
To appear in the Proceedings of the First International Symposium on Agent Systems
and Applications’99

CPU Resource Control for Mobile Programs�

Manoj Lal Raju Pandey
Parallel and Distributed Computing Laboratory

Computer Science Department
University of California, Davis

Davis, CA 95616
�lal, pandey�@cs.ucdavis.edu

Abstract

There is considerable interest in developing runtime in-
frastructures for programs that can migrate from one host to
another. Mobile programs are appealing because they sup-
port efficient utilization of network resources and extensibil-
ity of information servers. This paper presents a schedul-
ing scheme for allocating resources to a mix of real-time
and non real-time mobile programs. Within this framework,
both mobile programs and hosts can specify constraints on
how CPU should be allocated. On the basis of the con-
straints, the scheme constructs a scheduling graph on which
it applies several scheduling algorithms. In case of conflicts
between mobile program and host specified constraints, the
schemes implements a policy that resolves the conflicts in
favor of the host. The resulting scheduling scheme is adap-
tive, flexible, and enforces both program and host specified
constraints.

1. Introduction

In computing models that support migration of pro-
grams, a program migrates to a remote host, executes and
accesses the host’s resources. For instance, Java [1] pro-
grams are increasingly being used to add dynamic content
to a web page. When a user accesses the web page through
a browser, the browser migrates the Java programs asso-
ciated with the page and executes them at the user’s site.

�This work is supported by the Defense Advanced Research Project
Agency (DARPA) and Rome Laboratory, Air Force Materiel Command,
USAF, under agreement number F30602-97-1-0221. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation thereon. The views
and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorse-
ments, either expressed or implied, of the Defense Advanced Research
Project Agency (DARPA), Rome Laboratory, or the U.S. Government.

Other examples of such computing models include the re-
mote evaluation model [20] and the general purpose mobile
programming model [7, 21]. The common element in these
models is the ability of a runtime system to load externally
defined user programs and execute them within the local
name space.

In this paper, we focus on the problem of CPU re-
source allocation for mobile programs. The CPU alloca-
tion problem has been studied extensively and researchers
have proposed several scheduling algorithms and schedul-
ing schemes. A scheduling algorithm constructs schedules
for applications that specify similar constraints on CPU re-
sources. For instance, the Earliest Deadline First schedul-
ing algorithm (EDF) [15] builds a schedule for real-time
applications with deadline based constraints. A scheduling
scheme, on the other hand, is a mechanism for combining
different scheduling algorithms. Thus, a scheduling scheme
constructs schedules for applications with different CPU
constraints. For instance, the CPU inheritance scheduling
scheme in [9] combines the real-time scheduling algorithm
based on EDF with the multi-priority based round robin al-
gorithm [23] for scheduling real-time and interactive appli-
cations.

Most scheduling techniques proposed to date attempt to
allocate resources to applications on the basis of constraints,
such as lower bounds and real-time deadlines, that the ap-
plications specify. Further, they try to satisfy overall ob-
jective functions such as fairness, responsiveness and CPU
utilization. The resource allocation problem for mobile pro-
grams, however, has an additional component — host spec-
ified constraints on how resources should be used.

Two primary concerns drive host-specific resource usage
constraints: security and quality of service. The security
concerns of a host relate to preventing external programs
from getting unlimited or unauthorized access to CPU re-
sources, thereby staging denial of service attacks. The qual-
ity of service concerns involve providing differentiated lev-
els of services to different categories of mobile programs.

For instance, a host may want to allocate more resources to
mobile programs originating from its partner sites.

In this paper, we present a CPU scheduling scheme that
controls the allocation of CPU resources to a mix of real-
time and non real-time mobile programs by enforcing both
mobile program and host specified constraints on how CPU
should be allocated. Specifically, the scheme includes the
following:

� Specification of resource usage constraints: The
scheme includes a runtime interface and a specification
language that mobile programs and hosts can use to
specify resource usage constraints such as shares, pri-
ority, upper bounds and real-time deadline constraints.

� Hierarchical grouping: The specification mechanism
can organize mobile programs into groups and sub-
groups on the basis of network domains, resources, or
other host-specified groupings. This results in a hier-
archical organization of mobile programs.

� Scheduling algorithms: The scheme includes three
scheduling algorithms: (1) an algorithm for enforcing
shares and priority constraints on non real-time mo-
bile programs, (2) an algorithm for enforcing deadline
constraints on real-time mobile programs, and (3) an
algorithm for enforcing security constraints.

� Algorithm composition policy: The scheme uses an
algorithm composition policy to resolve any conflicts
among resource usage constraints. The policy aims at
meeting a host’s security needs and preferences first,
followed by the other requirements of mobile pro-
grams.

The scheduling scheme is general: it can be integrated
within HTTP servers, operating systems, and mobile pro-
gramming runtime systems such as the Java Virtual Ma-
chine (JVM) [16, 14].

We have implemented the scheduling scheme within a
simulation environment and the JVM (JDK version 1.1).
Experimental results demonstrate that the scheme helps
hosts to both protect and allocate CPU resources accord-
ing to their preferences. The scheme effectively combines
the scheduling algorithms in order to enforce both host and
mobile program specified constraints.

This paper is organized as follows: In Section 2, we ana-
lyze the problem of CPU resource allocation for mobile pro-
grams in detail. Section 3 presents the scheduling scheme
along with the different algorithms. In Section 4, we ana-
lyze the performance behavior of the scheme. We discuss
related work in Section 5. Finally, we summarize our results
and discuss future work in Section 6.

2. Resource allocation

The primary goal of a scheduling scheme is to construct
a schedule that satisfies a set of resource usage constraints.
A resource usage constraint specifies how resources should
be allocated. We classify resource usage constraints both
according to how mobile programs want to consume re-
sources, and how a host wants to facilitate as well as protect
usage of these resources. This results in two different views
of resource allocation – client (mobile program) view and
server (host system) view. We consider both views of re-
source allocation and the problems that arise when we try
to satisfy both.
Notation: Let the term ���� � denote the amount of CPU
allocated to a program � in a schedulable unit1 �.

2.1. Client view

From a client program’s perspective, requests for re-
sources are driven by how the program demands and uses
resources. Programs want to use as much CPU as possi-
ble so that they can perform their job quickly. They specify
such requirements in terms of several constraints such as the
following:

� Lower bound: A lower bound constraint, �, associated
with a program � specifies that in case of contention,
� be allocated at least �% of CPU in each schedulable
unit.

�� � � ���� � � �
�

���
�� ��

� Weight: A weight constraint, �, associated with a pro-
gram � specifies that � be allocated �% of CPU in
each schedulable unit.

�� � � ���� � � �
�

���
�� ��

� Share: Shares are closely related to weights in that rel-
ative amounts of shares owned by a program define the
program’s weight constraint. Thus, if program � has �
shares and the total number of shares in the system is
�, then

�� � � ���� � � �
� �
�
�

���
�� ��

� Deadline: Real-time constraints in the form of
��,	,
� for a program � specify that between times
� and 	, � must get
 amount of CPU.

�

����

���

���� � �
 �

1We divide the time line into schedulable units and specify resource
usage constraints in terms of these schedulable units.

2.2. Server view

From the server’s perspective, two concerns govern the
allocation of resources – meeting client’s needs and tightly
controlling allocation of resources. Two factors unique to
mobile environments accentuate the latter concern. First,
a level of distrust exists between a host and mobile pro-
grams since mobile programs and hosts typically belong to
different administrative domains. Mobile programs can ma-
liciously disrupt a host by using unauthorized resources, by
over-using resources, and by denying resources to other pro-
grams. Second, in distributed systems such as the web [3],
hosts may provide varying degree of services to clients. A
host may differentiate requests from different clients and
allocate resources to these requests in accordance with the
kinds of services the host wants to provide. For instance, a
host may reserve 85% of its resources to mobile programs
that originate from the paying customer sites and allocate
the rest for other programs.

In mobile programming models [7, 21], the resource al-
location problem has an additional dimension: A mobile
program can circumvent resource control by migrating to
another host and then returning to its previous host for more
resources. Resource usage constraints, thus, apply not only
to specific executions but to all executions of a program.
We refer to such constraints as lifetime constraints. An is-
sue closely related to lifetime constraints is that of uniquely
identifying and authenticating a mobile program when it re-
migrates to the host system. The paper does not address
this issue though we recognize that without sound authenti-
cation, a mobile program can easily change its identity and
carry out denial of service attacks.

Thus, a host must differentiate and categorize mobile
programs if it intends to impose resource constraints on
them. In addition to the lower bound, shares and weight
constraints, a host may also specify the following con-
straints:

� Priority: A priority constraint specifies that, given a
set of programs to schedule, a host selects the program
with the highest priority.

� Upper bound: An upper bound constraint, �, asso-
ciated with a program � specifies that, within each
schedulable unit, � be allocated at most �% of CPU.

�� � � ���� � � ������� ��

A host can also specify upper bounds in absolute form.

� Life-time constraints: A lifetime constraint, � associ-
ated with a program � specifies that � be allocated at
most � units of CPU time over all executions of � .

2.3. The scheduling problem

The CPU resource control problem is, therefore, one
of developing a scheduling scheme that, given client and
server resource usage constraints, constructs a schedule that
enforces the constraints.

2.3.1. Specification of constraints. We have developed a
runtime interface and a specification language that clients
and servers use to specify resource usage constraints. We
briefly describe them below.

We organize mobile programs into groups and sub-
groups. For instance, a group ucdavis.edu de-
notes all mobile programs that originate from this do-
main. This group may contain subdomains such as
cs.ucdavis.edu and ece.ucdavis.edu. The no-
tion of groups and subgroups results in a hierarchical par-
titioning of mobile programs. Clients can define their own
groups and determine constraints for individual jobs within
the group. Hosts can specify resource constraints on groups,
subgroups, or individual mobile programs.

Mobile programs and hosts can specify the following
sets of constraints:

� Client constraints: Real-time constraints and shares.

� Host constraints: Shares, priority, absolute upper
bound, and lifetime constraints.

� Dynamic constraints: Both mobile programs and
hosts can change their constraints dynamically. The
constraints can be specified as functions of the state of
the system. Currently, we consider constraints that can
vary on only two state variables: the number of mobile
programs belonging to a group and the time of day.

We omit the description of the constraint specification lan-
guage here due to lack of space.

3. Resource allocation scheme

We first describe the overall approach for scheduling re-
sources to mobile programs.

� Construction of scheduling graph: The scheme par-
titions mobile programs into real-time and non real-
time programs. It captures the group-subgroup rela-
tionships along with the various constraints to con-
struct a scheduling graph.

� Application of algorithms: The scheme applies three
algorithms to the scheduling graph: (i) an algorithm
to enforce upper bound and lifetime constraints; (ii) an
algorithm to enforce share and priority constraints; and
(iii) an algorithm to enforce real-time deadline based
constraints.

� ��

�� �� �� ��

��

Root

��
�����

non real-time
real-time

�
�

���

�� �� ��
�

��
�

��
�

��
�
, ��

�
	 ��

��	
�

��� ���

��, �� 	 ���	
� = childnodes of �

Figure 1. The scheduling graph

� Monitoring of system state: Since the host can spec-
ify constraints as a function of state variables, the
scheduling scheme monitors the state of the system
and adapts to the changes in the resource constraints
by modifying the scheduling graph.

In the following sections, we describe the individual algo-
rithms and how they are composed to build the scheduling
scheme.

3.1. Construction of scheduling graph

The scheduling scheme first builds a scheduling graph
(Figure 1) from resource usage constraints. The scheduling
graph is made of three subgraphs: (i) Real-time, (ii) Non
real-time, and (iii) upper-bound. The real-time subgraph is
a single node (a real-time guarantee group, �
�) contain-
ing all programs that specify deadline based constraints.

The non real-time subgraph, ��
� in Figure 1, is a hi-
erarchical graph, where each node denotes a group and each
edge the group-subgroup relationship. Mobile programs are
at the leaves of ��
�. The edges of ��
� are anno-
tated with share or priority constraints. For instance, in Fig-
ure 1, the label on edge ���� �� specifies that group � has
� shares. Similarly, the label on ���� ��

�
� specifies that mo-

bile program ��
� has priority ��. The amount of shares or

priorities allocated to a group node is relative to its parent
group. For instance, group ��’s share �� of CPU resources
are with respect to the CPU resources allocated to its par-
ent group, �. This results in a modular allocation of CPU:
Any changes in the share allocations to �� or �� do not af-
fect the CPU allocations to programs that belong to different
groups, for instance ��.

The upper bound subgraph represents the security con-
straints. Nodes in this subgraph denote specific upper bound
and lifetime constraints. Edges link these constraints to the
relevant groups and mobile programs. Upper bound and
lifetime constraints are general in that they can encapsulate
more than one node in the scheduling graph. Moreover, the

nodes encapsulated by a particular constraint need not be at
the same level. For instance, as shown in Figure 1 the up-
per bound constraint ��� applies to group � and mobile
program ��

�
. There is a need for such constraints so that

the host can control mobile programs belonging to different
levels in the hierarchy. For example, suppose a site wants
to impose an upper bound constraint that mobile programs
accessing a particular database be allocated at most 10% of
CPU. Such mobile programs may exist in different groups
and may span multiple subtree domains.

Hosts define the backbone of the scheduling graph – a
graph consisting of empty �
� and possibly non-empty
��
�. When a new client program arrives, the host can
create a new group node (��) for the client, specify con-
straints for ��, and add �� at an appropriate place in the
scheduling graph. The client program can create subgroups
under �� and define resource usage constraints for the sub-
graph under ��. Note that the scheduling graph is dy-
namic; it changes whenever mobile programs arrive and
when client-specific and host-specific resource usage con-
straints change.

3.2. Application of algorithms

The scheduling scheme operates on the scheduling graph
to allocate CPU to mobile programs. An important aspect
of a scheduling scheme is how conflicts between the mobile
program and host specific resource usage constraints are re-
solved. A scheduling scheme must include a set of poli-
cies, called algorithm composition policies, that resolves
any conflicts. Our scheduling scheme implements a policy
that always resolves conflicts in favor of host constraints.
The policy is summarized as follows:

� The scheme first ensures that constraints related with
the security aspects of the host are satisfied. Thus, it
always applies the upper bound algorithm first to en-
force the upper bound and lifetime constraints even if
it means that other programs do not get their requested
CPU allocation or that some deadlines are missed.

� Next, the scheme enforces host-specified priority and
share constraints in order to implement host’s prefer-
ences.

� Finally, the scheme schedules non real-time jobs ac-
cording to their relative shares, whereas it schedules
real-time jobs so that their deadlines constraints are
met.

The scheme partitions the continuous time line into small
quantum time chunks (Figure 2). Within each quantum time
chunk, it schedules mobile programs from �
� according
to their reservations. The reservations fix the times when the

Free CPU for non-real time programsReserved for Real time programs

Figure 2. List of quantum time chunks with
reservations for real-time programs

scheme allocates CPU to real-time programs. This is shown
as shaded parts in a single quantum time chunk. The scheme
then allocates the remaining time to non real-time programs.
The scheduling of non real-time mobile programs starts
from the root node of ��
� graph (��
�����). The
scheme traverses from ��
����� to one of the leaves of
the graph.

Figure 3 describes the overall working of the schedule
function for one single quantum time chunk. In the next
sections we describe the individual algorithms for non real-
time and real time programs.

3.2.1. Scheduling of non real-time programs. The crux
of the algorithm for non real-time programs is the decision
associated with the children nodes of a node. If the chil-
dren nodes have priority based constraints, the algorithm
selects the child node with the highest priority. If the chil-
dren nodes have share based constraints, the algorithm se-
lects a child node on the basis of the share allocations of the
children nodes.

The algorithm to allocate CPU on the basis of share
based constraints extends the ideas in the SMART schedul-
ing algorithm [17] to a hierarchy. SMART defines two num-
bers for each application – a virtual time (VT) and a virtual
finish time (VFT). The notion of �
 and � �
 was orig-
inally developed in fair queuing algorithms for congestion
control in network protocols [13] and has been used in CPU
scheduling in SMART and Stride scheduling [25].

We extend the notion of virtual time to define three en-
tities – an upper virtual time (��
), a virtual finish time
(� �
), and a lower virtual time (��
). First, we present
the intuition behind virtual time and virtual finish time and
give their formal definitions as they are used in the SMART
system. We then define ��
 , � �
 and ��
 .

In the SMART system applications are partitioned into
different priority queues. Applications within each priority
queue have shares. The system associates a �
 with each
application and priority queue.

� �
 of priority queue � : Initially:

�
� ��� � � (1)

At a later time, if an application within � was initiated
for execution at time (�) and is currently (�) executing:

�
� ��� � �
� ��� �
�
 ��

��������

�
(2)

where � is an application in � and � represent �’s
shares.

� �
 of application: When an application � joins the
priority queue � for the first time at time �:

�
��� � �
� ��� (3)

At a later time, if � was initiated for execution at time
(�) and is currently (�) executing:

�
��� � �
��� �
�
 �

�
(4)

where � represent �’s shares.

The virtual time of an application measures the degree
to which the application has received its proportional share
of CPU on the basis of its share allocation. The difference
between �
��� and �
� ��� gives a measure of whether
� has received its share-based allocation. If �
��� is less
then �
� ���, � has received less than its share and vice-
versa. The virtual time for an application advances at a rate
inversely proportional to the number of shares it holds. If
an application has a large number of shares, its virtual time
will increase at a smaller rate and, therefore, the application
will be scheduled more often to make its virtual time same
as that of the queue.

The virtual finish time of an application refers to its vir-
tual time if the application had been selected for the cur-
rently executing time quantum.

� � �
 of application: When application � joins queue
� at time � :

� �
��� � �
� ��� �
�

�
(5)

where � is the time quantum. Later, when � has
been scheduled for some time and now is going to be
stopped (�):

� �
��� � � �
��� �
�

�
(6)

where � is the time when � �
 was last changed.

for (;;) �
t = next time quantum();
while (in current quantum time chunk) �

if (time to schedule a real-time mobile program) �
Check for upper bound and lifetime constraints;
schedule the mobile program;
update lifetime and upper bound constraints;

�
else �

//schedule from the remaining (non real-time) hierarchy
currentnode=Root of the non real-time programs;
while (currentnode is not a leaf node) �

Check for upper bound and lifetime constraints;
if (constraints of childnodes based on priority) �

currentnode = select childnode with earliest priority;
�
if (constraints of childnodes based on shares) �

currentnode = select childnode on the basis of shares;
�

�
schedule the leaf node;
update lifetime and upper bound constraints;

�
�

�

Figure 3. The scheduling scheme

A property of virtual finish time is that it does not change
while the application is executing. It changes only when
the task is rescheduled. The scheduling algorithm selects
the application with the smallest virtual finish time from the
highest priority queue for scheduling.

To extend the idea of virtual time to a hierarchy, we
define three quantities: upper virtual time (��
), virtual
finish time (� �
) and lower virtual time (��
) for each
node in the hierarchy. The reason we require ��
 and
��
 is that in ��
�, each internal node is both a child
node and a parent node. ��
 of the internal node is com-
pared with the ��
 of the parent node to select the child
node that should be scheduled.

Assume that the algorithm has reached a particular inter-
nal node � and the children nodes of � have share based
constraints associated with them (Figure 1). Let the parent
of � be ��, and let � own � shares under ��. Let ���	
�

be the set of children nodes of �. Also, let each � 	 in the
set ���	
� own shares �	.

� ��
 : When � joins the hierarchy for the first time at
time �:

��
��� � ��
�
��� (7)

Later, if a mobile program from the subtree within �
was initiated for execution at time � and is currently

(�) executing:

��
��� � ��
��� �
�
 �

�
(8)

� ��
 : The lower virtual time at � selects one of �’s
children. Initially, when � joins the hierarchy,

��
��� � � (9)

Later, if a mobile program from the subtree within �
was initiated for execution at time � and is currently
(�) executing,

��
��� � ��
��� �
�
 ��

�����	

��
(10)

The ��
 of a node measures the degree to which the
node has received its proportional share of CPU from the
parent node. The difference between ��
 of a node and
��
 of the parent node gives a measure of whether the
node has received its share-based allocation. If the node’s
��
 is less then the parent node’s ��
 , the node has re-
ceived less than its share and vice-versa. ��
 advances
at a rate inversely proportional to the number of shares the
node holds. If a node has a large number of shares, its ��

will increase at a smaller rate, and therefore it will be se-
lected more often to make its ��
 same as ��
 of the
parent node.

The virtual finish time of a node refers to its ��
 , had
the node been selected for the current quantum for execu-
tion.

� � �
 : The � �
 of a node � is its ��
 had � been
selected for the current quantum. When � joins the
hierarchy for the first time at time �:

� �
��� � ��
��� �
�

�
(11)

where � is the quantum size. Later, when a mobile
program from within � was initiated for execution at
time � and now (�) some other program is going to be
scheduled:

� �
��� � � �
��� �
�

�
(12)

A property of the virtual finish time is that it does not
change while the application is executing. It changes only
when the task is rescheduled.

The algorithm selects the child node with the earliest vir-
tual finish time (� �
). To summarize: The scheduling of
non real-time programs starts at the root of the non real-
time programs (Figure 1). The algorithm starts at the root
and traverses the tree till it reaches a leaf, which represents
a mobile program. At an internal node �, the algorithm
examines the constraints associated with the children nodes
of �. If the children nodes have priority based constraints
associated with them, the algorithm selects the child node
with the highest priority. If children nodes have share based
constraints, the algorithm selects the child node with the
earliest � �
 . If the node selected is a mobile program, it is
scheduled for execution, otherwise the process is repeated.

3.2.2. Scheduling of real-time programs. Real-time mo-
bile programs are members of �
�. The scheduling of mo-
bile programs in �
� is based on the scheduling algorithm
in Rialto [12]. Rialto uses a precomputed scheduling graph
to implement continuously guaranteed CPU reservations
with application defined periods, and to guarantee time con-
straints. Applications make CPU reservations in the form
of “reserve X units of time out of every Y units”. Real-
time applications request CPU resources by specifying time
constraints of the form �S,E,T�. On the basis of the CPU
reservations, Rialto constructs a Rialto scheduling
graph. The nodes in the Rialto scheduling graph indicate
either reserved time periods for applications or free time
not reserved for any application. The time constraints for
threads are then satisfied from the reserved time periods and
from any free time that might be available.

Our real-time scheduling problem differs from the prob-
lem solved in Rialto in the following ways: First, we use
simpler real-time constraints. We don’t consider continuous
CPU reservations of the form “reserve X units”. Instead,
we define CPU reservations over discrete base periods, i.e.,
quantum time chunks. With this simplification, there is no
need to compute the Rialto scheduling graph. However,
the �
� algorithm is now more general, as CPU reserva-
tions can be carried out from any place in the base period
rather than from some fixed locations in the Rialto schedul-
ing graph. Further, our real-time scheduling algorithm must
satisfy additional constraints in the form of upper bounds.

Resource allocation for real-time programs is done on
the basis of a set of constraints of the form:

� �
�.upperbound = val1: An upper bound on
the time reserved for �
� within each quantum time
chunk. This prevents starvation of non real-time pro-
grams.

� group.�
�-bandwidth = val2: Groups can
reserve bandwidth within �
� so that deadline based
constraints for member mobile programs can be satis-
fied from the reserved bandwidth.

� mobileprogram.deadline = ��,	,
�: A
mobile program within a group can request that its time
constraints be satisfied by utilizing the bandwidth re-
served for its parent group. If there is no bandwidth re-
served for the parent group, the program will get only
unreserved �
� bandwidth to satisfy its constraints.

The scheduling algorithm allocates time within the quan-
tum time chunks to satisfy reservation requests. The use
of quantum time chunks is similar to the notion of slot
lists[18]. While the slot list method considers only real-
time applications, in our case the amount of CPU time avail-
able in each quantum time chunk is constrained by the upper
bound on �
�.

The real-time algorithm first reserves the bandwidth for
each group in each quantum time chunk. For each �S,E,T�
constraint, the scheduling algorithm makes reservations in
the quantum time chunks (Figure 2) that fall within times �
and 	. The algorithm reserves the computation time
 from
within the parent group’s reserved bandwidth, if any, and
any free unreserved �
� bandwidth that might be available
within the quantum chunk. It does so by creating reserva-
tion nodes in each quantum time chunk. The reservation
nodes specify the start time, the time reserved, and the mo-
bile program for which the time has been reserved.

When a new real-time program arrives, the algorithm
performs a feasibility check to determine if the deadline re-
quest can be met. The algorithm goes through the list of
quantum time chunks, reserving any available �
� time for
the request. If the program’s deadline cannot be met, any

120ms 160ms

A: 14ms

160ms 200ms 200ms 240ms

B: 5ms A: 5ms A: 3ms

After adding reservation A: <150ms,280ms,40ms>

After adding reservation B: <150ms,170ms,5ms>

120ms 160ms

A: 16ms

160ms 200ms 200ms 240ms 240ms 280ms

A: 16ms

A: 16msA: 10ms

Figure 4. List of quantum time chunks for two reservations

reservation made for the program is freed. In the process of
carrying out the feasibility checks, the algorithm performs a
rearrangement of any reservations already made for earlier
programs so that the deadline based constraints are added
in the Earliest Deadline First (EDF) [15] order. Using EDF
for adding new reservations increases the number of reser-
vations satisfied.

In Figure 4, we show how the algorithm makes reserva-
tions for two requests: reservation � (�150,280,40�) and
reservation � (�150,170,5�) in that order. We assume that
the size of a quantum time chunk is ���� and the host spec-
ifies an upper bound of ��	 (�
��) for �
�. Also, assume
that the entire CPU time (�
��) for �
� is available to the
mobile programs. When request � is made, the algorithm
greedily reserves any �
� time available to �. When re-
quest � arrives, the algorithm rearranges the reservation for
� so that the constraints of � can also be satisfied. This is
done because � has an earlier deadline. If there were no
rearrangement, � cannot be guaranteed since all �
� time
will already be used by �. Figure 5 describes the algorithm
for making a real time reservation.

3.2.3. Resource usage control. The upper bound subgraph
captures the upper bound and lifetime constraints on groups
and mobile programs. Each security node in the graph
maintains the usage information for the groups and pro-
grams that the node monitors. As the scheduling scheme
traverses the scheduling graph, it checks the security node
associated with a node before it applies any scheduling al-
gorithm to the node. If selecting a program from within that
node will cause an upper bound or a lifetime constraint to
be violated, the particular internal node is not selected. For
example, assume that the scheme decides to schedule a pro-
gram in the subtree under �� in Figure 1. Before it decides
between nodes � and ��, the scheme checks with the se-

curity nodes that control � and � � (��� for � and ���

for ��) to ensure that the two nodes do not violate any con-
straints. The scheme then employs the selection algorithm
as described earlier to select one of the two.

4. Implementation and performance analysis

To assess the behavior of the scheduling scheme, we first
implemented the scheme as part of a simulation engine and
conducted several experiments using the simulation engine
to analyze the performance behavior of the scheme. Once
we were satisfied with the scheme, we then implemented the
scheduling scheme within the Java virtual machine (JVM).
We analyzed its behavior within the JVM as well. In this
section, we first describe the two implementations. We then
present the performance behavior of the scheme on the two
implementations.

4.1. Implementation

The simulation engine: The simulation engine provides
an API for creating groups, specifying group memberships,
constraints and mapping the constraints to the groups. Af-
ter reading the various specifications, the simulation en-
gine builds a scheduling graph, creates virtual threads for
mobile programs, and simulates the scheduling of the vir-
tual threads. We simulate time by keeping a virtual timer.
Whenever a virtual thread is selected for scheduling, we
advance the virtual time by the scheduling quantum and
charge the quantum to the virtual thread. We also keep an
event list for time based events. The event list is consulted
every time before scheduling a thread. The list stores events
that may signify a change in some (time based) constraint
or the scheduling of a real time program.

Java virtual machine: We have modified the Java vir-

int reserve(S,E,T) �
//get the set of real time requests interfering with the current reservation,
and that have later deadlines than the current request.
I = set of interfering requests;
Remove reservations(I); // remove reservations for I
//see if current request can be satisfied
int result = Try adding(S,E,T);
if (result = true) �

//if previous requests can still be satisfied
int result = Try adding(I);
if(result = true)

return result;
else �

//not able to satisfy previous requests
//with the new one, revert to earlier situation
Remove reservations(S,E,T);
Try adding(I);
return false;

�
�
else �

// not able to satisfy new request, revert to earlier situation
Remove reservations(S,E,T);
Try adding(I);
return false;

�
�

int Try adding(S,E,T) � //add the new request <S,E,T>
t = get time quantum(S);
t’= get time quantum(E);
while (all T not reserved) �

Check for upper bound on RT G in current quantum time chunk;
if (upper bound on RT G not reached)

reserve any RT G time available;
if(all T not reserved) �

t = next time quantum();
if(t > t’) //unable to satisfy the current request

return false;
�

�
return true;

�

Figure 5. Algorithm for making real time reservations

tual machine (Solaris JDK version 1.1) to incorporate our
scheduling scheme. The modified JVM contains an API for
specifying groups, subgroups, and various resource usage
constraints. In addition, it includes a thread API for manag-
ing and scheduling threads. We have integrated the notion
of groups in our scheduling scheme with that of Thread-
Groups in the JVM. The current implementation does not
include support for scheduling real-time programs since the
JVM currently does not have support for real time pro-
grams.

We implement the scheme in the JVM by separating
user threads, which represent mobile programs, from sys-
tem threads, such as the garbage collector. Our implemen-
tation scheme fully manages the scheduling and execution
of user threads through a scheduling graph. For instance, if
the state of a user thread changes from runnable to sus-
pended and vice-versa, we use our thread API to make the
thread runnable or blocked.

4.2. Performance analysis

We conducted several experiments on the simulation en-
gine and the JVM. The goals of these experiments were
to examine the effectiveness of the scheme in (i) satisfy-
ing both real-time and non real-time constraints; (ii) enforc-
ing upper bound and lifetime constraints; and (iii) satisfy-
ing constraints that change dynamically. We describe the
experiments and the results below. In all the experiments,
the time quantum for a program is ���.

4.3. General scheduling behavior

The first experiment demonstrates how the scheme sched-
ules groups of mobile programs that are constrained by
shares, priorities and upper bounds. Further, it shows how
the upper bound constraints interact with shares and prior-
ity constraints. We performed this experiment on the modi-
fied JVM. In Figure 6(a), we show the hierarchy constructed
from the client and host resource usage constraints. In Fig-
ure 6(b), we show the relative CPU allocations of groups
��, �� and ��. We also show the relative CPU allocations
of mobile programs ���, ����, and ����.

Between times ��� ���, ��, �� and �� get ��	,
�	
and ��	 of the CPU respectively which matches their share
allocations. At time ���, �� reaches its upper bound. This
results in relative allocation for �� and �� to increase to

	 and ��	 respectively that corresponds to the share ra-
tio of
� � ��. When the upper bound of �� is reached, ��

is the only group and it gets all the CPU resources till its
upper bound is achieved as well.

Within ��, the relative allocations of mobile programs
��� and ���� are ��	 and �	 respectively, accord-
ingly to their share allocations. ���� is not scheduled in

the beginning because it belongs to a lower priority group.
At time ���, the upper bound for ��� is achieved and then
mobile programs from ��� are scheduled till the upper
bound for �� is reached.

The scheme, thus, effectively implements relative allo-
cations of resources within hierarchies of groups. Further,
it enforces upper bounds constraints as well. Note that
changes in CPU allocation to ���, ���� and ���� (pro-
grams in ��) does not affect the allocation to �� or ��.
This highlights the modularity of the scheme.

4.4. Adaptivity

In the second set of experiments (conducted on the
JVM), we show that the scheme dynamically adapts to
changes in resource constraints. We use the scheduling
graph of Figure 6(a) for the experiments. The share and the
priority constraints are as specified in the graph. We remove
the upper bound constraints for these experiments. The first
experiment, depicted in Figure 7(a), demonstrates the al-
location of CPU to the programs when the resource usage
constraints depend on the number of mobile programs. The
share constraint for �� (��) is as follows: if number of mo-
bile programs is less than �, then �� is allocated �� shares
else it is allocated ��� shares. At time ���, a new mobile
program is added to ��, resulting in a change in relative al-
location. At time ����, one of the programs of �� finishes
execution, and the relative allocations go back to their ini-
tial values. Later, when all threads of �� finish execution,
the relative allocations for the other groups increase.

The second experiment (Figure 7(b)) demonstrates the
allocation of CPU when constraints are time dependent.
The following are the constraint values for the groups:

��: ��;
��: ��;
��: If ���� 	 ���� ���� then ��

else if ���� 	 ������� then ���.

At time ���, relative allocation for groups change ac-
cording to the specifications. At time ���, �� finishes
execution and the relative allocations for other groups in-
crease.

4.5. Lifetime constraints

This experiment (conducted using the simulation engine)
demonstrates how the scheme enforces lifetime constraints.
Figure 8 shows the scheduling graph. ��� has lifetime
constraint of 2 migrations, and a total lifetime usage of ���.
��� also has upper bound of ��. At time ���, ��� leaves
the host site. It migrates back at time ���. It again leaves
at time ��� and migrates back at time ���. It finally leaves
at time ��� and is not allowed to execute when it migrates

��� ���� ����

���
��� ������

Root

��=2

��=30 ��=60 �	=10

�
=1

�	

��=20���=80 ���=100

��: Share:30, Upperbound:10s
��: Share:60, Upperbound:30s
�	: Share:10, Upperbound:20s
��
: Priority:1, Upperbound:7s

���: Share:20
���: Priority:2

����: Share:80
����: Share:100

��� � �� ��� � ������ � ��� ��� � ���

�� ��

��� ���

(a) The scheduling graph

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70

R
el

at
iv

e
al

lo
ca

tio
n

of
 g

ro
up

s

Time(sec)

Group 0
Group 1
Group 2

MP 9
MP 10
MP 11

(b) Relative allocation of CPU for groups and mobile programs

Figure 6. General scheduling behavior of the scheme

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140 160 180 200

R
el

at
iv

e
al

lo
ca

tio
n

fo
r

G
ro

up
s

Time (sec)

Group 0
Group 1
Group 2

(a) Constraints as a function of number of mobile programs

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300 350

R
el

at
iv

e
al

lo
ca

tio
n

fo
r

G
ro

up
s

Time (sec)

group 0
group 1
group 2

(b) Constraints as a function of time

Figure 7. Dynamic nature of the scheme

��
 ��� ��� ��� ���

��: Share:60, Upperbound:40s
��: Share:10
�	: Share:30
��
: Share:20
���: Share:50, Upperbound:3s

���: Share:30

Root

�	

��=60 ��=10 �	=30

�
=20 ��=50��=30

��� � ��� �	� � �
��������� ���

Lifetimeconstraint: 2 migrations, 10s

����

��� � ��

Figure 8. The scheduling graph for lifetime
constraints

back for the third time. Figure 9(a) shows the relative al-
locations of mobile programs within � ��!�. The relative
allocations for ��� and ��� go up when ��� leaves. Al-
location to any of the programs within the group stops when
the group’s upper bound is reached. Figure 9(b) shows the
actual allocation for ���. The execution of ��� stops
when its upper bound is reached. Then when it migrates
back, it again gets allocated till its upper bound is reached.
After the third time, the mobile program is not allocated
anymore since its lifetime constraint of 2 migrations has
been achieved.

4.6. Real-time programs

In the third set of experiments, we test the scheme’s ef-
fectiveness in enforcing deadline based constraints for real-
time programs. We conducted the experiments within the
simulation engine.

For the first experiment (Figure 10(a)) we simulate the
execution of an application that displays real time video
streams from the local storage. The video input stream con-
tains frames in JPEG compressed format at 15 frames/sec.
We assume that the estimated execution time per frame to
be about 30ms [17]. The application makes reservation re-
quests for each frame within a 100ms period. If the reserva-
tion is granted then the application displays the frame; oth-
erwise it skips the frame. The graph (Figure 10(a)) shows
how the upper bounds and reserved bandwidth affect real
time applications. The individual plots in the figure show
the number of JPEG frames rendered per second as a func-
tion of the reserved bandwidth for the application. The
different plots correspond to the upper bound set on the
�
� group in each quantum time chunk. As the amount
of reserved bandwidth decreases, the number of frames ren-
dered/second also decreases.

The second experiment (Figure 10(b)) demonstrates how
the scheduling of real-time programs takes place in the pres-
ence of non-real time programs. There are two non-real
time groups: � ��!� and � ��!� have shares �� and ��,
respectively. There are three programs with real-time reser-
vations:

MP6: �1.1s,1.15s,10ms�
MP7: �1.12s,1.5s,70ms�
MP8: �1.15s,1.18s,5ms�

The host specifies an upper bound of ��	 (�
��) on the
�
� group for each quantum time chunk of ����. The plot
shows that the real-time programs are allocated according to
their reservations. At the same time non-real time programs
are allocated according to their shares. Also, since there is
an upper bound on �
� group, real-time programs cannot
starve the non-real time programs, even though real time
programs are scheduled for more than ��� (the default time
quantum) at a given time.

5. Related work

The subject of resource scheduling in general and CPU
scheduling in particular has been widely studied. [6, 2]
present a taxonomy of the different CPU scheduling al-
gorithms. The scheduling techniques range from sim-
ple algorithms such as first come first served and pri-
ority queues [23] to more general, flexible and modu-
lar schemes [11, 9, 10, 24]. We compare our schedul-
ing scheme and the algorithms with only those approaches
which we believe are closest to our approach.

5.1 Scheduling schemes

Several scheduling schemes [11, 9, 10] have proposed
providing modular control by statically separating schedul-
ing policies for different classes of applications. The poli-
cies are combined using priorities or proportional sharing.
The scheduling scheme in [9] allows threads in the hierar-
chy to define their own scheduling policies within the sub-
tree under the thread. This results in a very flexible and de-
centralized scheduling mechanism where different entities
contribute to the overall scheduling scheme. The schedul-
ing scheme described in this paper is a centralized one as it
enables a host to monitor and control external mobile pro-
grams more effectively. Further, the above schemes rely on
a single scheduler servicing both real-time and conventional
applications. This results in a static scheduling hierarchy
that is primarily based on different classes of applications.
Our scheme, on the other hand, is adaptive, since it allows
the scheduling graph to change dynamically.

Many commercial systems [23] provide fixed priority
scheduling for real-time applications to combine scheduling

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70

R
el

at
iv

e
al

lo
ca

tio
n

of
 m

ob
ile

 p
ro

gr
am

s

Time (sec)

MP 3
MP 4
MP 5

(a) Relative allocation of mobile programs

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 10 20 30 40 50 60
A

ct
ua

l a
llo

ca
tio

n
fo

r
M

P
 4

 (
m

se
c)

Time (sec)

MP 4

(b) Actual allocation for mobile program 4

Figure 9. Results for lifetime constraints

0

2

4

6

8

10

12

14

16

30405060708090100

N
o.

 o
f f

ra
m

es
 r

en
de

re
d

pe
r

se
co

nd

BW reserved for the group from within RT_G (percent of real time allocation)

UB: 24ms/40ms
UB: 20ms/40ms
UB: 16ms/40ms
UB: 12ms/40ms

(a) No. of frames rendered/sec as a function of bandwidth reser-
vation

��
��
��
��

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

����

��
��
��
��

��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

��
��
��
��

0

5

10

15

20

1.05 1.1 1.15 1.2 1.25 1.3 1.35

Time (in sec)

mp 6

grp 0

mp 8

mp 7

grp 1

Sc
he

du
lin

g
qu

an
tu

m
(i

n
m

se
c)

(b) Scheduling for a combination of real time and non real-time programs

Figure 10. Experiments for real time constraints

of real-time applications with conventional tasks. The prob-
lem with these schemes is that they starve the non real-time
applications while not providing any guarantees to the real-
time tasks. Other systems provide timely execution of real-
time tasks on the basis of hierarchical partitioning [9, 10].
However, these schemes are not based on deadlines and do
not provide real-time guarantees. Some schemes [17] have
implemented deadline based schemes, but they do not pro-
vide any guarantees or resource reservations.

In our scheme, the non real-time scheduling algorithm
extends the scheduling algorithm used in SMART [17].
We enforce share and priority based constraints over a hi-
erarchical scheduling graph. Real-time scheduling in our
scheme is based on Rialto[12] which provides for deadline
based resource reservations and guarantees. Our schemes
extends the Rialto scheme with upper bounds on the CPU
time available to real-time applications.

The notion of upper bound constraints has been studied
in several forms. Many version of the Unix operating sys-
tem provide system calls (e.g., setrlimit) for specifying
limits on resource consumption. VINO [19], an extensible
operating system, provides similar control over allocation of
resources. The scheme in our approach supports an adap-
tive and fine-grained control more suited for the mobile pro-
gramming environment.

5.2 Mobile programming systems

CPU resource control schemes have been proposed for
mobile programs [22, 4, 5]. These systems propose solu-
tions for effective utilizations of resources by mobile pro-
grams. In these systems, client and server resource usage
constraints are not defined directly in terms of lower bound,
upper bound, shares etc. Instead, allocation of resources is
based on an economic model. In these models, hosts set
prices on consumption of resources, and mobile programs
use some form of currency to buy the usage of resources.
A host, thus, allocates resources to a mobile program based
on the program’s ability to buy these resources.

While such schemes can be used to enforce lifetime con-
straints, a mobile program can cause denial of service at-
tacks if it wealthy. More importantly, since the cost of re-
sources is set uniformly for all mobile programs, it is diffi-
cult to define policies in which a host can control allocation
of resources on the basis of its preferences or trust relation-
ships. Our approach differs in both the mechanisms used
for specifying and enforcing policies. We believe that the
economic model can be easily modeled in terms of upper
bounds lower bound, shares and priority constraints.

Jres[8] is a scheme for controlling allocation of different
kinds of resources (CPU, memory etc) within the Java
runtime system. Jres uses binary editing to enforce simple
upper bound constraints on Java programs. Our scheme

differs from Jres model in that our scheme not only enforces
upper bound constraints, but also performs CPU scheduling
based on other constraints. We have not used binary editing
but implemented the scheme by changing the scheduler
within the JVM.

6. Summary

In this paper, we have presented a CPU scheduling
scheme that addresses the security and quality of service
requirements of a host. The scheme presents an environ-
ment for specifying resource usage constraints. Mobile
programs specify shares, priority and deadline constraints.
Hosts specify shares, priority, upper bound and lifetime
constraints. The scheme constructs a scheduling hierarchy
to apply a set of algorithms that enforce the various con-
straints. The non-real time algorithm enforces share and
priority based constraints. The real time algorithm enforces
deadline constraints. The upper bounds algorithm enforces
security constraints specified by the host. Any conflicts be-
tween the client and server constraints are resolved by our
algorithm composition policy that always favors the server
constraints.

We plan to extend our current work in several directions.
The first is to extend the scheme so that it can be applied to
user-defined resources. We also intend to make the scheme
extensible so that arbitrary resource usage constraints, their
scheduling algorithms, and algorithm composition policies
can be composed on the fly.

References

[1] K. Arnold and J. Gosling. The Java Programming Lan-
guage. Addison-Wesley, 1996.

[2] K. M. Baumgartner and B. W. Wah. Computer Schedul-
ing Algorithms: Past, Present, and Future. Information Sci-
ences, 57-58:319-345, 1991.

[3] T. Berners-Lee, R. Cailliau, A. Luotonen, H. F. Nielsen, and
A. Secret. The World-Wide Web. CACM, 37(8):76–82, Au-
gust 1994.

[4] J. Bredin, D. Kotz, and D. Rus. Market-Based Resource
Control for Mobile Agents. In AGENTS ’98, Proceedings of
the second international conference on Autonomous agents,
pages 197–204, May 1998.

[5] J. Bredin, D. Kotz, and D. Rus. Economic markets as a
means of open mobile-agent systems. In Proceedings of
the Workshop ”Mobile Agents in the Context of Competi-
tion and Cooperation (MAC3) at Autonomous Agents ’99”,
May 1999.

[6] T. Casevant and J. Kuhl. A Taxonomy of Scheduling in
General-Purpose Distributed Computing Systems. IEEE
Transactions of Software Engineering, 14:141-154, 1988.

[7] D. Chess, C. Harrison, and A. Kreshenbaum. Mobile
Agents: Are They a Good Idea? In Second International
Workshop on Mobile Object Systems: Towards the Pro-
grammable Internet., pages 25–47. Springer-Verlag, 1996.

[8] G. Czajkowski and T. von Eicken. Jres: a resource account-
ing interface for java. In Conference on Object-Oriented
Programming, Systems, Languages and Applications (OOP-
SLA’98), 1998.

[9] B. Ford and S. Susarala. CPU Inheritance Scheduling. In
Proceedings of the USENIX 2nd Symposium on Operating
Systems Design and Implementation, Seattle, Washington,
Oct. 1996.

[10] P. Goyal, X. Guo, and H. M. Vin. A Hierarchical CPU
Scheduler for Multimedia Operating Systems. In Proceed-
ings of the USENIX 2nd Symposium on Operating Sys-
tems Design and Implementation, Seattle, Washington, Oct.
1996.

[11] G. J. Henry. Fair Share Scheduler. AT&T Bell Laboratories
Tech. Journal, Oct. 1984.

[12] M. B. Jones, D. Rosu, and M.-C. Rosu. CPU Reservations
and Time Constraints: Efficient, Predictable Scheduling of
Independent Activities. 16th ACM Symposium on Operating
Systems Principles, Oct. 1997. St. Malo, France.

[13] S. Keshav. Congestion Control in Computer Networks. Phd
thesis, U. C. Berkeley, 1991.

[14] T. Lindholm and F. Yellin. The Java Virtual Machine Speci-
fication. Addison-Wesley, Sept. 1996.

[15] C. L. Liu and J. W. Layland. Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment. Jour-
nal of the ACM, 20(1), Jan. 1973.

[16] J. Meyer and T. Downing. Java Virtual Machine. O’Reilly,
1997.

[17] J. Nieh and M. Lam. The Design, Implementation and Eval-
uation of SMART: A Scheduler for Multimedia Applica-
tions. 16th ACM Symposium on Operating Systems Prin-
ciples, Oct. 1997.

[18] K. Schwan and H. Zhou. Dynamic Scheduling of Hard Real-
Time Tasks and Real-Time threads. IEEE Transactions on
Software Engineering, 18(8):736–748, Aug. 1992.

[19] M. Seltzer, Y. Endo, C. Small, and K. Smith. Dealing with
Disaster: Surviving Misbehaved Kernel Extensions. In Pro-
ceedings of the 1996 Symposium on Operating System De-
sign and Implementation, 1996.

[20] J. Stamos and D. Gifford. Remote Evaluation. ACM
Transactions on Programming Languages and Systems,
12(4):537–565, October 1990.

[21] R. Thorn. Programming Languages for Mobile Code. ACM
Computing Surveys, 29(3), Sept. 1997.

[22] C. F. Tschudin. Open Resource Allocation for Mobile Code.
In First International Workshop on Mobile Agents, MA’97
Berlin. Springer-Verlag, Apr. 1997.

[23] U. Vahalia. UNIX Internals, The New Frontiers. Prentice
Hall.

[24] C. A. Waldspurger and W. E. Weihl. Lottery Scheduling:
Flexible Proportional Share Resource Management. In Pro-
ceedings of the USENIX 1st Symposium on Operating Sys-
tems Design and Implementation, pages 1–11, Monterey,
CA, Nov. 1994.

[25] C. A. Waldspurger and W. E. Weihl. Stride Scheduling:
Deterministic Proportional Share Resource Management.
Technical report, MIT Laboratory for Computer Science,
June 1995.

