to process invocations and only take

the performance hit for thread creation at the VM creation time.

6.2.2.2 Quiescence

The performance results described in Chapter 5 give solid evidence that the cur-

rent quiescence detection implementation is incredibly expensive. The JR book [17] also

arrived at the same conclusion. The actual quiescence detection feature is extremely useful

in concurrent programs, but, currently in PySy, it may be too expensive for real world

applications that require significant synchronization. We propose searching for a better

implementation for quiescence detection, which requires fewer messages, and, thus, reduces

overhead.

6.2.3 Networking

At the beginning of PySy’s development, we decided to use Pyro (version 3) for

the distributed sharing of resources. Pyro3 was mature, stable, and easy to use. At that

point, Pyro4 had just been released in beta, but it was too unproven to utilize for this
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work. However, during the development of PySy, Pyro4 has matured considerably. The

Pyro4 package is a completely revised and simpler version of Pyro3. The main mechanisms

remain the same, but many of Pyro3’s extra features have been removed. We have recently

run several experiments that show using Pyro4 will improve performance by 5-10%. Before

we adopt Pyro4 as our distributed resource component, however, we would like to do some

more analysis.

With that said, our implementation is not completely committed to Pyro. We

would like to experiment with other libraries that provide similar functionality. For ex-

ample, the Super Flexible Messaging (SFM) protocol in River [10]. Finally, if these other

alternatives are are not sufficient, then we can develop our own networking package that is

tailored specifically to PySy’s needs.

6.2.4 Python 3

Python has discontinued its feature development of Python 2.x with version 2.7.2.

All future development is being applied to Python 3. It only makes sense to port PySy

to the future of the Python language. The Python 3 distribution provides an automatic

conversion tool 2to3.py [22] that automatically converts Python 2.x programs to Python

3. However, Python 3 is not compatible with Pyro3. So, to convert PySy to Python 3, we

would have to replace Pyro3 with another distributed programming package, such as Pyro4.

This transition is currently being explored by UC Davis undergraduate students Allyson

Cauble-Chantrenne and David Kavaler.

6.2.5 Profiling and Debugging

A major part of the software life cycle depends on discovering bugs and improving

performance. However, Python has limited options for debugging and profiling distributed

and concurrent programs. The development of such tools would greatly increase develop-

ment efficiency and provide insight into potential performance bottlenecks.
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Appendix A

Invocation Selection

Understanding the semantics of JR’s invocation selection is key to understand-

ing JR program behavior. This section is intended to expand on the invocation selection

discussion in Section 2.2.5. It walks through the JR program example in Figure A.1 and

discusses the invocation selection procedure in detail.

The Main class in Figure A.1 defines four operations. For simplicity, the program

uses an operation as a synchronization mechanism inside of p1 to guarantee deterministic

output. The main function queues up all invocations that need processing and then sends a

message to p1 to allow it to start servicing the invocations. See the first row in Table A.1 for

a current view of each operation’s invocation list. Each element in operations x, y, and z is

a tuple consisting of the invocation parameter and the distributed timestamp, respectively.

Each time an Inni statement is executed, the Inni statement must sort all of its

arms by the earliest distributed timestamp. This arm ordering describes the order that the

Inni statement will iterate through the arms to find a serviceable invocation. The sorted

arms column shows this ordering at each iteration of the while loop. During iteration

one, the Inni statement will try to service an invocation in y first. y ’s arm contains a by

clause that will select the invocation with the lowest value. Currently, y has four pending

invocations with values 8, 6, -2, and 9, so, -2 is chosen. The selected invocation and

the resulting invocation lists are also described in Table A.1. On the second and third
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iteration, y will be selected first, again, and invocations 6 and 8 will be selected, respectively.

On the fourth iteration, x ’s arm is selected first. A such that clause appears in x ’s arm

that is only satisfied when the invocation parameter is even. The invocation 6 is the first

invocation that satisfies this criteria and is selected. x ’s arm is also selected first in the

fifth iteration. However, this time there is no invocation in x ’s invocation list that contains

an even invocation parameter. Since there are no serviceable invocations in x ’s arm, the

input statement tries the next arm in the sorted arms list, z. z ’s arm contains a such that

clause and a by clause that is looking for the largest odd invocation parameter. The Inni

statement will select 11 during this iteration and 7 and 1 during the subsequent iterations,

respectively. On the eighth iteration, none of the arms contain any serviceable values, so

the else arm is selected and it breaks from the while loop.
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public class Main
{

stat ic op void x ( int ) ;
stat ic op void y ( int ) ;
stat ic op void z ( int ) ;
stat ic op void s t a r t ( ) ;
public stat ic void main ( St r ing [ ] a rgs )
{

send y ( 8 ) ; send y ( 6 ) ;
send x ( 1 ) ;
send z ( 1 1 ) ;
send y(−2);
send x ( 6 ) ;
send z ( 1 2 ) ; send z ( 1 ) ; send z ( 0 ) ; send z ( 7 ) ;
send y ( 9 ) ;
send s t a r t ( ) ;

}

stat ic proce s s p1
{

r e c e i v e s t a r t ( ) ;
while ( true ){

i n n i void x ( int i ) s t i%2==0{
System . out . p r i n t l n ( ”x=” + i ) ;

}
[ ] void y ( int j ) by j {

System . out . p r i n t l n ( ”y=” + j ) ;
}
[ ] void z ( int k ) s t k%2==1 by −k{

System . out . p r i n t l n ( ”z=” + k ) ;
}
[ ] else {

break ;
}

}

}
}

Figure A.1: Four arm Inni statement with a variety of different synchronization and scheduling

expressions
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Iteration Sorted

arms

Operation

selected

Invocation

selected

Resulting invocation lists

0 N/A N/A N/A x=[(1,2),(6,5)]

y=[(8,0),(6,1),(-2,4),(9,10)]

z=[(11,3),(12,6),(1,7),(0,8),(7,9)]

1 [y,x,z] y (-2,4) x=[(1,2),(6,5)]

y=[(8,0),(6,1),(9,10)]

z=[(11,3),(12,6),(1,7),(0,8),(7,9)]

2 [y,x,z] y (6,1) x=[(1,2),(6,5)]

y=[(8,0),(9,10)]

z=[(11,3),(12,6),(1,7),(0,8),(7,9)]

3 [y,x,z] y (8,0) x=[(1,2),(6,5)]

y=[(9,10)]

z=[(11,3),(12,6),(1,7),(0,8),(7,9)]

4 [x,z,y] x (6,5) x=[(1,2)]

y=[(9,10)]

z=[(11,3),(12,6),(1,7),(0,8),(7,9)]

5 [x,z,y] z (11,3) x=[(1,2)]

y=[(9,10)]

z=[(12,6),(1,7),(0,8),(7,9)]

6 [x,z,y] z (7,9) x=[(1,2)]

y=[(9,10)]

z=[(12,6),(1,7),(0,8)]

7 [x,z,y] z (1,7) x=[(1,2)]

y=[(9,10)]

z=[(12,6),(0,8)]

8 [x,z,y] y (9,10) x=[(1,2)]

y=[(9,10)]

z=[(12,6),(0,8)]

Table A.1: Invocation selection table for Figure A.1
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Appendix B

Imported Objects and Functions

Tables B.1 and B.2 briefly describe PySy’s user-interface. For more information

on each object, see the referenced section.
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Object Description Reference

ArmCode Code block executed for an InniArm (decorator). Section 3.6

By Code block executed for an InniArm’s by expression

(decorator).

Section 3.6

Co Object representing the JR Co statement. Section 3.9

CoArm A single arm of a JR Co statement. Section 3.9

Control Enumeration of possible control status changes in an

InniArm and CoArm.

Section 3.10

Inni Object representing the JR input statement. Section 3.6

InniArm A single arm of a JR input statement. Section 3.6

InniArmElseAfter The arm for the JR input statement’s optional else af-

ter.

Section 3.6

InniElse The arm for the JR input statement’s else. Section 3.6

InniOp JR operation serviced by an input statement. Section 3.5.3

Invocation Contains contextual information about the invocation

of an operation.

Section 3.4

OpMethod JR operation serviced by a method (decorator). Section 3.5.1

PSObject Base class for all PySy objects. Section 4.2.2

Process JR Process construct (decorator). Section 3.5.1

StaticOpMethod JR OpMethod with static modifier (decorator). Section 3.5.1

SuchThat Code block executed for an InniArm’s such that clause

(decorator).

Section 3.6

Table B.1: The objects imported by the PySy package.

Function Description

PySy.createInstance Creates a new remote instance of an object.

PySy.createVM Creates a new virtual machine.

PySy.exit Begins shutdown procedures and sets the return status of the

program to a user-specified value.

PySy.init Required method call invoked at global scope to begin PySy

program.

PySy.nap Sleeps for a user specified amount of time (in seconds).

PySy.shutdown Terminates the PySy program. This is only needed if quies-

cence detection is disabled.

PySy.traceback Prints out the traceback for an exception.

PySy.yield Yields control of the current thread.

Table B.2: The functions provided by the PySy API.
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Appendix C

PySy’s Operation Interface

class Operation (Remote ) :
”””
@summary : Abs t rac t base c l a s s o f an opera t ion .
”””
def send ( s e l f , inv=None ) :

”””
@summary : Asynchronous invoca t i on o f an opera t ion
”””
raise NeedToOverrideError

def c a l l ( s e l f , inv=None ) :
”””
@summary : Synchronous invoca t i on o f an opera t ion
”””
raise NeedToOverrideError

def r e c e i v e ( s e l f ) :
”””
@summary : Se rv i c e the f i r s t invoca t i on ( f o r InniOps ) .
This method throws an error f o r OpMethods .
”””
raise NeedToOverrideError

def l ength ( s e l f ) :
”””
@summary : Gets the l e n g t h o f an opera t ion ’ s invoca t i on l i s t
”””
return 0

def isNoop ( s e l f ) :
raise NeedToOverrideError

Figure C.1: User-interface for the Operation construct.
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Appendix D

JR Micro-Benchmark Performance

Table D.1 presents JR’s performance using the same micro-benchmarks depicted

in Table 5.1.

Test Name Invocation Service Time with

QD (ms)

Time without

QD (ms)

inOpSend(local) send to local InniOp None .002 .002

inOpRecv(local) None receive .86 .001

Inni(Local) None Inni 2.82 .33

inOpCall(local)[Inni] call to local InniOp Inni 1.28 .09

inOpCall(local)[Receive] call to local InniOp receive 1.38 .07

inOpSend(remote) send to remote InniOp None .16 .16

inOpRecv(remote) None receive 1.30 .16

inOpCall(remote)[Inni] call to remote InniOp Inni 2.07 .34

inOpCall(remote)[Receive] call to remote InniOp receive 1.13 .31

opMethodSend(local) send to local OpMethod OpMethod .14 .13

opMethodCall(local) call to local OpMethod OpMethod .22 .0002

opMethodSend(remote) send to remote OpMethod OpMethod .04 .04

opMethodCall(remote) call to remote OpMethod OpMethod .62 .08

Table D.1: JR’s performance for micro-benchmarks.
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Appendix E

Readers/Writers Examples

Figures E.1, E.2, E.3, and E.4 show the implementation of distributed Reader-

s/Writers program using PySy. Figures E.5, E.6, E.7, E.8, and E.9 show an implementation

of a distributed Readers/Writers program using multiprocessing. Figures E.10, E.11, and

E.12, show an implementation of a distributed Readers/Writers program using River.
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rand = random .Random( )

class RWController ( ob j e c t ) :
def i n i t ( s e l f , performance , nreaders , nwr i te r s , nse rver s , n i t e r s ) :

s e l f . performance = performance
s e l f . done = InniOp . createSem ( )
s e l f . n reader s = nreader s
s e l f . nwr i t e r s = nwr i t e r s
s e l f . n s e rv e r s = nse rv e r s
s e l f . n i t e r s = n i t e r s
s e l f . t e s t ( )

def t e s t ( s e l f ) :
s e l f . performance . run ( [Work( s e l f . work ) ] )

@timing
def work ( s e l f ,∗ args ) :

global rand
rwa = PySy . c r e a t e In s t anc e ( ” rwAl locator . RWAllocator” , s e l f . nwr i t e r s \

+ s e l f . nreaders , s e l f . done , s e l f . n i t e r s )
rwa . s t a r t . send ( )
vms = [ ]
for i in xrange ( s e l f . n s e rv e r s ) :

hostname = ”pc%d” % ( i +27) i f os . getenv ( ” IS CSIF” ) else ” l o c a l h o s t ”
vms . append (PySy . createVM( hostname ) )

for i in xrange ( s e l f . n reader s ) :
r = PySy . c r e a t e In s t an c e ( ” reader . Reader” , rwa . startReadOp , \

rwa . endReadOp , s e l f . n i t e r s , vm=vms [ rand . rand int (0 , l en (vms)−1) ])
r . s t a r t . send ( )

for i in xrange ( s e l f . nwr i t e r s ) :
w = PySy . c r e a t e In s t an c e ( ” wr i t e r . Writer ” , rwa . startReadOp , \

rwa . endReadOp , s e l f . n i t e r s , vm=vms [ rand . rand int (0 , l en (vms)−1) ])
w. s t a r t . send ( )

s e l f . done . r e c e i v e ( )

Figure E.1: PySy’s Readers/Writers driver program.
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class RWAllocator ( PSObject ) :
def i n i t ( s e l f , n c l i e n t s , done , n i t e r s ) :

s e l f . startReadOp = InniOp . c r e a t e ( )
s e l f . endReadOp = InniOp . c r e a t e ( )
s e l f . startWriteOp = InniOp . c r e a t e ( )
s e l f . endWriteOp = InniOp . c r e a t e ( )
s e l f . done = done
s e l f . n c l i e n t s = n c l i e n t s
s e l f . nr = 0
s e l f . nw = 0
s e l f . n i t e r s = n i t e r s

@OpMethod
def s t a r t ( s e l f , inv ) :

rwSem = InniOp . createSem (1)
@ArmCode
def SR( inv ) :

uid = inv . getParameter (0 )
nacce s s = inv . getParameter (1 )
with rwSem :

s e l f . nr += 1
@SuchThat
def SR ST( inv ) :

with rwSem :
return s e l f . nw == 0

@ArmCode
def ER( inv ) :

uid = inv . getParameter (0 )
nacce s s = inv . getParameter (1 )
with rwSem :

s e l f . nr −= 1
@ArmCode
def SW( inv ) :

uid = inv . getParameter (0 )
nacce s s = inv . getParameter (1 )
with rwSem :

s e l f . nw += 1
@SuchThat
def SW ST( inv ) :

with rwSem :
return s e l f . nr == 0 and s e l f . nw == 0

@ArmCode
def EW( inv ) :

uid = inv . getParameter (0 )
nacce s s = inv . getParameter (1 )
with rwSem :

s e l f . nw −= 1
inniArm sr = InniArm ( s e l f . startReadOp , SR, s t=SR ST)
inniArm er = InniArm ( s e l f . endReadOp , ER)
inniArm sw = InniArm ( s e l f . startWriteOp , SW, s t=SW ST)
inniArm ew = InniArm ( s e l f . endWriteOp , EW)
inn i 1 = Inn i ( inniArm sr , inniArm er , inniArm sw , inniArm ew )
for i in xrange ( s e l f . n i t e r s ∗ s e l f . n c l i e n t s ∗ 2 ) :

i nn i 1 . s e r v i c e ( )
s e l f . done . send ( )

Figure E.2: PySy’s Readers/Writers resource allocation object.
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class Writer ( PSObject ) :
id = 0
idLock = thread ing . Condit ion ( )

def i n i t ( s e l f , startWriteOp , endWriteOp , n i t e r s ) :
with Writer . idLock :

s e l f . uid = Writer . id
Writer . id += 1

s e l f . n i t e r s = n i t e r s
s e l f . startWriteOp = startWriteOp
s e l f . endWriteOp = endWriteOp

@OpMethod
def s t a r t ( s e l f , inv ) :

rand = random .Random( )
for i in xrange ( s e l f . n i t e r s ) :

s e l f . startWriteOp . c a l l ( Invocat ion ( s e l f . uid , i ) )
s e l f . endWriteOp . c a l l ( Invocat ion ( s e l f . uid , i ) )

Figure E.3: PySy’s Readers/Writers writer object.

class Reader ( PSObject ) :
id = 0
idLock = thread ing . Condit ion ( )

def i n i t ( s e l f , startReadOp , endReadOp , n i t e r s ) :
with Reader . idLock :

s e l f . uid = Reader . id
Reader . id += 1

s e l f . n i t e r s = n i t e r s
s e l f . startReadOp = startReadOp
s e l f . endReadOp = endReadOp

@OpMethod
def s t a r t ( s e l f , inv ) :

rand = random .Random( )
for i in xrange ( s e l f . n i t e r s ) :

s e l f . startReadOp . c a l l ( Invocat ion ( s e l f . uid , i ) )
s e l f . endReadOp . c a l l ( Invocat ion ( s e l f . uid , i ) )

Figure E.4: PySy’s Readers/Writers reader object.
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def runse rve r ( ) :
manager = make server manager ( )
s h a r e d r e s u l t q = manager . g e t r e s u l t q ( )
f i l ename = ’ rwCl ient . py ’
serverHost , s e rve rPor t = manager . address
nreader s = RWController .NREADERS / RWController .NSERVERS
nwr i t e r s = RWController .NWRITERS / RWController .NSERVERS
for i in xrange ( RWController .NSERVERS) :

i f i == RWController .NSERVERS − 1 :
i f RWController .NREADERS % RWController .NSERVERS != 0 \

and RWController .NREADERS > RWController .NSERVERS:
nreader s += RWController .NREADERS % RWController .NSERVERS

i f RWController .NWRITERS % RWController .NSERVERS != 0 \
and RWController .NWRITERS > RWController .NSERVERS:

nwr i t e r s += RWController .NWRITERS % RWController .NSERVERS
hostname = ”pc%d” % ( i +27) i f os . getenv ( ” IS CSIF” ) else ” l o c a l h o s t ”
cmd = ’ ssh %s python %s %s %d %d %d %d ’ % \

( hostname , f i l ename , serverHost , serverPort , nreaders , \
nwr i te r s , RWController .NITERS)

c l i e n t = subproces s . Popen (cmd . s p l i t ( ) , s h e l l=False , s tdout=None ,\
s t d e r r=None )

numresults = 0
while numresults < RWController .NSERVERS:

s h a r e d r e s u l t q . get ( )
numresults += 1

manager . shutdown ( )
def make server manager ( ) :

class RWManager( SyncManager ) : pass
r e s u l t q = Queue ( )
def startRead (∗ args ) :

t = thread ing . Thread ( t a r g e t=RWAllocator . startRead , args=args )
t . s t a r t ( )

def endRead (∗ args ) :
t = thread ing . Thread ( t a r g e t=RWAllocator . endRead , args=args )
t . s t a r t ( )

def s ta r tWr i t e (∗ args ) :
t = thread ing . Thread ( t a r g e t=RWAllocator . s tartWrite , a rgs=args )
t . s t a r t ( )

def endWrite (∗ args ) :
t = thread ing . Thread ( t a r g e t=RWAllocator . endWrite , args=args )
t . s t a r t ( )

RWManager . r e g i s t e r ( ’ g e t r e s u l t q ’ , c a l l a b l e=lambda : r e s u l t q )
RWManager . r e g i s t e r ( ’ startRead ’ , \

c a l l a b l e=lambda ∗ args : startRead (∗ args ) )
RWManager . r e g i s t e r ( ’ endRead ’ , c a l l a b l e=lambda ∗ args : endRead (∗ args ) )
RWManager . r e g i s t e r ( ’ s ta r tWr i t e ’ , \

c a l l a b l e=lambda ∗ args : s ta r tWr i t e (∗ args ) )
RWManager . r e g i s t e r ( ’ endWrite ’ , c a l l a b l e=lambda ∗ args : endWrite (∗ args ) )
manager = RWManager( address=( socket . gethostname ( ) , 0 ) , authkey=’ abc ’ )
manager . s t a r t ( )
return manager

Figure E.5: multiprocessing’s Readers/Writers driver program (part 1 of 2).
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class RWController ( ob j e c t ) :
NSERVERS = 1
NREADERS = 15
NWRITERS = 10
NITERS = 100
def i n i t ( s e l f , performance , nreader s =15, nwr i t e r s =10, \

ns e rv e r s =1, n i t e r s =100):
s e l f . performance = performance
RWController .NSERVERS = nse rv e r s
RWController .NREADERS = nreader s
RWController .NWRITERS = nwr i t e r s
RWController .NITERS = n i t e r s
s e l f . t e s t ( )

def t e s t ( s e l f ) :
s e l f . performance . run ( [Work( s e l f . work ) ] )

@timing
def work ( s e l f ,∗ args ) :

runse rve r ( )

Figure E.6: multiprocessing’s Readers/Writers driver program (part 2 of 2).
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from mul t i p ro c e s s i ng import Condition , Lock
class RWAllocator ( ob j e c t ) :

sync = Condit ion ( l ock=Lock ( ) )
nr = 0
nw = 0
@staticmethod
def startRead ( uid , nacce s s ) :

with RWAllocator . sync :
while RWAllocator .nw > 0 :

RWAllocator . sync . wait ( )
RWAllocator . nr += 1

@staticmethod
def endRead ( uid , nacce s s ) :

with RWAllocator . sync :
RWAllocator . nr −= 1
RWAllocator . sync . n o t i f y a l l ( )

@staticmethod
def s ta r tWr i t e ( uid , nacce s s ) :

with RWAllocator . sync :
while RWAllocator .nw > 0 or RWAllocator . nr > 0 :

RWAllocator . sync . wait ( )
RWAllocator .nw += 1

@staticmethod
def endWrite ( uid , nacce s s ) :

with RWAllocator . sync :
RWAllocator .nw −= 1
RWAllocator . sync . n o t i f y a l l ( )

Figure E.7: multiprocessing’s Readers/Writers resource allocation object.
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class Writer ( Process ) :
id = 0
idLock = Condit ion ( )
def i n i t ( s e l f , rwa , n i t e r s ) :

Process . i n i t ( s e l f )
with Writer . idLock :

s e l f . uid = Writer . id
Writer . id += 1

s e l f . rwa = rwa
s e l f . n i t e r s = n i t e r s

def run ( s e l f ) :
rand = random .Random( )
for i in xrange ( s e l f . n i t e r s ) :

s e l f . rwa . s ta r tWr i t e ( s e l f . uid , i )
s e l f . rwa . endWrite ( s e l f . uid , i )

class Reader ( Process ) :
id = 0
idLock = Condit ion ( )
def i n i t ( s e l f , rwa , n i t e r s ) :

Process . i n i t ( s e l f )
with Reader . idLock :

s e l f . uid = Reader . id
Reader . id += 1

s e l f . rwa = rwa
s e l f . n i t e r s = n i t e r s

def run ( s e l f ) :
rand = random .Random( )
for i in xrange ( s e l f . n i t e r s ) :

s e l f . rwa . startRead ( s e l f . uid , i )
s e l f . rwa . endRead ( s e l f . uid , i )

Figure E.8: multiprocessing’s Readers/Writers client source (part 1 of 2).
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def doRW(mgr , nreaders , nwr i te r s , n i t e r s ) :
workers = [ ]
for i in xrange ( nreader s ) :

r = Reader (mgr , n i t e r s )
r . s t a r t ( )
workers . append ( r )

for i in xrange ( nwr i t e r s ) :
w = Writer (mgr , n i t e r s )
w. s t a r t ( )
workers . append (w)

for w in workers :
w. j o i n ( )

q = mgr . g e t r e s u l t q ( )
q . put ( ”done” )

def r un c l i e n t ( host , port , nreaders , nwr i te r s , n i t e r s ) :
manager = make cl ient manager ( host , port , ’ abc ’ )
doRW(manager , nreaders , nwr i te r s , n i t e r s )

def make cl ient manager ( ip , port , authkey ) :
class RWManager( SyncManager ) : pass
RWManager . r e g i s t e r ( ’ startRead ’ )
RWManager . r e g i s t e r ( ’ endRead ’ )
RWManager . r e g i s t e r ( ’ s ta r tWr i t e ’ )
RWManager . r e g i s t e r ( ’ endWrite ’ )
RWManager . r e g i s t e r ( ’ g e t r e s u l t q ’ )
manager = RWManager( address=(ip , port ) , authkey=authkey )
manager . connect ( )
return manager

def main ( host , port , nreaders , nwr i te r s , n i t e r s ) :
r un c l i e n t ( host , port , nreaders , nwr i te r s , n i t e r s )

i f name == ” main ” :
i f l en ( sys . argv ) < 6 :

print ”not enough args : %s ” % args
sys . e x i t ( )

main ( sys . argv [ 1 ] , i n t ( sys . argv [ 2 ] ) , i n t ( sys . argv [ 3 ] ) , \
i n t ( sys . argv [ 4 ] ) , i n t ( sys . argv [ 5 ] ) )

Figure E.9: multiprocessing’s Readers/Writers client source (part 2 of 2).
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class RWAllocator ( ob j e c t ) :
def i n i t ( s e l f , vr ) :

s e l f . nr = 0
s e l f . nw = 0
s e l f . vr = vr
s e l f . l o ck = thread ing . Condit ion ( l ock=thread ing . Lock ( ) )

def startRead ( s e l f , s rc , uid , nacce s s ) :
with s e l f . l o ck :

while s e l f . nw != 0 :
s e l f . l o ck . wait ( )

try :
a s s e r t s e l f . nw == 0 and s e l f . nr >= 0
s e l f . nr += 1

except Asse r t i onErro r :
raise Asse r t i onErro r

s e l f . vr . send ( des t=src , uid=uid , func=” startRead ” )

def endRead ( s e l f , s rc , uid , nacce s s ) :
with s e l f . l o ck :

try :
a s s e r t s e l f . nr >= 0
s e l f . nr −= 1

except Asse r t i onErro r :
raise Asse r t i onErro r

s e l f . l o ck . n o t i f yA l l ( )
s e l f . vr . send ( des t=src , uid=uid , func=”endRead” )

def s ta r tWr i t e ( s e l f , s rc , uid , nacce s s ) :
with s e l f . l o ck :

while s e l f . nw != 0 or s e l f . nr != 0 :
s e l f . l o ck . wait ( )

try :
a s s e r t s e l f . nw == 0
s e l f . nw += 1

except Asse r t i onErro r :
raise Asse r t i onErro r

s e l f . vr . send ( des t=src , uid=uid , func=” star tWr i t e ” )

def endWrite ( s e l f , s rc , uid , nacce s s ) :
with s e l f . l o ck :

try :
a s s e r t s e l f . nw == 1
s e l f . nw −= 1

except Asse r t i onErro r :
raise Asse r t i onErro r

s e l f . l o ck . n o t i f yA l l ( )
s e l f . vr . send ( des t=src , uid=uid , func=”endWrite” )

Figure E.10: River implementation of the Readers/Writers program (part 1 of 3).
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class Reader ( ob j e c t ) :
def i n i t ( s e l f , uid ) :

s e l f . uid = uid

class Writer ( ob j e c t ) :
def i n i t ( s e l f , uid ) :

s e l f . uid = uid

class RWMain( Vir tua lResource ) :
def v r i n i t ( s e l f ) :

d i s cove r ed = s e l f . d i s c ove r ( )
a l l o c a t e d = s e l f . a l l o c a t e ( d i s cove r ed )
deployed = s e l f . deploy ( a l l o ca t ed , module=s e l f . module , \

func=’work ’ )
s e l f . vms = [vm[ ’ uuid ’ ] for vm in deployed ]
return True

def main ( s e l f ) :
i f l en ( sys . argv ) != 6 :

print usage

NTRIALS = in t ( sys . argv [ 2 ] )
NREADERS = in t ( sys . argv [ 3 ] )
NWRITERS = in t ( sys . argv [ 4 ] )
NITERS = in t ( sys . argv [ 5 ] )

a s s e r t NWRITERS + NREADERS + 1 <= len ( s e l f . vms)
a l l o c a t o r = s e l f . vms [ 0 ]
s e l f . vms = s e l f . vms [ 1 :NWRITERS+NREADERS+1]

s e l f . send ( des t=a l l o c a t o r , i n i t=” i n i t ” , NTRIALS=NTRIALS, uid=0)
[ s e l f . send ( des t=vm, i n i t=” i n i t ” , NTRIALS=NTRIALS, uid=i +1) \

for i , vm in enumerate ( s e l f . vms ) ]
for i in xrange (NTRIALS) :

s e l f . send ( des t=a l l o c a t o r , s t a r t=” s t a r t ” , NREADERS=NREADERS, \
NWRITERS=NWRITERS, NITERS=NITERS)

print ” (RW %d %d %d) ” % (NREADERS, NWRITERS, NITERS)
#s t a r t up r/w
for i in xrange (NREADERS) :

s e l f . send ( des t=s e l f . vms [ i ] , s t a r t=” s t a r t ” , type=” reader ” ,\
NTRIALS=NTRIALS, NITERS=NITERS, a l l o c a t o r=a l l o c a t o r , \
uid=i +1)

for i in xrange (NWRITERS) :
s e l f . send ( des t=s e l f . vms [NREADERS+i ] , s t a r t=” s t a r t ” , \
type=”wr i t e r ” , NITERS=NITERS, a l l o c a t o r=a l l o c a t o r , \
uid=(NREADERS + i +1))

for i in xrange (NREADERS + NWRITERS + 1 ) :
s e l f . recv ( s r c=s e l f .ANY, done=”done” )

Figure E.11: River implementation of the Readers/Writers program (part 2 of 3).
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def work ( s e l f ) :
m = s e l f . recv ( s r c=s e l f . parent , i n i t=” i n i t ” , uid=s e l f .ANY)
NTRIALS = m.NTRIALS
uid = m. uid
for i in xrange (NTRIALS) :

i f uid == 0 :
#t h i s vr i s s p e c i f i c a l l y f o r the a l l o c a t o r
m = s e l f . recv ( s t a r t=” s t a r t ” )
NREADERS = m.NREADERS
NWRITERS = m.NWRITERS
NITERS = m.NITERS
rwa = RWAllocator ( s e l f )
nmessages = (NREADERS + NWRITERS) ∗ NITERS ∗ 2
th r eadL i s t = [ ]
for i in xrange ( nmessages ) :

m = s e l f . recv ( s r c=s e l f .ANY, func=s e l f .ANY)
method = ge t a t t r ( rwa , m. func )
t = thread ing . Thread ( t a r g e t=method , args=(m. src , m. uid , \

m. nacce s s ) )
t . daemon = True
th r eadL i s t . append ( t )
t . s t a r t ( )

[ t . j o i n ( ) for t in th r eadL i s t ]
else :
m = s e l f . recv ( s t a r t=” s t a r t ” )
NITERS = m.NITERS
a l l o c a t o r = m. a l l o c a t o r
i f m. type == ” reader ” :

r = Reader (m. uid )
for i in xrange (NITERS) :

s e l f . send ( des t=a l l o c a t o r , uid=r . uid , nacce s s = i ,\
func=” startRead ” )

s e l f . recv ( s r c=a l l o c a t o r , uid=r . uid , func=” startRead ” )

s e l f . send ( des t=a l l o c a t o r , uid=r . uid , nacce s s = i ,\
func=”endRead” )

s e l f . recv ( s r c=a l l o c a t o r , uid=r . uid , func=”endRead” )

else :
w = Writer ( uid )
for i in xrange (NITERS) :

s e l f . send ( des t=a l l o c a t o r , uid=w. uid , nacce s s = i ,\
func=” star tWr i t e ” )

s e l f . recv ( s r c=a l l o c a t o r , uid=w. uid , func=” star tWr i t e ” )

s e l f . send ( des t=a l l o c a t o r , uid=w. uid , nacce s s = i , \
func=”endWrite” )

s e l f . recv ( s r c=a l l o c a t o r , uid=w. uid , func=”endWrite” )
s e l f . send ( des t=s e l f . parent , done=”done” )

Figure E.12: River implementation of the Readers/Writers program (part 3 of 3).
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Appendix F

Fast Fourier Transform Examples

Figures F.1 and F.2 show an implementation of a distributed FFT algorithm using

PySy. Figures F.3 and F.4 show an implementation of a distributed FFT algorithm using

multiprocessing. Figures F.5 and F.6 show an implementation of a distributed FFT

algorithm using the River extension Trickle.
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class FFT(PSObject ) :
ARRAYROWS = 10000
NSERVERS = 2
def i n i t ( s e l f , performance , ARRAYROWS, NSERVERS) :

s e l f . performance = performance
FFT.ARRAYROWS = in t (ARRAYROWS)
FFT.NSERVERS = in t (NSERVERS)
s e l f . vms = None
s e l f . done = InniOp . c r e a t e ( )
s e l f . work ( )

def work ( s e l f ,∗ args ) :
omega = math . p i
s e r v e r s = [ ]
currRow = 1
s t r i p = FFT.ARRAYROWS / FFT.NSERVERS
for i in xrange (FFT.NSERVERS) :

beginRow = currRow
endRow = currRow + s t r i p i f i != (FFT.NSERVERS −1) \

else FFT.ARRAYROWS
currRow = endRow
vm = PySy . createVM(”pc%d” % ( i +27)) i f os . getenv ( ” IS CSIF” ) \

else PySy . createVM ()
s rv r = PySy . c r e a t e In s t anc e ( ” s e r v e r . Server ” , beginRow , endRow ,\

vm=vm)
s rv r . s t a r t . send ( )
s e r v e r s . append ( s rv r )
s e l f . vms . append (vm)
#pr in t beginRow , endRow

r e s u l t = [ ]
s e l f . TestArray = [ [ 0 ] , [ 0 ] ]
s e l f . TestArray [ 0 ] [ 0 ] = s e r v e r s [ 0 ] . TI Integra te . c a l l ( 0 . 0 , 2 . 0 , \

1000 , 0 . 0 , 0 , 0 , 0) / 2 .0

for s e r v e r in s e r v e r s :
s t r i pRe s u l t s = s e r v e r . r e s u l t s . r e c e i v e ( )
s e l f . TestArray [ 0 ] . extend ( s t r i pRe s u l t s [ 0 ] )
s e l f . TestArray [ 1 ] . extend ( s t r i pRe s u l t s [ 1 ] )

Figure F.1: PySy’s FFT driver program.
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class Server ( PSObject ) :
def i n i t ( s e l f , beginRow , endRow ) :

s e l f . beginRow = beginRow
s e l f . endRow = endRow
s e l f . TestArray = [ [ 0 ] ∗ ( ( endRow−beginRow ) ) \

for x in xrange ( 0 , 2 ) ]
s e l f . r e s u l t s = InniOp . c r e a t e ( )

@OpMethod
def TIIntegra te ( s e l f , inv ) :

x0 , x1 , nsteps , omega , s e l e c t , row , c o l = inv . getParameters ( )
return s e l f . Trapezo id Integrate ( 0 . 0 , 2 . 0 , 1000 , omega∗row , \

s e l e c t )

def Trapezo id Integra te ( s e l f , x0 , x1 , nsteps , omegan , s e l e c t ) :
x = x0
dx = (x1−x0 ) / f l o a t ( nsteps )
rva lue = s e l f . t h e func t i on ( x0 , omegan , s e l e c t ) / 2 .0
i f nsteps != 1 :

nsteps −= 1
while nsteps > 1 :

x += dx
rva lue += s e l f . t h e func t i on (x , omegan , s e l e c t )
nsteps −= 1

return ( rva lue + s e l f . t h e func t i on ( x1 , omegan , s e l e c t ) \
/ 2 . 0 ) ∗ dx

def the func t i on ( s e l f , x , omegan , s e l e c t ) :
i f s e l e c t == 0 :

return ( x+1)∗∗x
e l i f s e l e c t == 1 :

return ( ( x+1)∗∗x ) ∗ math . cos ( omegan∗x )
else :

return ( ( x+1)∗∗x ) ∗ math . s i n ( omegan∗x )

@OpMethod
def s t a r t ( s e l f , inv ) :

omega = math . p i
for i in xrange (0 , s e l f . endRow − s e l f . beginRow ) :

s e l f . TestArray [ 0 ] [ i ] = s e l f . TI Integra te . c a l l ( 0 . 0 ,\
2 . 0 , 1000 , omega , 1 , i+s e l f . beginRow , 0)

s e l f . TestArray [ 1 ] [ i ] = s e l f . TI Integra te . c a l l ( 0 . 0 ,\
2 . 0 , 1000 , omega , 2 , i+s e l f . beginRow , 1)

s e l f . r e s u l t s . send ( s e l f . TestArray )

Figure F.2: PySy’s FFT server object.
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def runse rve r ( ) :
manager = make server manager ( )
sha r ed job q = manager . g e t j ob q ( )
s h a r e d r e s u l t q = manager . g e t r e s u l t q ( )
class JobQueueManager ( SyncManager ) : pass
JobQueueManager . r e g i s t e r ( ’ g e t j ob q ’ , c a l l a b l e=lambda : j ob q )
JobQueueManager . r e g i s t e r ( ’ g e t r e s u l t q ’ , \

c a l l a b l e=lambda : r e s u l t q )
currRow = 0
s t r i p = FFT.ARRAYROWS / FFT.NSERVERS
for i in xrange (FFT.NSERVERS) :

beginRow = currRow
endRow = currRow + s t r i p i f i != (FFT.NSERVERS −1) \

else FFT.ARRAYROWS
currRow = endRow
shared job q . put ( ( beginRow , endRow) )

serverHost , s e rve rPor t = manager . address
for i in xrange (FFT.NSERVERS) :

hostname = ”pc%d” % ( i +27) i f os . getenv ( ” IS CSIF” ) \
else ” l o c a l h o s t ”

cmd = ’ ssh %s python −u %s %s %s ’ % ( hostname , f i l ename ,\
serverHost , s e rve rPor t )

c l i e n t = subproces s . Popen (cmd . s p l i t ( ) , s h e l l=False , \
stdout=None , s t d e r r=None )

numresults = 0
r e s u l t s = [ ]
while numresults < FFT.NSERVERS:

r e s u l t s . append ( s h a r e d r e s u l t q . get ( ) )
numresults += 1

r e s u l t s . s o r t ( )
TestArray = [ ]
for , r e s u l t in r e s u l t s :

TestArray . extend ( r e s u l t )
TestArray [ 0 ] [ 0 ] /= 2
manager . shutdown ( )

def make server manager ( ) :
j ob q = Queue ( )
r e s u l t q = Queue ( )
class JobQueueManager ( SyncManager ) : pass
JobQueueManager . r e g i s t e r ( ’ g e t j ob q ’ , c a l l a b l e=lambda : j ob q )
JobQueueManager . r e g i s t e r ( ’ g e t r e s u l t q ’ , \

c a l l a b l e=lambda : r e s u l t q )
hostname = ”pc14” i f os . getenv ( ” IS CSIF” ) else ” l o c a l h o s t ”
manager = JobQueueManager ( address=(hostname , 5025) , authkey=’ abc ’ )
manager . s t a r t ( )
return manager

class FFT( ob j e c t ) :
ARRAYROWS = 10000
NSERVERS = 2

runse rve r ( )

Figure F.3: multiprocessing’s FFT server.
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from mul t i p ro c e s s i ng import Process , Array , Queue
from mul t i p ro c e s s i ng . managers import SyncManager
def compute ( jobq , r e s u l t q ) :

beginRow , endRow = jobq . get ( )
omega = math . p i
TestArray = [ [ 0 ] ∗ ( endRow−beginRow ) for x in xrange ( 0 , 2 ) ]
for i in xrange ( beginRow , endRow ) :

TI Integra te ( 0 . 0 , 2 . 0 , 1000 , omega , 1 , i , 0 , \
beginRow , TestArray )

TI Integra te ( 0 . 0 , 2 . 0 , 1000 , omega , 2 , i , 1 , \
beginRow , TestArray )

r e s u l t q . put ( ( beginRow , TestArray ) )

def TIIntegra te ( x0 , x1 , nsteps , omega , s e l e c t , row , co l ,\
beginRow , TestArray ) :

TestArray [ c o l ] [ row−beginRow ] = Trapezo id Integrate ( 0 . 0 , \
2 . 0 , 1000 , omega∗row , s e l e c t )

def Trapezo id Integra te ( x0 , x1 , nsteps , omegan , s e l e c t ) :
x = x0
dx = (x1−x0 ) / f l o a t ( nsteps )
rva lue = the func t i on ( x0 , omegan , s e l e c t ) / 2 .0
i f nsteps != 1 :

nsteps −= 1
while nsteps > 1 :

x += dx
rva lue += the func t i on (x , omegan , s e l e c t )
nsteps −= 1

rva lue = ( rva lue + the func t i on ( x1 , omegan , s e l e c t ) / 2 . 0 ) ∗ dx
return rva lue

def the func t i on (x , omegan , s e l e c t ) :
i f s e l e c t == 0 :

return ( x+1)∗∗x
e l i f s e l e c t == 1 :

return ( ( x+1)∗∗x ) ∗ math . cos ( omegan∗x )
else :

return ( ( x+1)∗∗x ) ∗ math . s i n ( omegan∗x )
def r un c l i e n t ( host , port ) :

manager = make cl ient manager ( host , port , ’ abc ’ )
job q = manager . g e t j ob q ( )
r e s u l t q = manager . g e t r e s u l t q ( )
compute ( job q , r e s u l t q )

def make cl ient manager ( ip , port , authkey ) :
class ServerQueueManager ( SyncManager ) :

pass
ServerQueueManager . r e g i s t e r ( ’ g e t j ob q ’ )
ServerQueueManager . r e g i s t e r ( ’ g e t r e s u l t q ’ )
manager = ServerQueueManager ( address=(ip , port ) , authkey=authkey )
manager . connect ( )
return manager

def main ( host , port ) :
r un c l i e n t ( host , port )

i f name == ” main ” :
main ( sys . argv [ 1 ] , i n t ( sys . argv [ 2 ] ) )

Figure F.4: multiprocessing’s FFT client.
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def TIIntegra te ( x0 , x1 , nsteps , omega , s e l e c t , row , c o l ) :
return Trapezo id Integra te ( 0 . 0 , 2 . 0 , 1000 , omega∗row , s e l e c t )

def Trapezo id Integra te ( x0 , x1 , nsteps , omegan , s e l e c t ) :
x = x0
dx = (x1−x0 ) / f l o a t ( nsteps )
rva lue = the func t i on ( x0 , omegan , s e l e c t ) / 2 .0
i f nsteps != 1 :

nsteps −= 1
while nsteps > 1 :

x += dx
rva lue += the func t i on (x , omegan , s e l e c t )
nsteps −= 1

rva lue = ( rva lue + the func t i on ( x1 , omegan , s e l e c t ) / 2 . 0 ) ∗ dx

return rva lue
def the func t i on ( x , omegan , s e l e c t ) :

import math
i f s e l e c t == 0 :

return ( x+1)∗∗x
e l i f s e l e c t == 1 :

return ( ( x+1)∗∗x ) ∗ math . cos ( omegan∗x )
else :

return ( ( x+1)∗∗x ) ∗ math . s i n ( omegan∗x )
def s t a r t ( beginRow , endRow ) :

import math
omega = math . p i
TestArray = [ [ 0 ] ∗ ( ( endRow−beginRow ) ) for x in xrange ( 0 , 2 ) ]
for i in xrange (0 , endRow − beginRow ) :

TestArray [ 0 ] [ i ] = TI Integra te ( 0 . 0 , 2 . 0 , 1000 , omega , 1 , \
i+beginRow , 0)

TestArray [ 1 ] [ i ] = TI Integra te ( 0 . 0 , 2 . 0 , 1000 , omega , 2 , \
i+beginRow , 1)

return TestArray [ 0 ] , TestArray [ 1 ]

Figure F.5: An implementation of FFT using the River extension Trickle (part 1 of 2).
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i f l en ( sys . argv ) != 4 :
print usage

NTRIALS = in t ( sys . argv [ 1 ] )
ARRAYROWS = in t ( sys . argv [ 2 ] )
NSERVERS = in t ( sys . argv [ 3 ] )

print ” (FFT %d %d %d) ” % (NTRIALS, ARRAYROWS, NSERVERS)

omega = math . p i
for i in xrange (NTRIALS) :

begin = time . time ( )
v r l i s t = connect (NSERVERS)
i n j e c t ( v r l i s t , TI Integra te )
i n j e c t ( v r l i s t , Trapezo id Integra te )
i n j e c t ( v r l i s t , th e func t i on )
i n j e c t ( v r l i s t , s t a r t )

h l i s t = [ ]
s t r i p = ARRAYROWS / NSERVERS
currRow = 1
for i , vr in enumerate ( v r l i s t ) :

beginRow = currRow
endRow = currRow + s t r i p i f i != (NSERVERS −1) else ARRAYROWS
currRow = endRow
h l i s t . append ( f o rk ( vr , s t a r t , beginRow , endRow) )

tempResults = j o i n ( h l i s t )
ze roth = fo rk ( v r l i s t [ 0 ] , TIIntegrate , 0 . 0 , 2 . 0 , 1000 , 0 . 0 , 0 , 0 , 0)
zerothRes = j o i n ( ze roth ) / 2 .0
r e s u l t s = [ ]
r e s u l t s . append ( tup l e ( [ zerothRes ] ) + tup l e ( tempResults [ 0 ] [ 0 ] ) )
r e s u l t s . append ( tup l e ( [ 0 . 0 ] ) + tup l e ( tempResults [ 0 ] [ 1 ] ) )
end = time . time ( )
print ( end − begin )

Figure F.6: An implementation of FFT using the River extension Trickle (part 2 of 2).
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Appendix G

Matrix Multiplication Examples

Figures G.1 and G.2 show the implementation of a distributed NxN matrix mul-

tiplication algorithm using PySy. Figures G.3, G.4, and G.5 show an implementation of

a distributed NxN matrix multiplication algorithm using multiprocessing. Figure G.6

shows an implementation of a distributed NxN matrix multiplication algorithm using the

River extension Trickle.
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r = random .Random( )
class MatrixMult ( PSObject ) :

MAXCOEF = 50
N = 1000
NSERVERS = 5
def i n i t ( s e l f , performance , N, NSERVERS) :

s e l f . performance = performance
MatrixMult .N = in t (N)
MatrixMult .NSERVERS = in t (NSERVERS)
s e l f .A = s e l f . genMatrix (MatrixMult .N)
s e l f .B = s e l f . genMatrix (MatrixMult .N)
s e l f . vms = None
s e l f . work ( )

def genMatrix ( s e l f , n , i sZ e r o=False ) :
r e s u l t = [ ]
for i in xrange (n ) :

r e s u l t . append ( [ ] )
for j in xrange (n ) :

va l = 0 i f i sZ e r o else r . rand int (0 , \
MatrixMult .MAXCOEF)

r e s u l t [ i ] . append ( va l )
return r e s u l t

def work ( s e l f ,∗ args ) :
currRow = 0
s e r v e r s = [ ]
s t r i p = MatrixMult .N / MatrixMult .NSERVERS
for i in xrange (MatrixMult .NSERVERS) :

beginRow = currRow
endRow = currRow + s t r i p i f i != (MatrixMult .NSERVERS −1) \

else MatrixMult .N
currRow = endRow
vm = PySy . createVM(”pc%d” % ( i +27)) i f os . getenv ( ” IS CSIF” ) \

else PySy . createVM ()
s rv r = PySy . c r e a t e In s t anc e ( ” s e r v e r . Server ” , s e l f .A, s e l f .B, \

beginRow , endRow , MatrixMult .N, vm=vm)
s rv r . s t a r t . send ( )
s e r v e r s . append ( s rv r )
s e l f . vms . append (vm)

r e s u l t = [ ]
for s e r v e r in s e r v e r s :

s t r i pRe s u l t s = s e r v e r . r e s u l t s . r e c e i v e ( )
r e s u l t . extend ( s t r i pRe s u l t s )

Figure G.1: PySy’s Matrix Multiplication driver program.
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class Server ( PSObject ) :
def i n i t ( s e l f , A,B, beginRow , endRow , nco l s ) :

s e l f .A = A
s e l f .B = B
s e l f .C = [ [ 0 ] ∗ nco l s for i in xrange ( beginRow , endRow ) ]
s e l f . beginRow = beginRow
s e l f . endRow = endRow
s e l f . n co l s =nco l s
s e l f . r e s u l t s = InniOp . c r e a t e ( )

@OpMethod
def s t a r t ( s e l f , inv ) :

for r in xrange ( s e l f . beginRow , s e l f . endRow ) :
for c in xrange ( s e l f . n co l s ) :

s e l f . compute ( r , c )

s e l f . r e s u l t s . send ( s e l f .C)

def compute ( s e l f , r , c ) :
#r , c = inv . getParameters ( )
for k in xrange ( s e l f . n co l s ) :

s e l f .C[ r−s e l f . beginRow ] [ c ] += s e l f .A[ r ] [ k ] ∗ \
s e l f .B[ k ] [ c ]

Figure G.2: PySy’s Matrix Multiplication server object.
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r = random .Random( )
def runse rve r (A, B) :

# Sta r t a shared manager s e r v e r and acces s i t s queues
manager = make server manager ( )
sha r ed job q = manager . g e t j ob q ( )
s h a r e d r e s u l t q = manager . g e t r e s u l t q ( )

class JobQueueManager ( SyncManager ) :
pass

JobQueueManager . r e g i s t e r ( ’ g e t j ob q ’ , c a l l a b l e=lambda : j ob q )
JobQueueManager . r e g i s t e r ( ’ g e t r e s u l t q ’ , c a l l a b l e=lambda : r e s u l t q )

currRow = 0
s e r v e r s = [ ]
s t r i p = MatrixMult .N / MatrixMult .NSERVERS

for i in xrange (MatrixMult .NSERVERS) :
beginRow = currRow
endRow = currRow + s t r i p i f i != (MatrixMult .NSERVERS −1) \

else MatrixMult .N
currRow = endRow
shared job q . put ( ( beginRow , endRow , MatrixMult .N, A, B) )

r e s u l t = [ ]
#s t a r t c l i e n t s
sshPort = 22
username = ’ dev ’
f i l ename = ’mmClient . py ’
serverHost , s e rve rPor t = manager . address
a c t i v eSubproce s s e s = [ ]
for i in xrange (MatrixMult .NSERVERS) :

hostname = ”pc%d” % ( i +27) i f os . getenv ( ” IS CSIF” ) else ” l o c a l h o s t ”
username = ” tw i l l i am ” i f os . getenv ( ” IS CSIF” ) else ”dev”
cmd = ’ ssh −p %d %s@%s python %s %s %s ’ % ( sshPort , username , \

hostname , f i l ename , serverHost , s e rve rPor t )
c l i e n t = subproces s . Popen (cmd . s p l i t ( ) , s h e l l=False , \

stdout=None , s t d e r r=None )
ac t i v eSubproce s s e s . append ( c l i e n t )

numresults = 0
r e s u l t s = [ ]
while numresults < MatrixMult .NSERVERS:

r e s u l t s . append ( s h a r e d r e s u l t q . get ( ) )
numresults += 1

r e s u l t s . s o r t ( )
C = [ ]
for , r e s u l t in r e s u l t s :

C. extend ( r e s u l t )
for c l i e n t in ac t i v eSubproce s s e s :

del c l i e n t
manager . shutdown ( )

Figure G.3: multiprocessing’s Matrix Multiplication driver program (part 1 of 2).
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def make server manager ( ) :
j ob q = Queue ( )
r e s u l t q = Queue ( )

class JobQueueManager ( SyncManager ) :
pass

JobQueueManager . r e g i s t e r ( ’ g e t j ob q ’ , c a l l a b l e=lambda : j ob q )
JobQueueManager . r e g i s t e r ( ’ g e t r e s u l t q ’ , c a l l a b l e=lambda : r e s u l t q )
hostname = ”pc14” i f os . getenv ( ” IS CSIF” ) else ” l o c a l h o s t ”

manager = JobQueueManager ( address=(hostname , 5025) , authkey=’ abc ’ )
manager . s t a r t ( )
return manager

class MatrixMult ( ob j e c t ) :
N = 10000
MAXCOEF = 50
NSERVERS = 2
def i n i t ( s e l f , performance , N=10000 , NSERVERS=2):

s e l f . performance = performance
MatrixMult .N= N
MatrixMult .NSERVERS = NSERVERS
s e l f .A = s e l f . genMatrix (MatrixMult .N)
s e l f .B = s e l f . genMatrix (MatrixMult .N)

s e l f . t e s t ( )
def t e s t ( s e l f ) :

s e l f . performance . run ( [Work( s e l f . work ) ] , setup=( s e l f . setup , ( ) ) )

def setup ( s e l f , ∗ args ) :
#s e l f . TestArray = [ [ 0 ] ∗FFT.ARRAYROWS fo r x in xrange ( 0 , 2 ) ]
s e l f . TestArray = [ ]

def genMatrix ( s e l f , n ) :
global r
r e s u l t = [ ]
for i in xrange (n ) :

r e s u l t . append ( [ ] )
for j in xrange (n ) :

r e s u l t [ i ] . append ( r . rand int (0 , MatrixMult .MAXCOEF) )
return r e s u l t

@timing
def work ( s e l f ,∗ args ) :

runse rve r ( s e l f .A, s e l f .B)

Figure G.4: multiprocessing’s Matrix Multiplication driver program (part 2 of 2).
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def compute ( jobq , r e s u l t q ) :
beginRow , endRow , nco l s , A, B = jobq . get ( )
C = [ [ 0 ] ∗ ( endRow−beginRow ) for x in xrange ( nco l s ) ]
for row in xrange ( beginRow , endRow ) :

for c o l in xrange ( nco l s ) :
for k in xrange ( nco l s ) :

C[ c o l ] [ row−beginRow ] += A[ row ] [ k ] ∗ B[ k ] [ c o l ]

r e s u l t q . put ( ( beginRow , C) )

def r un c l i e n t ( host , port ) :
manager = make cl ient manager ( host , port , ’ abc ’ )
job q = manager . g e t j ob q ( )
r e s u l t q = manager . g e t r e s u l t q ( )
compute ( job q , r e s u l t q )

def make cl ient manager ( ip , port , authkey ) :
class ServerQueueManager ( SyncManager ) :

pass

ServerQueueManager . r e g i s t e r ( ’ g e t j ob q ’ )
ServerQueueManager . r e g i s t e r ( ’ g e t r e s u l t q ’ )

manager = ServerQueueManager ( address=(ip , port ) , \
authkey=authkey )
manager . connect ( )

return manager

def main ( host , port ) :
r un c l i e n t ( host , port )

i f name == ” main ” :
i f l en ( sys . argv ) < 3 :

print ”not enough args : %s ” % args
sys . e x i t ( )

main ( sys . argv [ 1 ] , i n t ( sys . argv [ 2 ] ) )

Figure G.5: multiprocessing’s Matrix Multiplication client.
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def genMatrix (n , i sZ e r o=False ) :
r e s u l t = [ ]
r = random .Random(12345)

for i in xrange (n ) :
r e s u l t . append ( [ ] )
for j in xrange (n ) :

va l = 0 i f i sZ e r o else r . rand int (0 , 50)
r e s u l t [ i ] . append ( va l )

return r e s u l t

def s t a r t ( beginRow , endRow , nco l s , A, B) :
C = [ [ 0 ] ∗ nco l s for i in xrange ( beginRow , endRow ) ]
for r in xrange ( beginRow , endRow ) :

for c in xrange ( nco l s ) :
for k in xrange ( nco l s ) :

C[ r−beginRow ] [ c ] += A[ r ] [ k ] ∗ B[ k ] [ c ]
return C

i f l en ( sys . argv ) != 4 :
print usage

NTRIALS = in t ( sys . argv [ 1 ] )
N = in t ( sys . argv [ 2 ] )
NSERVERS = in t ( sys . argv [ 3 ] )

print ” (MM %d %d %d) ” % (NTRIALS, N, NSERVERS)

for i in xrange (NTRIALS) :
A = genMatrix (N)
B = genMatrix (N)

begin = time . time ( )
v r l i s t = connect (NSERVERS)
i n j e c t ( v r l i s t , s t a r t )

h l i s t = [ ]
s t r i p = N / NSERVERS
currRow = 0
for i , vr in enumerate ( v r l i s t ) :

beginRow = currRow
endRow = currRow + s t r i p i f i != (NSERVERS −1) else N
currRow = endRow
h l i s t . append ( f o rk ( vr , s t a r t , beginRow , endRow , N, A, B) )

r e s u l t s = j o i n ( h l i s t )
end = time . time ( )

print ( end − begin )

Figure G.6: Trickle’s Matrix Multiplication implementation.
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