
Secure Execution of Mobile Programs�y

Raju Pandey Brant Hashii Manoj Lal
Parallel and Distributed Computing Laboratory

Computer Science Department
University of California, Davis, CA 95616

fpandey, hashii, lal g@cs.ucdavis.edu

Abstract

There is increasing interest in computing models that
support extensibility of systems through code migration. Al-
though appealing both from the system design and extensi-
bility points of view, extensible systems are vulnerable to an
external program’s aberrant execution behaviors. In this
paper, we examine the problems of resource access control
and resource consumption. We propose solutions for these
problems and analyze their effectiveness.

1 Introduction

On today’s Internet, users routinely and often unknowingly
download and run programs, such as Java applets. Some
web servers permit users to upload foreign programs and
execute them. These practices already have the sanction of
widespread use, but their security implications have not yet
been systematically addressed. In the brief, dynamic history
of the Internet, this situation is not unusual. The implemen-
tation of new communication mechanisms and computing
paradigms has often preceded a rigorous analysis of the se-
curity issues they engender.

�This work is supported by the Defense Advanced Research Project A-
gency (DARPA) and Rome Laboratory, Air Force Materiel Command, US-
AF, under agreement number F30602-97-1-0221. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon. The views and conclu-
sions contained herein are those of the authors and should not be interpret-
ed as necessarily representing the official policies or endorsements, either
expressed or implied, of the Defense Advanced Research Project Agency
(DARPA), Rome Laboratory, or the U.S. Government.

yPortions reprinted, with permission, from (IEEE Internet Comput-
ing; volume 2, number 6, pages 35-45; Nov/Dec 1998.c
1998 IEEE),
from (13th Conference on Object-Oriented Programming. ECOOP’99;
June 1999; published in Lecture Notes in Computer Science number 1628,
pages 449-473 by Springer-Verlag) and from (Proceedings of the First In-
ternational Symposium on Agent Systems and Applications;c
Oct. 1999
IEEE)

In computing models that support program migration, a
host provides a set of services to anexternal programby
loading it and executing it within a local execution environ-
ment such as an operating system or a run time system. We
call such computing modelsextensible computing models.
Two examples are extensible operating systems and mobile
programming systems.

Extensible operating systems allow the collocation of ex-
ternal programs by loading them directly into the kernel’s
address space. Thus, the external program shares its ad-
dress space with the kernel and all other loaded external
programs. SPIN [2] is an example of an extensible oper-
ating system that lets users download user-level extensions
into the kernel.

Mobile programming systems also support migration by
letting users upload programs to a remote host. Further, ex-
ternal programs can stop in mid-execution and then migrate
to another host while retaining their state and data.

In addition, Web browsers such as Netscape support ex-
tensibility by letting applets be downloaded and executed
within the browser. All of these systems provide an exe-
cution environment that loads externally defined user pro-
grams and executes them within its local name space. We
refer to these execution environments as runtime systems.

The extensible computing model is appealing, first, be-
cause it lets operating system kernels implement only basic,
core functionality, which can then be extended through ex-
ternal programs. This facilitates customization and efficient
implementation of specific services and policies, such as ap-
plication specific memory management or caching policies.

Second, external programs are sometimes far more ef-
ficient at utilizing network bandwidth than traditional pro-
gramming paradigms, such as remote procedure call (RPC).
For example, if the external program encodes an application
that must filter huge amounts of data, it can migrate to the
host with the data, execute there, and then return with its
results to the originating host. In this case, the network load
incurred by migrating the external program is insignificant

1

compared with the cost of migrating data and processing it
locally.

Although appealing both from system design and ex-
tensibility points of view, runtime systems are extremely
vulnerable to misbehaving external programs. Since ex-
ternal programs run within the same name space as the
runtime system, many of the traditional protection mecha-
nisms, such as address space containment, no longer apply.
As a result, an external program can maliciously disrupt the
execution behavior of extensible systems by interfering with
the runtime system’s execution or with the execution of oth-
er programs within the name space, by using unauthorized
resources, by over-using resources. It might also access un-
authorized resources or use more than its fair share of re-
sources, denying them to other programs.

In this paper, we focus on two problems: resource ac-
cess control and resource consumption control. Note that
our focus is protecting a runtime system against external
programs. We do not address the problem of protecting
the communication medium [14] or protecting an external
program from runtime systems. Furthermore, we do not
address the problem of correctly identifying the source of
a mobile program (authentication). The rest of this paper
is organized as follows: In Section 2, we describe the two
security problems in detail. In Section 3, we present our
solution for resource access control. We then describe our
approach to resource consumption control in Section 4. We
provide a brief summary in Section 5.

2 Security Problems

To help classify security issues, we distinguish two types
of resources that a runtime system provides to external pro-
grams:

� System resources are those implicitly allocated to ex-
ternal programs, such as memory and CPU.

� Conceptual resources are those explicitly defined and
managed by a host. They have well-defined interfaces
that external programs use to access resources and re-
quest services. For example, a host might provide an
interface to a database repository.

This distinction highlights fundamental differences in
the mechanisms used to control resource access:

� Because system resources are implicitly allocated and
managed by runtime systems, the mechanisms for ac-
cess control are usually implemented within the run-
time system. They also depend on the resource mod-
el that runtime systems create. For example, CPU re-
source access control is traditionally implemented in
runtime systems through CPU scheduling algorithms.

� Because conceptual resources are accessed by explicit
calls from external programs, access control is gener-
ally based on trapping these calls in software. For ex-
ample, in the Java runtime system (JRTS) [5] calls to
protected resources are trapped when these resources
call a reference monitor, which the host uses to track
and control accesses.

2.1 Resource-centric Security Problems

Security problems result out of conflicts between how
a host wants external programs to access its resources and
how the external programs access them. There are two
kinds of resource access constraints:

� Access controlrefers to restricting a program’s access
to resources. We focus on limiting access to conceptu-
al resources with explicit interfaces.

� Consumption controlrefers to restricting how much of
a given resource a program can consume.

Our primary focus here is on those aspects of resource
access and consumption control that are specific to the ex-
tensible computing model.

2.2 Resource Access Control

Access control prevents an external program from using
unauthorized resources. Because external programs execute
within the runtime system’s name space, they can directly
access any resource by naming it. Naming involves getting
a resource handle and using it to invoke operations on the re-
source. An external program can use the handle to read sen-
sitive files and send the information to remote hosts by ac-
cessing network resources. It can also disrupt the operations
of a computer system by accessing local resources in an un-
intended manner. For example, the “Ghost of Zealand” Java
applet misuses the ability to write to the screen: It turns ar-
eas of the desktop white, making the machine practically
useless until it is rebooted.1

Once downloaded on a machine, external programs can
read private files from local disks or copy proprietary infor-
mation by accessing databases. Indeed, Hamburg’s Chaos
Computer Club demonstrated on German television how to
use ActiveX, Microsoft’s external programming system, to
steal funds. In this exploit, the victim uses Internet Explorer
to visit a Web page that downloads an ActiveX control. The
control checks to see if Quicken, a financial management
software, is installed. If it is, the control adds a monetary
transfer order to Quicken’s batch of transfer orders. When

1For full details, seehttp://www.finjan.com/applet alert.cfm or
http://www.internetworld.com/print/1998/05/11/webdev/19980511-
hostile.html

2

the victim next pays the bills, the additional transfer order
is performed. All of this goes unnoticed by the victim.2

Although the resource access control problem has been
studied within the context of traditional systems, the prob-
lems are different for extensible systems [6] in several ways.

First, in extensible systems, authorization is more com-
plex. In traditional operating systems, programs run on be-
half of principals who are given certain rights. Once a pro-
gram attains these rights, they usually remain valid during
the program’s execution. In extensible systems, however,
an external program contains individual components that
might have different rights and permissions. Hence, the lev-
el of granularity at which access rights must be checked and
enforced is much finer – sometimes at the level of individual
objects and functions.

Second, security mechanisms should be independent of
the site’s resources. Most traditional operating systems
manage a fixed set of resources such as memory, CPU, files,
and the network. Extensible systems, however, must man-
age resources that can vary from site to site.

Finally, most traditional operating systems implement an
access control model that either allows or denies access.
Extensible systems can allow conditional resource access
based on runtime or program state [10]. For example, a
database vendor can specify that if there are more than 20
external programs in the system, each external program can
only access its database up to 10 times.

2.3 Resource Allocation Problem

When external programs use more than their share of
resources, they leave the system vulnerable to attack. For
example, external programs can stage denial-of-service at-
tacks by intentionally over-using CPU, thereby denying
CPU to other programs and the runtime system. Consump-
tion control is required not only for system resources, but
also for conceptual resources. For example, by opening
multiple socket connections and flooding the network with
data, an external program can deny network resources to
other programs.

The resource-consumption problem is similar to the
CPU-scheduling problem in that both require the runtime
system to control the resources allocated to requesting pro-
grams. The two problems differ in the type of control that
runtime systems need to exercise. The primary goal in
CPU scheduling algorithms is to allocate CPU so it pro-
vides some quality of service (QoS) to executing programs.
The QoS requirements can be specified as constraints, such
as optimal resource utilization, response time, lower bounds
on resource allocation, and deadline. In mobile systems, we

2For more on this, see http://www.iks-
jena.de/mitarb/lutz/security/activex.hip97.html or
http://www.iksjena.de/mitarb/lutz/security/activex.en.html

can classify resource usage constraints both according to
how mobile programs want to consume resources, and how
a host wants to facilitate as well as protect usage of these
resources. This results in two different views of resource
allocation – client (mobile program) view and server (host
system) view.
Notation: Let the term�t(P) denote the amount of CPU
allocated to a programP in a schedulable unit3 t.

2.3.1 Client View From a client program’s perspective,
requests for resources are driven by how the program de-
mands and uses resources. Programs want to use as much
CPU as possible so that they can perform their job quick-
ly. They specify such requirements in terms of several con-
straints such as the following:

� Lower bound: A lower bound constraint,l, associated
with a programP specifies that in case of contention,
P be allocated at leastl% of CPU in each schedulable
unit.

h8 t : �t(P) � (
l

100
)� ti

� Weight: A weight constraint,w, associated with a pro-
gramP specifies thatP be allocatedw% of CPU in
each schedulable unit.

h8 t : �t(P) = (
w

100
)� ti

� Share: Shares are closely related to weights in that rel-
ative amounts of shares owned by a program define the
program’s weight constraint. Thus, if programP hass
shares and the total number of shares in the system is
S, then

h8 t : �t(P) = (
(s
S
)

100
)� ti

� Deadline: Real-time constraints in the form of
<S,E,T> for a programP specify that between times
S andE, P must getT amount of CPU.

h

t�EX

t�S

�t(P) = T i

2.3.2 Server View From the server’s perspective, two
concerns govern the allocation of resources – meeting cli-
ent’s needs and tightly controlling allocation of resources.
Two factors unique to mobile environments accentuate the
latter concern. First, a level of distrust exists between a host

3We divide the time line into schedulable units and specify resource
usage constraints in terms of these schedulable units.

3

and mobile programs since mobile programs and hosts typ-
ically belong to different administrative domains. Mobile
programs can maliciously disrupt a host by using unautho-
rized resources, by over-using resources, and by denying
resources to other programs. Second, in distributed systems
such as the web [1], hosts may provide varying degree of
services to clients. A host may differentiate requests from
different clients and allocate resources to these requests in
accordance with the kinds of services the host wants to pro-
vide. For instance, a host may reserve 85% of its resources
to mobile programs that originate from the paying customer
sites and allocate the rest for other programs.

In mobile programming models [3, 13], the resource al-
location problem has an additional dimension: A mobile
program can circumvent resource control by migrating to
another host and then returning to its previous host for more
resources. Resource usage constraints, thus, apply not on-
ly to specific executions but to all executions of a program.
We refer to such constraints aslifetime constraints.

Thus, a host must differentiate and categorize mobile
programs if it intends to impose resource constraints on
them. In addition to the lower bound, shares and weight
constraints, a host may also specify the following con-
straints:

� Priority : A priority constraint specifies that, given a
set of programs to schedule, a host selects the program
with the highest priority.

� Upper bound: An upper bound constraint,u, asso-
ciated with a programP specifies that, within each
schedulable unit,P be allocated at mostu% of CPU.

h8 t : �t(P) � (u=100)� ti

A host can also specify upper bounds in absolute form.

� Life-time constraints: A lifetime constraint,l associ-
ated with a programP specifies thatP be allocated at
mostl units of CPU time over all executions ofP .

2.3.3 The Scheduling ProblemThe CPU resource con-
trol problem is, therefore, one of developing a scheduling
scheme that, given client and server resource usage con-
straints, constructs a schedule that enforces the constraints.

3 Access Control Model

Out access control model contains two parts: a resource
model for representing resources and an access constraint
specification language. We describe the two in detail below.

P

f

R

(a) Default method invocation semantic

B

P

f

R

(b) Security constraints on method invo-
cations

Figure 1. Method invocation semantics

3.1 Resource Model

A site provides many resources to a mobile program.
These resources include classes for utility libraries, access-
ing files, networks, and interfaces to other resources such as
a proprietary database. For instance, a site providing access
to a weather database exports a set of interfaces that speci-
fy how the database can be accessed. In our security model,
each Java class or method represents a resource and, thus, is
a unit of protection. Our access control mechanism does not
differentiate between system classes and user-defined class-
es, or between locally defined classes and classes down-
loaded from remote hosts. The model also allows the defini-
tion of class-subclass relationships among resources using
the Java’s inheritance model.

3.2 Access Constraint Specification Language

The access constraint specification language contains
two parts: a notation for constraining accesses to resources
and its inheritance model.

3.2.1 Access ConstraintsWe first describe the motiva-
tion behind our access control language. A Java program
uses a resource by invoking its methods. In Fig. 1(a), we
show that programP invokes a methodf to access resource
R. During an execution ofP , the control jumps tof , exe-
cutesf , and returns back toP upon termination. The Java
compiler implements a simple access semantics in which
there are no constraints on accesses toR throughf .

Our approach is to allow a host to make the access re-
lationship betweenP andR conditional by adding a con-
straint,B (see Fig. 1(b)). The access constraint is specified

4

separatelyfrom bothP andR and has the effect of impos-
ing the constraint thatP can invokef on R only if con-
dition B is true. A site, thus, restricts accesses to specific
resources by enumerating a set of access constraints, which
forms a site’s access control policy.

Below, we present the core aspects of the language. The
following EBNF shows how a site can specify access con-
straints:

Constraints ::= f AccessConstraint | EnableStatement g
AccessConstraint::= deny ’(’[Entity]Relationship Entity’)’

[when Condition]
EnableStatement ::= enable ’(’ Entity

[Relationship Entity] ’)’
Relationship ::= 7! | a
Entity ::= ClassIdentifier | MethodIdentifier

| GroupName
Condition ::= BooleanExpression
GroupStatement ::= define group GroupName

’ f’ Entity ’;’ f Entity g ’ g’

A site controls accesses to different resources (Java objects)
by defining a set ofAccessConstraints. We describe the
various terms in the grammar informally below:

� Entity: An entity denotes objects and method invoca-
tions of Java programs. AClassIdentifier, thus, iden-
tifies the set of objects to which a given access relation-
ship applies. Similarly, aMethodIdentifier denotes a
set of invocations of a method. In addition, an entity
can be a group of entities.

� Relationship: The composition mechanisms of a pro-
gramming language allow one to define various rela-
tionships (data composition through aggregation and
inheritance, and program composition through method
invocations) among the entities of a program. We are
primarily interested in the following two access rela-
tionships here:

1. Instantiate (a): A relationE a R exists if an
entityE creates an instance of classR.

2. Invoke (7!): A relationE 7! R exists if an
entityE invokes an entityR.

� Condition: The termCondition denotes a boolean ex-
pression that can be defined in terms of object states,
program state (global state), runtime system state, se-
curity state, and parameters of methods.

� Enable: In addition to access constraints, we support
an enable statement that allows a host to certain ac-
cesses, thereby overriding these constraints. This is
needed in cases when a host wants to override the de-
fault principles of least privileges. For example, as-
sume that a security policy specifies that an applet can-
not access the file system. The security infrastructure
implements a default policy of least privilege, which

B

B

B

R

(a) Global constraints

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���

R
B2

Bn

B1E1

E2

En

(b) Selective access constraints

Figure 2. Category of access constraints

ensures that the applet cannot access the file system
directly or indirectly by calling other methods that ac-
cess the file system. However, in many cases, this may
not be desirable [15]. For instance, suppose the applet
can write to the screen using the font files stored on
the disk. In such cases, we want to enable the display
manager to be able to access these files, regardless of
the calling program. Theenable statement allows
one to override the default policy. This is similar to
the enablePrivileged command of the JDK1.2
security model [5].

� Group: The current implementation defines a group
based on its name. However, this can be extended to
define an entity on the basis of its source, signature, or
behavior pattern.

3.2.2 SemanticsAn access constraint of the form

deny (E � R) when Condition

specifies that entityE cannot accessR through relation-
ship � if Condition is true. SinceE is optional, there are
two kinds of access constraints:global constraintsandse-
lective access constraints. Global constraints denote those
constraints that do not depend on the initiator of the access
relationship. As shown in Fig. 2(a), no program can access
R whenB is true. For example, a host may specify the
constraint that no Java code can access a set of proprietary
files.

5

Selective access constraints denote those constraints that
depend on the initiator of the access relationship. For in-
stance, as shown in Fig. 2(b), each entityEi’s access toR is
constrained by a separate and possibly differentBi. A site
can use selective access constraints to associate different se-
curity policies with different Java programs that come from
different sites.

3.2.3 Inheritance of Access Constraints We now
present an inheritance model that describes what the denial
of a resource means to its subclasses.

Assume that a site defines two resources,Rc andRs:

class Rc f
public void f();
public void g();
public void h();

g

class Rs extends Rc f
...

g

Rs is a subclass ofRc. Rs inherits methodsf, g, andh from
Rc. Assume that the site defines the following constraints
on the resources:

deny (E 7! Rc:f) when Bcf

deny (E 7! Rc:g) when Bcg

deny (E 7! Rs:f) when Bsf

deny (E 7! Rs:h) when Bsh

There are two components to the inheritance model:

� Inheritance of access constraints: A subclass in-
herits all access constraints from its superclasses.
Hence, the resulting access constraint on invocations
of g on an instance ofRs is defined by the following
expression:

deny (E 7! Rs:g) when Bcg

Access constraints are not inherited from subclasses to
superclasses. Hence, although the access constraint on
h in Rs isBsh, there are no access constraints onh in
Rc.

� Strengthening of access constraints: A subclass
cannot override its inherited constraints. Specification
of additional constraints in the subclass only strength-
en the constraints defined in its superclasses. Hence,
the resulting access constraint on invocations off on
an instance ofRs is:

deny (E 7! Rs:f) when Bcf _ Bsf

ei

migrate
Ac

Bytecode Editor

P 0

Ac: Access constraint
R: Resources
l: library
s: Generated code
ei: Generated instruction

P

s

Compiler
Access Constraint

Rl

lP

SiteS

Class Loader

Runtime System

Figure 3. Security policy enforcement of mo-
bile programs

In other words, methodRs:f cannot be invoked from
E if eitherBcf orBsf is true.

This model of inheritance ensures that a mobile program
cannot override access constraints on methods by defining
a subclass and by weakening the access constraints. Also,
the above inheritance model applies for access constraints
on a as well. That is, if a classRc cannot be instantiated,
none of its subclasses can be instantiated.

3.3 Access Constraint Enforcement

An enforcement of access constraints on a resource involves
placing interposition code between the resource access code
and resource definition code. The interposition code checks
if a specific resource access is allowed. It can be insert-
ed manuallyby site managers, generated by the compil-
er, or defined by the runtime systems or operating systems
through special system calls. For instance, in the Java run-
time system [4, 5], resource developers manually insert calls
to a reference monitor in the resources they want to protect.
The reference monitor consults access control policies to
check if a specific resource access is allowed.

We use an alternate approach for generating interposi-
tion code. In this approach, a set of tools generates the
interposition code and integrates them within mobile pro-
grams and resources before they are loaded in the JVM. In
this approach, there are no reference monitors. In essence,
the approach generates reference monitors on the fly and
integrates them within the relevant Java programs and re-
sources. The approach, thus, eliminates the need to manu-

6

ally include calls to reference monitors in resource defini-
tions.

In Fig. 3, we describe our implementation for enforcing
access control policies on Java programs. We show a Java
programP that migrates to a siteS. R denotes resources
that the site makes available to mobile programs; andl de-
notes local libraries linked intoP .

During class name resolution and dynamic linking, the
Java class loader [8] retrievesR and l and passes them to
a tool, called theaccess constraint compiler. The access
constraint compiler examinesP , R, andl to determine the
resource access relationships that must be constrained in or-
der to implement the access constraintAc. It then generates
interposition codes that implement the specific access con-
straints. It also generates a set of editing instructionsei for
the bytecode editor. The bytecode editor usesei to inte-
grates within P , R andl. The transformed programs and
resources are then loaded into the JVM and executed.

3.4 Code Generation and Binary Editing

We now describe the nature of the code that is generated
and its integration within mobile programs. Our code gen-
eration and editing involves modifying class definitions in
order to add runtime state to classes and to insert runtime
checks into methods.

An access constraint of the form

deny (E � R) when B

is implemented by generating the following code:

if (B)
then error(); // raise exception

else
access R

and patching it into classes and methods. The nature of
the editing depends on the nature of the access constraints.
Global constraints of the form

deny (� R) when B

specify constraints on accesses toR without any regard to
objects or methods that may accessR. The generated code
is, thus, integrated into the methods ofR. On the other
hand, selective access constraints of the form

deny (E � R) when B

imposes conditions on accesses toR from E. In this case,
Rmust determine if it had been called byE. We implement
this using stack inspection [15, 16], which we will discuss
in the following sections.

We also support addition of security states to specific Ja-
va classes in order to monitor site-specific behavior. This

mechanism allows a site to customize its security policies,
especially if the policies cannot be represented directly by
the policy language. Security state objects are added to a
class definition by using the statement:

add SecurityStateType SecurityStateObject
to R

The constraint compiler generates code for initializing these
objects.

3.5 Discussion

In this section, we analyze the proposed technique for its
suitability as an access constraint enforcement mechanism
and discuss its performance behavior.

3.5.1 Characteristics of the Approach In our approach,
a site specifies access constraints separately from mobile
programs, resources, and other class definitions. Further,
the access constraint enforcement mechanism is not part of
either the Java runtime system or the compiler. This impacts
how access control code is managed and enforced at a site:

� Both access constraints and resource definitions can be
modified independently. This makes it easy for a site
to specify different access constraints for different mo-
bile programs for the same resource. For instance, a
site may specify that mobile programP can accessR
under conditionBp whereas mobile programQ can ac-
cessR under conditionBq.

� The same set of access constraints can be applied to
different resources without requiring one to copy it
from one resource to another. For example, if a sin-
gle access constraintB applies to multiple resources,
it can be defined once and used for all resources.

� An important advantage of the separation is that our
approach can be used for enforcing security on re-
sources that were not designed with security in the first
place. In other words, the security component can be
added to a resource after it has been designed and im-
plemented. Thus, it frees a library or resource designer
from worrying about security concerns when design-
ing and implementing the library.

Despite these advantages, there are several limitations of
our approach.

3.5.2 Performance AnalysisIn this section, we describe
the performance behavior of the access constraint enforce-
ment mechanism. Specifically, we analyze the following:

7

� What are the time and space overheads associated with
our approach?

� How does our approach perform with respect to the
Java runtime system’s approach for enforcing access
control?

We performed our experiments on a 266 MHz Pentium II
running Red Hat Linux 5.0. The results show that both
the time and space overheads of the approach are moderate.
Further, the approach performs better than the Java runtime
system in certain cases.

Overhead Measurements:We measured both the time and
space costs of modifying resources.

There are four factors that affect the execution time as-
sociated with access constraint check code generation and
editing:

� the cost associated with reading a method

� the number of access constraints

� the types of constraints

� the number of occurrences of restricted methods in a
program

We do not consider the cost of reading class files in our
measurements since the run-time system must perform this
operation anyway.

In the first experiment, we looked at how the size of the
method being modified affects the cost of editing. In this ex-
periment, only a single method invocation must be wrapped.
The cost of editing here is minimally affected by the size of
the method. The cost varied between 0.08 and 0.16 sec-
onds for methods ranging from 0 to 3200 instructions. In
the second experiment, we looked at how the cost of editing
changes when the number of method calls that needs to be
wrapped changes. We found the cost to be proportional to
number of methods that are wrapped.

We have also calculated the increase in size caused by
adding code to class definitions. While the amount of code
that is added to a class is independent of the size of the class,
it depends on the number of method invocations that need
to be wrapped and the complexity of the boolean portion of
the constraint. For one wrapper, the minimum addition size
(for a true boolean constraint), is 56 bytes. For two simple
boolean expressions, it is about 206 bytes.

Performance Comparison:We now compare the perfor-
mance behavior of our approach with the runtime system
approach, as implemented in the JDK 1.1.3.

For this experiment we created a small program to test
the performance of implementing security checks around
one method invocation. Since the actual amount of work a

class SecState f
public SecState() fcount = 0; g
public int check()
f count++; return count; g

private int count;
g

(a) Security object

add SecState SecurityState to R
deny 7! R.f()V when

#1.SecurityState.check() > 1000000

(b) Control access constraints

Figure 4. The binary editing approach

particular site must perform depends on both the complex-
ity of the access control policy and the number of restrict-
ed method invocations in a program, implementing a single
policy statement once forms a good basis for comparison.
We based our comparisons on an access control policy lim-
iting the number of times a particular resource can be ac-
cessed. The complete code for our approach is shown in
Fig. 4. We implemented the same policy using Java’s se-
curity manager as shown in Fig. 5. The test program calls
the constrained method variable number of times. The ac-
cess policy is that the method cannot be called more than
1000000 times.

Figure 6 shows the execution times of our approach and
the Java’s runtime system approach. In our approach, there
is an initial overhead of about 0.08 seconds for code editing,
which does not occur in the Java runtime system. Howev-
er, after about 100000 method calls, our approach performs
better than the Java runtime system. This is because our
approach inlines the access control check code, whereas in
case of the Java runtime system approach, each access con-
straint check involves making two method calls: one to the
system, to get the security manager, and another to the se-
curity manager itself. We can reduce our cost even further
by pre-editing the methods if we know that only a single ac-
cess constraint will be applied to the method, as is the case
in the Java runtime system approach. Our approach, in this
case, will then always outperform the Java runtime system
approach.

In the second experiment, we ran the same program with
no policy implemented. As shown in Fig. 7, the Java run-
time system is always less efficient that our approach. This
is because in the Java runtime system approach, a method
must always call the runtime system to check if there is a se-

8

class newSecMan
extends SecurityManager f
public newSecMan() fcount = 0; g
public void checkf()

throws SecurityException f
count++;
if (count > 1000000)

throw new SecurityException();
g
int count;

g

(a) Security Manager

class R f
public void f() f

newSecMan security;
security =

System.getSecurityManager();
if (security != null)

security.checkf();
g

g

(b) Resource definition

Figure 5. The Java Runtime System-based ap-
proach

0

0.5

1

1.5

2

2.5

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

tim
e

in
 s

ec

number of function calls

binary editing
security manager

Figure 6. Comparison of execution times with
a policy

0

0.5

1

1.5

2

2.5

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

tim
e

in
 s

ec

number of function calls

binary editing
security manager

Figure 7. Comparison of execution times
without a policy

curity manager installed, incurring the overhead of this call.
Our approach does not incur any overhead since it does not
add any code to methods that do not need to be constrained.

4 Resource Consumption Control

In this section, we describe our approach to resource
consumption control. We have developed a runtime inter-
face and a specification language that clients and servers
use to specify resource usage constraints. We briefly de-
scribe them below.

We organize mobile programs into groups and sub-
groups. For instance, a groupucdavis.edu de-
notes all mobile programs that originate from this do-
main. This group may contain subdomains such as
cs.ucdavis.edu andece.ucdavis.edu . The no-
tion of groups and subgroups results in a hierarchical par-
titioning of mobile programs. Clients can define their own
groups and determine constraints for individual jobs within
the group. Hosts can specify resource constraints on groups,
subgroups, or individual mobile programs.

Mobile programs and hosts can specify the following
sets of constraints:

� Client constraints: Real-time constraints and shares.

� Host constraints: Shares, priority, absolute upper
bound, and lifetime constraints.

� Dynamic constraints: Both mobile programs and
hosts can change their constraints dynamically. The
constraints can be specified as functions of the state of
the system. Currently, we consider constraints that can
vary on only two state variables: the number of mobile
programs belonging to a group and the time of day.

9

S S0

S1 S2 P1 P2

Ap

Root

NRTGRoot

non real-time
real-time

RTG

A0A

A1 A2 A01 A02

NRTG

A0
1
, A0

2
2 A0child

UB1 LC1

A1,A2 2 Achild = childnodes ofA

Figure 8. The scheduling graph

We omit the description of the constraint specification lan-
guage here due to lack of space.

We now describe the overall approach for scheduling re-
sources to mobile programs.

� Construction of scheduling graph: The scheme par-
titions mobile programs into real-time and non real-
time programs. It captures the group-subgroup rela-
tionships along with the various constraints to con-
struct a scheduling graph.

� Application of algorithms: The scheme applies three
algorithms to the scheduling graph: (i) an algorithm
to enforce upper bound and lifetime constraints; (ii) an
algorithm to enforce share and priority constraints; and
(iii) an algorithm to enforce real-time deadline based
constraints.

� Monitoring of system state: Since the host can spec-
ify constraints as a function of state variables, the
scheduling scheme monitors the state of the system
and adapts to the changes in the resource constraints
by modifying the scheduling graph.

In the following sections, we describe the individual algo-
rithms and how they are composed to build the scheduling
scheme.

4.1 Construction of Scheduling Graph

The scheduling scheme first builds ascheduling graph
(Fig. 8) from resource usage constraints. The scheduling
graph is made of three subgraphs: (i) Real-time, (ii) Non
real-time, and (iii) upper-bound. The real-time subgraph is
a single node (a real-time guarantee group,RTG) contain-
ing all programs that specify deadline based constraints.

The non real-time subgraph,NRTG in Fig. 8, is a hier-
archical graph, where each node denotes a group and each
edge the group-subgroup relationship. Mobile programs are
at the leaves ofNRTG. The edges ofNRTG are annotated

with share or priority constraints. For instance, in Fig. 8, the
label on edge(Ap; A) specifies that groupA hasS shares.
Similarly, the label on(A0; A0

1
) specifies that mobile pro-

gramA0
1

has priorityP1. The amount of shares or priorities
allocated to a group node is relative to its parent group. For
instance, groupA1’s shareS1 of CPU resources are with re-
spect to the CPU resources allocated to its parent group,A.
This results in a modular allocation of CPU: Any changes
in the share allocations toA1 or A2 do not affect the CPU
allocations to programs that belong to different groups, for
instanceA0.

The upper bound subgraph represents the security con-
straints. Nodes in this subgraph denote specific upper bound
and lifetime constraints. Edges link these constraints to the
relevant groups and mobile programs. Upper bound and
lifetime constraints are general in that they can encapsulate
more than one node in the scheduling graph. Moreover, the
nodes encapsulated by a particular constraint need not be
at the same level. For instance, as shown in Fig. 8 the up-
per bound constraintUB1 applies to groupA and mobile
programA01. There is a need for such constraints so that
the host can control mobile programs belonging to different
levels in the hierarchy. For example, suppose a site wants
to impose an upper bound constraint that mobile programs
accessing a particular database be allocated at most 10% of
CPU. Such mobile programs may exist in different groups
and may span multiple subtree domains.

Hosts define the backbone of the scheduling graph – a
graph consisting of emptyRTG and possibly non-empty
NRTG. When a new client program arrives, the host can
create a new group node (Ap) for the client, specify con-
straints forAp, and addAp at an appropriate place in the
scheduling graph. The client program can create subgroups
underAp and define resource usage constraints for the sub-
graph underAp. Note that the scheduling graph is dynam-
ic; it changes whenever mobile programs arrive and when
client-specific and host-specific resource usage constraints
change.

4.2 Application of Algorithms

The scheduling scheme operates on the scheduling graph
to allocate CPU to mobile programs. An important aspect
of a scheduling scheme is how conflicts between the mobile
program and host specific resource usage constraints are re-
solved. A scheduling scheme must include a set of poli-
cies, calledalgorithm composition policies, that resolves
any conflicts. Our scheduling scheme implements a policy
that always resolves conflicts in favor of host constraints.
The policy is summarized as follows:

� The scheme first ensures that constraints related with
the security aspects of the host are satisfied. Thus, it

10

Free CPU for non-real time programsReserved for Real time programs

Figure 9. List of quantum time chunks with
reservations for real-time programs

always applies the upper bound algorithm first to en-
force the upper bound and lifetime constraints even if
it means that other programs do not get their requested
CPU allocation or that some deadlines are missed.

� Next, the scheme enforces host-specified priority and
share constraints in order to implement host’s prefer-
ences.

� Finally, the scheme schedules non real-time jobs ac-
cording to their relative shares, whereas it schedules
real-time jobs so that their deadlines constraints are
met.

The scheme partitions the continuous time line into small
quantum time chunks(Fig. 9). Within each quantum time
chunk, it schedules mobile programs fromRTG according
to their reservations. The reservations fix the times when the
scheme allocates CPU to real-time programs. This is shown
as shaded parts in a single quantum time chunk. The scheme
then allocates the remaining time to non real-time programs.
The scheduling of non real-time mobile programs starts
from the root node ofNRTG graph (NRTGRoot). The
scheme traverses fromNRTGRoot to one of the leaves of
the graph.

In the next sections we describe the individual algo-
rithms for non real-time and real time programs.

4.2.1 Scheduling of Non Real-time ProgramsThe crux
of the algorithm for non real-time programs is the decision
associated with the children nodes of a node. If the children
nodes have priority based constraints, the algorithm selects
the child node with the highest priority. If the children
nodes have share based constraints, the algorithm selects
a child node on the basis of the share allocations of the chil-
dren nodes.

The algorithm to allocate CPU on the basis of share
based constraints extends the ideas in the SMART schedul-
ing algorithm [11] to a hierarchy. We define three quanti-
ties: upper virtual time (UV T), virtual finish time (V FT)

and lower virtual time (LV T) for each node in the hier-
archy. The reason we requireUV T andLV T is that in
NRTG, each internal node is both a child node and a parent
node.UV T of the internal node is compared with theLV T
of the parent node to select the child node that should be
scheduled.

Assume that the algorithm has reached a particular inter-
nal nodeA and the children nodes ofA have share based
constraints associated with them (Fig. 8). Let the parent of
A beAp, and letA ownS shares underAp. LetAchild be
the set of children nodes ofA. Also, let eachAi in the set
Achild own sharesSi.

� UV T : WhenA joins the hierarchy for the first time at
time t:

UV TA(t) = LV TAp
(t) (1)

Later, if a mobile program from the subtree withinA
was initiated for execution at time� and is currently
(t) executing:

UV TA(t) = UV TA(�) +
t� �

S
(2)

� LV T : The lower virtual time atA selects one ofA’s
children. Initially, whenA joins the hierarchy,

LV TA(t) = 0 (3)

Later, if a mobile program from the subtree withinA
was initiated for execution at time� and is currently
(t) executing,

LV TA(t) = LV TA(�) +
t� �P

a2Achild

Sa
(4)

TheUV T of a node measures the degree to which the
node has received its proportional share of CPU from the
parent node. The difference betweenUV T of a node and
LV T of the parent node gives a measure of whether the
node has received its share-based allocation. If the node’s
UV T is less then the parent node’sLV T , the node has re-
ceived less than its share and vice-versa.UV T advances
at a rate inversely proportional to the number of shares the
node holds. If a node has a large number of shares, itsUV T
will increase at a smaller rate, and therefore it will be select-
ed more often to make itsUV T same asLV T of the parent
node.

The virtual finish time of a node refers to itsUV T , had
the node been selected for the current quantum for execu-
tion.

� V FT : TheV FT of a nodeA is itsUV T hadA been
selected for the current quantum. WhenA joins the
hierarchy for the first time at timet:

V FTA(t) = UV TA(t) +
Q

S
(5)

11

whereQ is the quantum size. Later, when a mobile
program from withinA was initiated for execution at
time � and now (t) some other program is going to be
scheduled:

V FTA(t) = V FTA(�) +
Q

S
(6)

A property of the virtual finish time is that it does not
change while the application is executing. It changes on-
ly when the task is rescheduled. The algorithm selects
the child node with the earliest virtual finish time (V FT).
To summarize: The scheduling of non real-time programs
starts at the root of the non real-time programs (Fig. 8). The
algorithm starts at the root and traverses the tree till it reach-
es a leaf, which represents a mobile program. At an internal
nodeA, the algorithm examines the constraints associated
with the children nodes ofA. If the children nodes have pri-
ority based constraints associated with them, the algorithm
selects the child node with the highest priority. If children
nodes have share based constraints, the algorithm selects the
child node with the earliestV FT . If the node selected is a
mobile program, it is scheduled for execution, otherwise the
process is repeated.

4.2.2 Scheduling of Real-time ProgramsReal-time mo-
bile programs are members ofRTG. The scheduling of mo-
bile programs inRTG is based on the scheduling algorithm
in Rialto [7]. Rialto uses aprecomputed scheduling graph
to implement continuously guaranteed CPU reservations
with application defined periods, and to guarantee time con-
straints. Applications makeCPU reservationsin the form
of “reserve X units of time out of every Y units”. Real-
time applications request CPU resources by specifyingtime
constraintsof the form<S,E,T>. On the basis of the CPU
reservations, Rialto constructs aRialto scheduling
graph . The nodes in the Rialto scheduling graph indicate
either reserved time periods for applications or free time
not reserved for any application. The time constraints for
threads are then satisfied from the reserved time periods and
from any free time that might be available.

Our real-time scheduling problem differs from the prob-
lem solved in Rialto in the following ways: First, we use
simpler real-time constraints. We don’t consider continuous
CPU reservationsof the form “reserve X units”. Instead,
we define CPU reservations over discrete base periods, i.e.,
quantum time chunks. With this simplification, there is no
need to compute theRialto scheduling graph. However,
theRTG algorithm is now more general, as CPU reserva-
tions can be carried out from any place in the base period
rather than from some fixed locations in the Rialto schedul-
ing graph. Further, our real-time scheduling algorithm must
satisfy additional constraints in the form of upper bounds.

Resource allocation for real-time programs is done on
the basis of a set of constraints of the form:

� RTG.upperbound = val1 : An upper bound on
the time reserved forRTG within each quantum time
chunk. This prevents starvation of non real-time pro-
grams.

� group. RTG-bandwidth = val2 : Groups can
reserve bandwidth withinRTG so that deadline based
constraints for member mobile programs can be satis-
fied from the reserved bandwidth.

� mobileprogram.deadline = <S, E, T>: A
mobile program within a group can request that its time
constraints be satisfied by utilizing the bandwidth re-
served for its parent group. If there is no bandwidth re-
served for the parent group, the program will get only
unreservedRTG bandwidth to satisfy its constraints.

The scheduling algorithm allocates time within the quan-
tum time chunks to satisfy reservation requests. The use
of quantum time chunks is similar to the notion ofslot
lists[12]. While the slot list method considers only real-
time applications, in our case the amount of CPU time avail-
able in each quantum time chunk is constrained by the upper
bound onRTG.

The real-time algorithm first reserves the bandwidth for
each group in each quantum time chunk. For each<S,E,T>
constraint, the scheduling algorithm makes reservations in
the quantum time chunks (Fig. 9) that fall within timesS
andE. The algorithm reserves the computation timeT from
within the parent group’s reserved bandwidth, if any, and
any free unreservedRTG bandwidth that might be available
within the quantum chunk. It does so by creating reserva-
tion nodes in each quantum time chunk. The reservation
nodes specify the start time, the time reserved, and the mo-
bile program for which the time has been reserved.

When a new real-time program arrives, the algorithm
performs a feasibility check to determine if the deadline re-
quest can be met. The algorithm goes through the list of
quantum time chunks, reserving any availableRTG time for
the request. If the program’s deadline cannot be met, any
reservation made for the program is freed. In the process of
carrying out the feasibility checks, the algorithm performs a
rearrangement of any reservations already made for earlier
programs so that the deadline based constraints are added
in the Earliest Deadline First (EDF) [9] order. Using EDF
for adding new reservations increases the number of reser-
vations satisfied.

In Fig. 10, we show how the algorithm makes reserva-
tions for two requests: reservationA (<150,280,40>) and
reservationB (<150,170,5>) in that order. We assume that
the size of a quantum time chunk is40ms and the host spec-
ifies an upper bound of40% (16ms) forRTG. Also, assume

12

120ms 160ms

A: 14ms

160ms 200ms 200ms 240ms

B: 5ms A: 5ms A: 3ms

After adding reservation A: <150ms,280ms,40ms>

After adding reservation B: <150ms,170ms,5ms>

120ms 160ms

A: 16ms

160ms 200ms 200ms 240ms 240ms 280ms

A: 16ms

A: 16msA: 10ms

Figure 10. List of quantum time chunks for two reservations

that the entire CPU time (16ms) forRTG is available to the
mobile programs. When requestA is made, the algorithm
greedily reserves anyRTG time available toA. When re-
questB arrives, the algorithm rearranges the reservation for
A so that the constraints ofB can also be satisfied. This is
done becauseB has an earlier deadline. If there were no
rearrangement,B cannot be guaranteed since allRTG time
will already be used byA.

4.2.3 Resource Usage ControlThe upper bound sub-
graph captures the upper bound and lifetime constraints on
groups and mobile programs. Each security node in the
graph maintains the usage information for the groups and
programs that the node monitors. As the scheduling scheme
traverses the scheduling graph, it checks the security node
associated with a node before it applies any scheduling al-
gorithm to the node. If selecting a program from within that
node will cause an upper bound or a lifetime constraint to
be violated, the particular internal node is not selected. For
example, assume that the scheme decides to schedule a pro-
gram in the subtree underAp in Fig. 8. Before it decides
between nodesA andA0, the scheme checks with the se-
curity nodes that controlA andA0 (UB1 for A andLC1

for A0) to ensure that the two nodes do not violate any con-
straints. The scheme then employs the selection algorithm
as described earlier to select one of the two.

4.3 Implementation and Performance Analysis

To assess the behavior of the scheduling scheme, we first
implemented the scheme as part of a simulation engine and
conducted several experiments using the simulation engine
to analyze the performance behavior of the scheme. Once
we were satisfied with the scheme, we then implemented the
scheduling scheme within the Java virtual machine (JVM).

We conducted several experiments on the simulation en-
gine and the JVM. The goals of these experiments were
to examine the effectiveness of the scheme in (i) satisfy-
ing both real-time and non real-time constraints; (ii) enforc-
ing upper bound and lifetime constraints; and (iii) satisfying
constraints that change dynamically. Due to lack of space,
we only show two results, one from the JVM and another
from the simulation environment. In all the experiments,
the time quantum for a program is5ms.

4.3.1 General scheduling behaviorThe first experiment
demonstrates how the scheme schedules groups of mobile
programs that are constrained by shares, priorities and up-
per bounds. Further, it shows how the upper bound con-
straints interact with shares and priority constraints. We per-
formed this experiment on the modified JVM. In Fig. 11(a),
we show the hierarchy constructed from the client and host
resource usage constraints. In Fig. 11(b), we show the rel-
ative CPU allocations of groupsG0, G1 andG2. We al-
so show the relative CPU allocations of mobile programs
MP9, MP10, andMP11.

Between times(0; 35), G0, G1 andG2 get 30%, 60%
and10% of the CPU respectively which matches their share
allocations. At time35s, G0 reaches its upper bound. This
results in relative allocation forG1 andG2 to increase to
86% and14% respectively that corresponds to the share ra-
tio of 60 : 10. When the upper bound ofG2 is reached,G1

is the only group and it gets all the CPU resources till its
upper bound is achieved as well.

Within G0, the relative allocations of mobile programs
MP9 andMP10 are20% and80% respectively, according-
ly to their share allocations.MP11 is not scheduled in the
beginning because it belongs to a lower priority group. At
time 25s, the upper bound forPG3 is achieved and then
mobile programs fromPG4 are scheduled till the upper

13

MP9 MP10 MP11

MP5 MP6 MP8MP7

Root

P4=2

S0=30 S1=60 S2=10

P3=1

G2

S9=20S10=80 S11=100

G0: Share:30, Upperbound:10s
G1: Share:60, Upperbound:30s
G2: Share:10, Upperbound:20s
PG3: Priority:1, Upperbound:7s

MP9: Share:20
PG4: Priority:2

MP10: Share:80
MP11: Share:100

UB3 = 7s UB0 = 10sUB1 = 30s UB2 = 20s

G0 G1

PG3 PG4

(a) The scheduling graph

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70

R
el

at
iv

e
al

lo
ca

tio
n

of
 g

ro
up

s
Time(sec)

Group 0
Group 1
Group 2

MP 9
MP 10
MP 11

(b) Relative allocation of CPU for groups and mobile programs

Figure 11. General scheduling behavior of the scheme

��
��
��
��

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

����

��
��
��
��

��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

��
��
��
��

0

5

10

15

20

1.05 1.1 1.15 1.2 1.25 1.3 1.35

Time (in sec)

mp 6

grp 0

mp 8

mp 7

grp 1

Sc
he

du
lin

g
qu

an
tu

m
(i

n
m

se
c)

Figure 12. Scheduling for a combination of
real-time and non real-time programs

bound forG0 is reached.
The scheme, thus, effectively implements relative allo-

cations of resources within hierarchies of groups. Further,
it enforces upper bounds constraints as well. Note that
changes in CPU allocation toMP9,MP10 andMP11 (pro-
grams inG0) does not affect the allocation toG1 or G2.
This highlights the modularity of the scheme.

4.3.2 Real-time Programs In this experiment (Fig. 12),
we demonstrate how the scheduling of real-time programs
takes place in the presence of non-real time programs. We
conducted the experiments within the simulation engine.

There are two non-real time groups:Group0 and

Group1 have shares40 and 20, respectively. There are
three programs with real-time reservations:

MP6:<1.1s,1.15s,10ms>
MP7:<1.12s,1.5s,70ms>
MP8:<1.15s,1.18s,5ms>

The host specifies an upper bound of40% (16ms) on the
RTG group for each quantum time chunk of40ms. The plot
shows that the real-time programs are allocated according to
their reservations. At the same time non-real time programs
are allocated according to their shares. Also, since there is
an upper bound onRTG group, real-time programs cannot
starve the non-real time programs, even though real time
programs are scheduled for more than5ms (the default time
quantum) at a given time.

5 Summary

In this paper, we have presented schemes for enforcing
both resource access and resource usage control.

We have described a mechanism for implementing gen-
eral access control policies on mobile programs. There
are two components of our approach. The first is a sim-
ple declarative access constraint language that allows a site
to restrict accesses to the objects and methods of the sys-
tem. The declarative nature of the language makes it easy
to specify policies while still allowing a hook to express
procedural policies if necessary. The second is a set of tools
that enforce the specified constraints by editing mobile pro-
grams and resources. Our approach’s appeal is that a site
can specify access constraints separately from both mobile

14

program definitions and resource definitions. This separa-
tion of concerns has a number of benefits. Both access con-
straints and resource definitions can be modified indepen-
dently. Sites can easily specify different access constraints
for different mobile programs for the same resource. Final-
ly, our approach can enforce security on systems that were
not originally designed with security in mind.

We control usage of CPU by developing a CPU schedul-
ing scheme that addresses the security and quality of ser-
vice requirements of a host. The scheme presents an envi-
ronment for specifying resource usage constraints. Mobile
programs specify shares, priority and deadline constraints.
Hosts specify shares, priority, upper bound and lifetime
constraints. The scheme constructs a scheduling hierarchy
to apply a set of algorithms that enforce the various con-
straints. The non-real time algorithm enforces share and
priority based constraints. The real time algorithm enforces
deadline constraints. The upper bounds algorithm enforces
security constraints specified by the host. Any conflicts be-
tween the client and server constraints are resolved by our
algorithm composition policy that always favors the server
constraints.

References

[1] T. Berners-Lee, R. Cailliau, A. Luotonen, H. Frystyk
Nielsen, and A. Secret. The World-Wide Web.CACM,
37(8):76–82, August 1994.

[2] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer,
M. Fiuczynski, D. Becker, S. Eggers, and C. Cham-
bers. Extensibility, safety and performance in the
SPIN operating system. In15th ACM Symposium on
Operating Systems Principles, pages 267–284, Cop-
per Mountain Resort, CO., December 1995.

[3] D. Chess, C. Harrison, and A. Kreshenbaum. Mobile
Agents: Are They a Good Idea? InSecond Interna-
tional Workshop on Mobile Object Systems: Towards
the Programmable Internet., pages 25–47. Springer-
Verlag, 1996.

[4] L. Gong. Java security: Present and near furture.IEEE
Micro, 17(3):14–19, May-June 1997.

[5] L. Gong, M. Mueller, H. Prafullchandra, and
R. Schemers. Going beyond the sandbox: An
overview of the new security architecture in the
Java Development Kit 1.2. InProceedings of
the USENIX Symposium on Internet Technolo-
gies and Systems, Monterey, California, De-
cember 1997. Available to Usenix members at
http://www.usenix.org/publications/library/proceed-
ings/usits97/gong.html.

[6] T. Jaeger, J. Liedtke, and N. Islam. Operating system
protection for fine-grained programs. InProceedings
of the 7th USENIX Security Symposium, San Antonio,
Texas, Jan. 1998.

[7] M. B. Jones, D. Rosu, and M-C. Rosu. CPU Reser-
vations and Time Constraints: Efficient, Predictable
Scheduling of Independent Activities.16th ACM
Symposium on Operating Systems Principles, October
1997. St. Malo, France.

[8] S. Liang and G. Bracha. Dynamic class loading in the
Java Virtual Machine. In C. Chambers, editor,Object-
Oriented Programming Systems, Languages and Ap-
plications Conference,in Special Issue of SIGPLAN
Notices, number 10, Vancouver, October 1998. ACM.

[9] C. L. Liu and J. W. Layland. Scheduling Algorithms
for Multiprogramming in a Hard Real-Time Environ-
ment.Journal of the ACM, 20(1), January 1973.

[10] D. V. Miller and R. W. Baldwin. Access control by
boolean expression evaluation. InFifth Annual Com-
puter Security Applications Conference, pages 131–
139, Tucson, AZ, 1990. IEEE, IEEE Comput. Soc.
Press.

[11] J. Nieh and M. Lam. The Design, Implementation
and Evaluation of SMART: A Scheduler for Multime-
dia Applications.16th ACM Symposium on Operating
Systems Principles, October 1997.

[12] K. Schwan and H. Zhou. Dynamic Scheduling of Hard
Real-Time Tasks and Real-Time threads.IEEE Trans-
actions on Software Engineering, 18(8):736–748, Au-
gust 1992.

[13] T. Thorn. Programming Languages for Mobile Code.
ACM Computing Surveys, 29(3), September 1997.

[14] J. Vitek, M. Serrano, and D. Thanos. Security and
communication in mobile object systems. InMobile
Object Systems. Towards the Programmable Internet.
Second International Workshop, MOS ’96, number
1222 in Lecture Notes in Computer Science, pages
177–199, Linz, Austria, July 1997.

[15] D. S. Wallach, D. Balfanz, D. Dean, and E. W. Fel-
ten. Extensible security architecture for Java. In16th
ACM Symposium on Operating Systems Priciples, vol-
ume 31(5) ofOperating System Review, pages 116–
128, Saint Malo, France, Oct. 1997.

[16] D. S. Wallach and E. W. Felton. Understanding Java
stack inspection. In1998 IEEE Symposium on Secu-
rity and Privacy, pages 52–63, Oakland, CA, USA,
May 1998. IEEE, IEEE Comput. Soc.

15

