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There is widespread interest in concurrent programming. Many concurrent pro-

gramming languages have been proposed. However, there are modularity and extensibility

problems associated with many of these languages: concurrent programs are difficult to

extend and modify. Also, specifications of programs cannot be easily reused.

This thesis presents a compositional approach to concurrent programming that aims

to resolve these problems. The approach is based on the observation that there are two or-

thogonal behaviors of components of a concurrent program: computational behavior and

interaction behavior. The computational behavior of a component specifies the operations

performed during an execution of the component. Its interaction behavior determines the

manner in which the component affects or is affected by other components. In the compo-

sitional approach a concurrent program is composed from separate specifications of com-

putational and interaction behaviors. We call this approach “separation of concerns.”

One of the implications of separation is that concurrent programs can be easily ex-

tended by adding component programs. Only the specifications of the interaction behaviors

vii



may need to be changed. Also, a concurrent program can be modified by changing only its

interaction behavior specification. Further, separation of concerns supports reusability of

both computational and interaction behavior specifications. More importantly, in this ap-

proach representations of computations and interactions are both programming language

abstractions. These abstractions can be composed with other abstractions such as inheri-

tance and genericity in order to define generic concurrent program abstractions.

In the first part of the thesis, we use separation of concerns as the basis for develop-

ing a model of computation. The model contains a concurrent program composition mech-

anism, a representation mechanism for component programs, and a declarative interaction

specification mechanism. In the second part of the thesis, we apply the model to design

a concurrent object-oriented programming language, called CYES-C++. CYES-C++ sup-

ports highly concurrent objects and a general concurrent method invocation mechanism,

fully integrates the notion of inheritance and genericity with concurrency and interaction,

and supports reusability of method and interaction specifications. The feasibility of our

approach is demonstrated by developing a prototype implementation for CYES-C++. The

implementation runs on a network of workstations.
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Chapter 1

Introduction

There is widespread interest in concurrent programming due to the emergence of many par-

allel processing systems. Parallel systems allow one to improve the runtime performance of

certain applications by supporting the execution of multiple tasks simultaneously. In some

cases, they have made it possible to solve certain grand challenge problems that would have

been impossible otherwise. In recent years, a number of parallel systems have been in-

troduced. Examples of such systems include massively parallel systems such as Thinking

Machines’ CM-5, IBM SP-2 and Intel’s Paragon, shared memory systems such as Kendall

Square Research’s KSR1, Stanford University’s DASH and SGI’s Challenge, SIMD sys-

tems such as Maspar’s MP-2, and distributed systems such as collections of Sun and IBM

workstations. The machines differ widely in their architecture, their scope, and the target

problem domain.

The design and implementation of concurrent programs for this wide range of ma-

chines has proven to be extremely difficult. There are a number of factors — nondeter-

minism, complex interactions among programs, program granularity, data partitioning, data

distribution, load balancing, program scheduling, and target machine configurations — that

make the design of a concurrent program. An efficient and correct implementation of a

concurrent program involves careful analysis of these factors, their interactions, and their

representation. The difficulty is exacerbated by the fact that many parallel applications are
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large and complex.

The complexity associated with the development of concurrent software systems

can be reduced by software development methodologies that allow modular and extensible

development. Modularity allows one to partition complex systems into smaller and simpler

modules, each of which can be developed independently and combined. Support of extensi-

bility is especially important since a complex concurrent system may evolve incrementally

through additions of component subsystems. Also, the concurrent system may need to be

extended in order to implement new application requirements. Another important aspect of

software development is easy modifiability of concurrent programs, since changes in a con-

current program may occur quite often during its lifetime, especially during the program

development process. Portability of programs is an important issue in the parallel domain.

Since parallel machines vary widely in architecture, and since there is no consensus about

a converging architecture, it is important that concurrent programs be easily modified to be

able to run on different parallel architectures.

1.1 Approaches to Concurrent Programming

In reality many concurrent programming languages do not support modular and extensible

approaches to concurrent programming. In practice, concurrent programs are often diffi-

cult to extend and modify. In addition, porting a concurrent program often involves re-

implementing the components of the program. There is poor support for reusability of pro-

grams as well. These problems occur because of the manner in which concurrent programs

are specified.

We observe that in the majority of concurrent programming languages, the gen-

eral approach to designing and implementing a concurrent program involves partitioning a

problem into a number of independent components, each of which is represented as a pro-

gram. A representation of a component program includes specifications of operations and

of synchronization primitives. For instance, in figure 1.1 we show an example of a concur-

rent program examprog1. Program examprog1 contains two components: producer

2



examprog1()
f

channel buf;

producer(buf) || consumer(buf);
g

(a) Concurrent program

producer(channel buf)
f

while (TRUE) f
info = produce();
send(buf, info);

g
g

(b) Producer component

consumer(channel buf)
f

while (TRUE) f
info = receive(buf);
consume(info);

g
g

(c) Consumer component

Figure 1.1: An example concurrent program

and consumer. The producer component produces a value and sends it to consumer

over a communication channel. The operations send and receive are synchronization

primitives.

We note that concurrent programs that are specified in this manner are difficult to

extend or modify. We show this by extending examprog1 such that it contains an ad-

ditional consumer component. In the extended program, the information produced by

the producer is now shared between the two consumer programs alternately. The ex-

tended program can be implemented by modifying producer, consumer, or both com-

ponent programs. We show one possible implementation of the extended program in fig-

ure 1.2. Here, the consumer1 program is a modified version of the consumer program

of figure 1.1(c). In consumer1, the two consumer components synchronize with each

other by accessing a sync mailbox. We note the following:

� Interaction between the consumer components is implemented procedurally by an

3



consumer1(channel buf, sync)
f
myTurn = myid % 2;
while (TRUE) f
if (myTurn) f
info = receive(buf);
consume(info);
send(sync, ack);
myTurn = FALSE;

g else f
ack = receive(sync);
myTurn = TRUE;

g
g

g

(a) Modified consumer program

examprog2()
f
channel buf;
channel sync;

producer(buf) k
consumer1(buf, sync) k
consumer1(buf, sync);

g

(b) Extended examprog1

Figure 1.2: Representation of an extension of the example concurrent program

additional synchronization primitive, program variables, and language constructs.

� The extension of the program requires that some or all component programs be re-

implemented.

The above illustrates some weaknesses in these concurrent program design methodologies:

� Concurrent programs are difficult to modify and extend since changes and extensions

may require that some of its components be re-implemented.

� Specifications of component programs are not encapsulated. Changes in a concurrent

program often impact component specifications.

� This phenomena underlines the problem associated with constructing new concurrent

program abstractions in terms of existing program abstractions. Concurrent program

abstractions cannot be composed easily with other program abstractions. Such com-

positions may often require changing the abstraction itself. We call this phenomenon

4



the program composition anomaly: the inability to easily construct new concurrent

program abstractions from existing program abstractions. Also, since programming

languages use many composition mechanisms for defining abstractions in terms of

other abstractions, presence of the program composition anomaly causes a break-

down in many of these composition mechanisms. As we shall see later, one example

is the breakdown of inheritance in concurrent object-oriented languages.

� Specifications of components cannot be reused easily. In addition, synchronization

code cannot be reused because it is embedded inside the body of the component pro-

gram.

The process of modifying or extending a concurrent program becomes difficult also be-

cause of the procedural approaches to interaction specification. Any modification in the in-

teraction of a component involves operational reasoning with the specification of the com-

ponent followed by procedural manipulation of its source code in order to represent the

desired interaction. Since components can interact in complex and nondeterministic ways,

such modifications are difficult to make, and are often major sources of bugs in concurrent

programs.

Program composition mechanisms are needed that resolve the program composi-

tion anomaly and that facilitate extensibility and modifiability of concurrent programs.

1.2 Our Approach

This research is aimed at facilitating development of concurrent programs. The focus is on

support for software development techniques for minimizing the possible changes that need

to be made when a concurrent program is modified.

The conceptual foundations of our approach are based on the observation that mod-

ifications and extensions of concurrent programs are facilitated if specifications of com-

putations and interactions are separated. We call this approach “separation of concerns.”

This separation of concerns concept forms the basis for the development of a concurrent
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programming system. The steps in the research include:

� Development of the conceptual and theoretical foundation of a model of concurrent

computation.

� Application of the model of computation to design a concurrent object-oriented pro-

gramming language.

� A prototype implementation of the programming language.

� An experimental evaluation of the implementation.

We briefly describe these various aspects of our research below.

1.2.1 Conceptual Basis for a Model of Computation

There are two distinct behaviors of components of a concurrent program: computational

behavior and interaction behavior. The computational behavior of a component specifies

the operations performed during an execution of the component. Its interaction behavior,

on the other hand, determines the manner in which the component affects or is affected by

other components. Concurrent programs are difficult to extend and modify because spec-

ifications of component programs intermingle specifications of both behaviors. The result

is that changes in a concurrent program (either by extension or modification) may induce

changes in interaction behaviors of components. However, since specifications of compo-

nents include specifications of both behaviors, changes in the interaction behaviors can be

effected only by re-implementing the components.

Concurrent programs can be easily extended or modified if specifications of compu-

tational and interaction behavior are separated. The requirement for the separation high-

lights the orthogonality of the two behaviors. Conceptually, the computational behavior of

a component is an intrinsic property. It exists independently from the component’s pos-

sible compositions with other components. Its interaction behavior, on the other hand, is

dependent on other components of a concurrent program. It should therefore be defined

separately from the computational behavior.
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We use the concept of “separation of concerns” to define a model of concurrent

computation, called the Composition bY Event Specification(C-YES) model, which we de-

scribe below.

1.2.2 The C-YES Model

The C-YES model supports a modular and extensible approach to concurrent program-

ming. There are three elements of the C-YES model: i) a concurrent program composition

mechanism, ii) a representation of component, and iii) an interaction specification mecha-

nism.

Concurrent Program Composition

The concurrent program composition mechanism of the C-YES model is based on the ob-

servation that the role of a concurrent program composition mechanism is to establish two

kinds of relationships among operations of components: concurrency and interaction. Con-

currency represents semantic independence among specific invocations of operations (called

events). Interaction, on the other hand, represents semantic dependencies among events. A

concurrent program written in the C-YES model has the following form:

C = (C1 kC2 k : : : kCn)

where

φ

This expression specifies that program C is composed from components C1;C2; : : : ; and Cn

and an interaction specification φ. The k operator is used to establish the concurrency re-

lationship whereas expression φ represents the interaction relationships among the compo-

nents. The semantics of the expression is that during an execution of C, events of C1;C2; : : : ;

and Cn occur in parallel, except for those events whose occurrences must satisfy all order-

ing constraints specified in φ.
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Example 1.2.1. (Specification of a concurrent program). We specify concurrent program

examprog1 of figure 1.1(a) as a constrained concurrent program composition of compo-

nents producer and consumer:

examprog1 = (producer k consumer)

where

ConsExp1

This expression specifies that during an execution of examprog1, events of producer

and consumer occur in parallel except for those which must satisfy the ordering con-

straints imposed by the expression ConsExp1 (defined in example 1.2.3). �

Representation of Component Programs

In the C-YES model, a component program is represented using two elements: operations

and interaction points. The interaction points of a component are used to name operations

of one component that may interact with other components. Interaction among components

is represented by specifying the manner in which an interaction point of a component may

affect or be affected by an interaction point of another component. We call such a repre-

sentation of a component program an interacting program.

Example 1.2.2. (Interacting program). Interacting program representations of components

producer and consumer are shown below:

producer(buffer info)

f

while (TRUE) f

info.produce();

g

g

consumer(buffer info)

f

while (TRUE) f

info.consume();

g

g

The producer program interacts with its environment during executions of the produce

operations. It is at these operations that producer may affect execution behaviors of

other components. The set of produce invocations therefore form its interaction points.
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Similarly, the set of all consume invocations form the interaction points of consumer.

Let the terms produce and consume denote these interaction points. �

The interacting program model of component programs therefore allows one to include

a component program in different concurrent program compositions without making any

changes to the component. Each composition may define a different interaction behavior

for the component by specifying different interactions to its interaction points.

Interaction Specification Mechanism

Interaction in the C-YES model is defined by an algebraic expression called an event or-

dering constraint expression. The interaction specification mechanism is declarative. It is

based on the following observations:

� Interactions among component programs can be defined by a set of interactions among

events of the components, and

� interactions between two events can be represented by directly specifying execution

orderings between the events.

The interaction specification mechanism therefore contains mechanisms for representing

interaction between events, and a set of operators for combining representations of interac-

tion relationships. An event ordering constraint expression (evoce) is constructed from a set

of primitive ordering constraint expressions and a set of interaction composition operators.

Primitive Event Ordering Constraint Expression: A primitive ordering constraint expression

represents interaction between two events. The expression

φ= (e1 < e2)

specifies that event e1 must occur before event e2 in a computation.

Interaction Composition Operators: Interaction composition operators are used to combine

primitive and non-primitive event ordering constraint expressions. There are four opera-

tors:
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� and constraint operator (̂): An event ordering constraint expression containing

̂ is defined:

φ= (φ1 ̂ φ2)

Intuitively, a computation satisfies event ordering constraint expression φ if it satis-

fies both φ1 and φ2.

� or constraint operator(_ ): An event ordering constraint expression containing _

is defined:

φ= (φ1 _ φ2)

Intuitively, a computation satisfies and event ordering constraint expression φ if it

satisfies at least one of event ordering constraint expressions φ1 or φ2.

� forall operator: The forall constraint operator is an extension of the ̂ operator

in that it is used to specify and-constraints over sets of events.

� exists operator: The exists operator is similar to forall in that it extends _

over sets of events.

Example 1.2.3. (Interaction specification). We now derive the event ordering expression

ConsExp1 of example 1.2.1. It is specified by first examining the interaction between two

specific occurrences of produce and consume. The constraint specifies that the ith oc-

currence of consume cannot execute until the ith occurrence of produce has executed.

The following primitive event ordering constraint expression represents the relationship be-

tween the two events:

produce[i] < consume[i]

In the above terms produce[i] and consume[i] respectively denote the ith invoca-

tions of the produce and consume operations. Since the above relationship holds true

for all invocations of produce, the event ordering constraint expression ConsExp1 is

defined in the following manner:
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ConsExp1 = forall occ i in produce :

produce[i] < consume[i]

Expression ConsExp1 constrains the order of execution of invocations of the produce

and consume operations. �

We make the following observations about the interaction specification mechanism:

� The interaction specification mechanism is declarative. Interactions are represented

as ordering relationships of invocations of operations. An event ordering constraint

expression is a predicate over a range of variables and operators. An execution of

a concurrent program constrained by the event ordering constraint expression must

maintain the expression as “true” throughout its execution.

� The interaction specification mechanism supports a modular approach to interaction

specification. Global and complex interactions are specified by decomposing them

into a set of simpler interactions between pairs of components. These interactions

can then be represented by event ordering constraint expressions, and combined with

suitable interaction composition operators to represent the global interaction. This

approach allows one to change interaction behavior of a program by changing only

the relevant event ordering constraint expression. Also, representations of interac-

tions can be reused in specifications of other interactions.

� The interaction specification mechanism provides an abstraction suitable for defin-

ing interaction. It defines interaction by suitable ordering relations among interacting

events of programs. It is not based on the semantic properties of a specific synchro-

nization primitive. It does not depend on the semantic properties of the events. It

can therefore be used to specify any interaction behavior for any invocation of any

operation.

� Since specifications of interactions of components are separated from the component

specifications, it can be combined with other abstraction mechanisms such as inheri-

tance and genericity to construct powerful concurrent program abstractions.
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� Since the properties of the primitive event ordering constraint expression and the in-

teraction composition operators are well defined, it is possible to formally verify cer-

tain safety and progress properties of a concurrent program from its interaction be-

havior specification. In addition, the verification process is facilitated by the separa-

tion of computational and interaction behavior specifications: some properties such a

mutual exclusion of events can be verified solely from the interaction behavior spec-

ification.

Example 1.2.4. (Extensibility of concurrent programs). We now show that concurrent pro-

gram examprog1 can extended easily in the C-YES model. Program examprog2 is an

extension of examprog in that it contains an additional consumer component. In the

extended program, the two consumer programs share the information produced by the

producer programs alternately. Program examprog2 is defined in the following man-

ner:

examprog2 = (producer k consumer k consumer)

where

ConsExp2

Note that there are no changes in the specifications of either producer or consumer.

Let consume1 and consume2 denote the interaction points of the two consumer compo-

nents. They denote the set of invocations of the consume operation in each consumer

program.

The event ordering constraint expression ConsExp2 represents the new interaction

relationship among the three components. It is derived by observing that there are two sets

of relationships among the events of the producer and consumer programs. The first

is between odd events of produce and events of one consumer. It is represented in the

following manner:

φ1 = (produce[2*i-1]< consume1[i])

The second is between even events of produce and events of the other consumer:
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φ2 = (produce[2*i]< consume2[i])

Since both of these relationships must hold, they are combined with the ̂ operator:

φ1 ̂ φ2

Since the above relationship holds for all events of produce, ConsExp2 is defined in the

following manner

ConsExp2 = forall occ i in produce :

φ1 ̂ φ2

�

We make the following observations regarding the above approach to concurrent program-

ming:

� A concurrent program can be extended by adding new components and changing in-

teraction specifications. No changes need to be made in the specifications of the ex-

isting component programs. In certain cases, redefinition of interactions may only

involve adding new event ordering constraint expressions or modifying only a small

subset of the event ordering constraint expressions.

� A concurrent program can be easily modified by modifying interaction behavior spec-

ifications of the components.

� The approach supports encapsulation of specifications of component programs. It

allows one to change implementation of components in isolation from other compo-

nents. For instance, it is possible to change the implementation of the producer

program without making any changes in the consumer program or the interaction

behavior specification as long as the nature of computation, interaction behavior, and

the interaction points do not change.

� Specifications of computational and interaction behaviors can be reused.
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1.2.3 Design of a Language Based on the C-YES Model

The C-YES model is a general model of concurrent computation in that it can be applied

to define many concurrent programming languages. In our research, we combined it with

object-oriented concepts in order to derive a compositional model for concurrent object-

oriented programming. The object-oriented compositional model forms the basis for the

design of a concurrent extension of the C++ programming language, called CYES-C++.

CYES-C++ supports truly concurrent objects, implements a general concurrent method in-

vocation mechanism, fully integrates the notion of inheritance with concurrency, and sup-

ports reusability of both method and interaction specifications. We briefly describe the

characteristics of CYES-C++ below:

Intra-object Concurrency and Interaction: In CYES-C++, a concurrent object is represented

as a composition of a set of methods and a set of event ordering constraint expressions.

Specifications for methods contain specifications of only their computational behaviors.

The event ordering constraint expressions capture the interactions among the invocations

of the methods. The semantics associated with the composition is that invocations of meth-

ods on a concurrent object execute in parallel by default. However, their executions must

satisfy all ordering constraints specified in the event ordering constraint expressions. In

CYES-C++, the composition of a concurrent object is represented by a concurrent class

type. The interface of a concurrent class contains, in addition to public, private, and

protected entities of C++ classes, interaction entities. The interaction sec-

tion defines the event ordering constraint expressions.

Inter-object Concurrency and Interaction: Concurrency and interaction among concurrent

objects is represented as a concurrent program composition of the invoking and the invoked

methods. This defines a concurrent method invocation mechanism. The method invocation

mechanism is general in that it subsumes both synchronous and future-based asynchronous

method invocation mechanisms.

Inheritance: In CYES-C++, inheritance is a mechanism for extending the composition of
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concurrent objects. A concurrent class therefore extends the composition of its superclasses

by adding new methods, modifying inherited methods, adding interaction behaviors, and/or

modifying interaction behaviors. The composition of objects of a concurrent class is de-

fined by the composition of methods and composition of event ordering constraint expres-

sions of the class and its superclasses. This model of inheritance allows us to inherit and

reuse both computational and interaction behavior specifications.

Interaction Specification Mechanism: Event ordering constraint expressions represent inter-

actions in terms of event sets and relationships between events of the sets. Abstractions of

interactions can therefore be defined by supporting mechanisms for defining and manipu-

lating event sets, and for naming and instantiating event ordering constraint expressions.

CYES-C++ defines mechanisms for defining event sets and event ordering constraint ex-

pressions. This allows one to capture patterns of interactions among event sets in terms

of named event ordering constraint expressions. The named event ordering constraint ex-

pressions can be instantiated with different event sets, each representing interactions among

different sets of methods. This supports reusability of interaction specifications.

Further, the abstractions of interaction can be combined with other composition

mechanisms such as the template mechanism of the C++ programming language. The con-

current program abstractions allow one to capture common computational and interaction

behaviors of concurrent classes in generic and abstract concurrent classes. This supports

reusability of both computational and interaction behaviors.

1.2.4 Language Implementation and Experimental Evaluation

We implemented a translator for CYES-C++ in order to demonstrate the feasibility of im-

plementation of the C-YES model of concurrent computation. The current implementation

executes on a network of IBM RS/6000 workstations. It supports creation and distribution

of concurrent objects both on local and distributed nodes. In addition, both synchronous

and asynchronous method invocations on local and remote objects have been implemented.

Event ordering constraint expressions containing forall, &&, and primitive event order-
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ing constraint expressions are also supported in the current version.

We evaluated the implementation by writing several applications and measuring

their execution behavior. The measurements show that the performance of the CYES-C++

implementation can be comparable to other approaches to concurrent object-oriented pro-

gramming.

1.3 Dissertation Overview

In the rest of the dissertation we develop and apply the compositional approach to con-

current programming. In Chapter 2 we present concepts of and background information

on concurrent programming. We also discuss several approaches to concurrent program-

ming. We show that concurrent programs are difficult to extend and modify in some of

these approaches. The reasons for the difficulties are established in Chapter 3. In that chap-

ter we also present the conceptual and theoretical basis for the model of computation, the

C-YES model. We present a concurrent program composition mechanism, a representation

for components, and a representation for interaction specification. In Chapter 4 we present

an application of the C-YES model to derive a model for object-oriented concurrent pro-

gramming. We develop a model for concurrent objects, a general mechanism for method

invocation, and a model of inheritance in the presence of concurrency. The object-oriented

model forms the basis for the design of a concurrent programming language called CYES-

C++. The language features of CYES-C++ are described in Chapter 5. The design of an

implementation of CYES-C++ is described in Chapter 6. We evaluated the implementation

by writing a number of applications, and by measuring their performance. The applications

and the analysis of the performance results are described in Chapter 7. We summarize our

research in Chapter 8. We also describe ideas for future work in that chapter.

1.4 Research Contributions

The following are the contributions of our research:
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� The concept of the program composition anomaly and its resolution. We show

that a concurrent program is difficult to extend and modify if specifications of its

components contain specifications of both computational and interaction behaviors.

The concurrent program can be extended and modified easily if the specifications of

the two behaviors are completely separated.

� The formulation of a model of concurrent computation that is based on the

concept of “separation of concerns.” The model includes a concurrent program

composition mechanism, a representation mechanism for component programs, and

a declarative interaction specification mechanism.

� The design of a modular and compositional approach to interaction specifi-

cation mechanism. The interaction specification mechanism captures fundamental

abstractions of interaction. It specifies interaction by suitable ordering relations and

their compositions. It does not depend on the semantics of specific primitives. It can

be used to specify any interaction behavior for any invocation of any operation.

� Demonstration of the utility of the “separation of concerns” and the declara-

tive approach to interaction specification through examples. We show that the

approach supports a modular and extensible approach to concurrent programming.

In addition, it supports reusability of both computational and interaction behavior

specifications.

� An application of the C-YES model to derive a model for concurrent object-

oriented programming. It includes the following:

– Development of a concurrent program representations of both intra- and inter-

object concurrency through the concurrent program composition mechanism of

the C-YES model.

– Presentation of occurrences of two instances, inheritance anomaly and aggre-

gation anomaly, of the program composition anomaly in concurrent object-
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oriented programming languages. We show that their resolutions can be de-

rived from the principles used for resolving the program composition anomaly,

namely separation of computational and interaction behavior specifications.

– Development of a model of inheritance which defines the manner in which con-

current program composition of a class can be derived from superclass and

class specifications. The model can be used to represent the model of inheri-

tance of most concurrent object-oriented programming languages.

� Development of an object-oriented programming language. The programming

language CYES-C++ is derived from the concurrent object-oriented model. It sup-

ports truly concurrent objects, implements a general concurrent method invocation

mechanism, fully integrates the notion of inheritance with concurrency, and supports

reusability of both method and interaction specifications. The language supports def-

inition of abstractions for interactions and concurrency that can be composed with

other abstraction mechanisms such as inheritance and template to construct generic

and abstract concurrent classes. Such classes support reusability of both method and

interaction specification. In addition, they raise the level of abstraction at which con-

currency is expressed.

� Design and implementation of a portable translator for CYES-C++. The im-

plementation includes a front end parser, a code generator, and a runtime library. It

currently runs on a network of IBM RS6000 workstations.

� Evaluation of the execution characteristics of the CYES-C++ implementation

by developing a number of applications and measuring the performance of

the applications. Careful analysis shows that the performance behavior of the im-

plementation can be improved significantly by modifying different aspects of the im-

plementation.
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Chapter 2

Concepts and Background

2.1 Introduction

There are two goals of this chapter: the first is to present background information on con-

current programming and some of the approaches to concurrent programming. The second

is to analyze the existing approaches, and present the motivation for our research.

Design and implementation of concurrent programs is inherently complex. There

are a number of factors such as nondeterminism, complex interactions among programs,

program granularity, data partitioning, data distribution, load balancing, program schedul-

ing, and target machine configurations that drive the design of a parallel program. An

efficient and correct implementation of a concurrent program involves careful analysis of

the factors, the interaction among them, and their representation. In addition, concurrency

is generally used to represent problems that are large and computationally intensive. It is

therefore imperative that concurrent programming languages support software development

methodologies that allow modular and extensible development of such large and complex

concurrent software systems.

We observe that in most concurrent programming languages, the general approach

to designing and implementing a concurrent program involves partitioning a problem into

a number of independent components, each of which is represented as a program. A rep-
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resentation of a component includes specifications of both operations and interactions with

other components. Also, interactions are specified in terms of synchronization primitives

and combined through operational mechanisms.

We show that concurrent programs specified in this manner are difficult to extend

and modify. Changes and extensions of a concurrent program may require that some or

all components be re implemented. Specifications of component programs are therefore

not encapsulated. More importantly, this phenomena underlines the problem associated

with composing new concurrent program abstractions in terms of existing program ab-

stractions. Such compositions may often require changing the abstraction itself. We call

this phenomenon the program composition anomaly: the inability to easily construct new

concurrent program abstractions from existing program abstractions. Also, since program-

ming languages use many composition mechanisms for defining abstractions, presence of

the program composition anomaly causes breakdown in many of these composition mech-

anisms. One example is the breakdown of inheritance in concurrent object-oriented lan-

guages. An implication of the program composition anomaly is that specifications of com-

ponents may not be easily reused. Different composition mechanisms are needed that re-

solve the program composition anomaly and that facilitate extensibility and modifiability

of concurrent programs.

This chapter is organized as follow: in Section 2.2, we present background infor-

mation on concurrent programming. Section 2.3 contains a brief survey of the related work.

In Section 2.4, we analyze the various approaches with respect to extensibility, modularity,

and reusability of components of a concurrent program. Section 2.5 contains a summary of

the chapter.

2.2 Background

The process of programming can be viewed as that of constructing new abstractions in

terms of existing abstractions. Programming languages support this process by defining

a set of i) primitives, and ii) mechanisms, which we will call composition mechanisms, that
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can be used for composing the primitives and other existing abstractions for specifying new

abstractions. Most programming languages support two kinds of composition mechanisms:

data composition and program composition. Examples of data composition mechanisms

are aggregation and inheritance. An example of a program composition mechanism is the

sequential program composition mechanism used in most imperative sequential program-

ming languages [Set94].

There are two aspects of a composition mechanism: one is the syntactical mecha-

nisms for representing a composition. Both textual and graphical representation schemes

have been used for specifying syntax of data and program compositions. The second is

specification of semantics. Semantics of a composition assigns a “behavior” to an abstrac-

tion in terms of behaviors of its components. This behavior can describe memory layout,

execution orderings, or other properties of an abstraction. For instance, the semantics asso-

ciated with a sequential program composition of two programs progA and progB

[ progA; ProgB]

specifies that during an execution of the composition, progA executes before progB.

Also, certain properties of the program composition can be derived from the properties of

progA and progB [Hoa69].

We now look at the notion of concurrent program composition. A concurrent pro-

gram models a collection of interacting entities. The entities exist independently, perform

operations, and may cooperate by exchanging information to work on a common goal, or

may compete to access shared resources. In either case entities may affect execution be-

haviors of other entities. We call this aspect of a concurrent system interaction — ability

of an entity to affect or be affected by other entities.

A concurrent program composition mechanism defines mechanisms for represent-

ing such entities as programs as well as mechanisms for combining programs such that

both concurrency and interaction among the programs can be specified. In addition, many

concurrent programming languages provide mechanisms for representing attributes such as

data distribution, data partitioning, program granularity, scheduling, underlying machine
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configuration, and memory hierarchy. Many of these attributes implicitly determine con-

currency and interaction patterns among programs. Concurrency and interaction are the

two fundamental aspects of concurrent program composition. We will focus our attention

only on them.

We observe that the role of a concurrent program composition mechanism is to es-

tablish two kinds of relationships among operations of component programs. The first, con-

currency, represents semantic independence among operations of components. During an

execution of a program, concurrent operations can execute in parallel. The second, inter-

action, defines semantic dependencies among operations. Semantic dependencies specify

the manner in which the components cooperate or compete. For instance, an operation of

one component may rely on information produced by an operation of another component.

Similarly, policies associated with implementation of a resource shared among different

components may ensure that requests for resource are accepted fairly. In all of these cases

interaction among components represents relationships among operations of the compo-

nents. The relationships are application specific, and — implicitly or explicitly — affect

execution behaviors of components. A correct execution of a concurrent program is one

that preserves all relationships specified by its concurrent program composition.

We use concurrent program composition as a specification of concurrency and in-

teraction relationships as a basis for analyzing different approaches to concurrent program

specification below.

2.3 Related Work

We have divided this section into two subsections. We first present the approach taken by

some other programming languages for specifying concurrency among components. We

then examine the different approaches for specifying interaction.
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2.3.1 Specification of Concurrency

Concurrency among components can be specified either explicitly by annotating compo-

nents as concurrent, or by deriving concurrent relationships among components implicitly

from the semantics of a representation mechanisms. We look at the explicit approaches

first.

Explicit Specification of Concurrency

The simplest approach for specifying concurrency is to support creation of independent

execution threads of control. Such threads, once created, execute independently and in

parallel. For instance, the UNIX operating system [RT78] supports creation of indepen-

dent streams of execution, called processes, by fork and join primitives. A process

consists of a private address space and an execution control. Since process creation and

process context-switching costs are high, this notion of processes cannot be used in mas-

sively parallel applications that tend to create thousands of independent streams of con-

trol of execution. Lightweight “threads” decouple the notion of address space from control

of execution. They can therefore be created, manipulated, and destroyed cheaply. Exam-

ples of shared memory based thread packages are Presto [Ber91], Mercury [Ber91], and

CThreads [CR88]. Examples of thread packages that allow threads to be created on dis-

tributed nodes and that support communication among these threads are Nexus [FGT94]

and Chant [HCM94]. Both processes and lightweight threads support powerful mecha-

nisms for specifying concurrency among programs. However, they are low level mecha-

nisms and are difficult to use.

A structured approach for specifying concurrency is the parbegin-parend [Dij65]

construct. Here a statement of the form

parbegin

s1 s2 � � � sn

parend
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explicitly identifies statements s1; s2 � � � and sn as concurrent. The parbegin-parend state-

ment terminates once all si have terminated. Languages such as CSP [Hoa78], PCN [FOT92,

CT92], and CC++ [CK92] have similar constructs. The parbegin-parend construct is lim-

iting in the sense that it allows only a static number of concurrent components. Constructs

such as parfor [CK92] and doall [AG94, Ost86] extend the parbegin-parend construct

in that they allow creation of dynamic number of components.

Another approach that explicitly specifies concurrency is the Path expression [CH74,

And79]. Here, an operator explicitly identifies procedures of an abstract data type that can

execute in parallel. For instance, the expression

f P1 g

specifies that different invocations of procedure P1 are concurrent.

Implicit Specification of Concurrency

In many programming languages, concurrency among component programs is implicit in

the semantics of the programming language. Examples of such languages are logic, func-

tional, object-oriented, and visual concurrent programming languages.

Logic Programming Languages: In logic programming languages [Rob92], programs are

represented in terms of goals and sets of clauses. Each clause has the form:

A B1; : : : ;Bn

Here A is a predicate and is called head of the clause. Terms B1; B2; : : : ; and Bn form the

body of the clause. They are represented by predicates as well. The semantics of the clause

is that A is true if all body predicates are true. A computation involves determining if a goal

(a predicate) is a logical consequence of a set of clauses. Concurrency among components

of logic program occurs in two ways [Con87, CG86]:

� And parallelism is based on the observation that predicates such as Bi are indepen-

dent and can be evaluated in parallel.
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� Or parallelism arises from the fact that validity of a goal may be determined by a

number of clauses. Evaluations of the clauses can therefore occur in parallel.

Examples of logic-based languages are Prolog and Concurrent Prolog [Sha86]. A compre-

hensive survey of logic programming languages can be found in [Sha89].

Functional Programming Languages: Concurrency is specified implicitly in functional pro-

gramming languages [Bac78] as well. Functional programming languages are based on

lambda calculus in that programs are defined as pure functions. Different evaluations of

a function with same parameters always return identical results. There are no side ef-

fects. Evaluations of parameters are therefore semantically independent: they can be oc-

cur in parallel. Examples of functional programming languages are Miranda [Tur85] and

Haskell [HWA+90]. Hudak [Hud89] provides a survey of different functional program-

ming languages.

Object-oriented Programming Languages: Object-oriented programming languages [Weg87]

also provide a natural basis for modeling concurrency among entities of applications. Such

entities exist independently. Also, they allow multiple activities to occur simultaneously.

The notion of concurrency, both within entities and among different entities, exists nat-

urally and can be modeled in object-oriented programming languages through inter- and

intra-object concurrency [TS89a]. Several concurrent programming languages have used

the concept of encapsulated “object” as a common basis for specifying concurrency. For

instance, the concept is used in i) rendezvous-based languages such as ADA [Geh84] and

server-based approaches such as RPC-based languages [BN84] and; ii) approaches based

on message passing such as CSP [Hoa78]; iii) approaches based on abstract data types

(ADT) such as Monitors [Hoa74], ADT with path expressions [CH74], and SR [And81];

iv) approaches based on objects such as POOL-T [Ame87], ABCL/1 [YBS87], Concurrent

SmallTalk [YT87], CC++ [CK92], Mentat [Gri93], and Charm++ [KK93]; and v) actor-

based approaches [Agh86]. Most ADT- or object-based languages have used either a pas-

sive or an active approach to represent concurrency among programs:

� Passive view: In passive object approaches [Hoa74, CH74, Car93b], the notion of
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concurrent threads of executions is added to a sequential object-oriented program-

ming language. Here, objects are passive entities and are used solely for data ab-

straction and encapsulation purposes. Languages support mechanisms for specifying

concurrency explicitly.

� Active view: In active object-based approaches [CK92, Ame87, KK93, CL89] ob-

jects are both units of execution and encapsulation. Active object-based languages

are more natural since they model entities which are independent and which permit

concurrent activities. External concurrency is supported by concurrently executing

objects (inter-object concurrency), whereas internal concurrency is supported by al-

lowing multiple execution threads within an object(intra-object concurrency):

– Intra-object concurrency: Languages such as POOL-T [Ame87], Concurrent

Smalltalk [YT87], and ABCL/1 [YBS87] support only a single thread of execu-

tion within an object; concurrent invocations of methods are always serialized

and scheduled for execution according to the policies of the implementation.

Languages such as Path Expression [CH74], CC++ [CK92], PO [CL89], and

Mediator [GC86], on the other hand, support concurrent method invocations

within objects.

– Inter-object concurrency: Concurrency among objects is specified by method

invocation mechanisms. In most concurrent programming languages, method

invocation is based either on the call-return based synchronous invocation or

future-based asynchronous invocation. The synchronous invocation mechanism

does not exploit concurrency between calling and called methods. The asyn-

chronous approach, on the other hand, allows calling and called methods to ex-

ecute in parallel. The calling method blocks if it tries to access a future object

which has not yet been created by the called method. The interaction between

the calling and the called methods is limited to reads and writes over the future

variable.
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Visual Programming Languages: In visual programming languages such as CODE [Bro85,

BAS85, NB92] and VISAGE [KZ93]. concurrent programs are represented as directed

graphs. Nodes of a graph denote component programs, whereas edges represent interac-

tions among the components. Concurrency is modeled implicitly by the fact that programs

associated with nodes are independent, and hence can execute in parallel.

Summary: Concurrent programming languages use both explicit and implicit approaches

for specifying concurrency among programs. Implicit approaches are more natural in that

they capture more semantic information about an application. However, explicit approaches

provide more control over concurrent program structures that can be specified.

2.3.2 Interaction Specification

We view interaction among components of a concurrent program as a set of semantic rela-

tionships among operations of the components. An interaction specification mechanism

therefore contains two parts: i) mechanisms for specifying interaction relationships be-

tween specific operation, and ii) mechanisms for combining the relationships in order to

represent the interaction between programs. In this section we look at various interaction

specification mechanisms by highlighting the different approaches to specifications of the

two parts. We first look at the mechanisms used for representing specific interaction rela-

tionships.

Interaction Relationships Specification

We classify interaction relationship specification approaches into two types: primitive-based

interaction specification and ADT interaction specifications.

Primitive-based Interaction Specification: In primitive-based approaches, interaction is de-

fined by identifying a synchronization primitive of a type, say S, and a set of operations,

say o1 and o2, on an instance of S. The semantics of the primitive determines a specific

interaction relationship between invocations of operations o1 and o2. Interaction among
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different programs is specified by using objects of type S and by invoking operations o1

and o2 on the variables suitably. We present many instances of such primitives below:

� Semaphores: In Semaphores [Dij65, Dij68b], operations o1 and o2 respectively are

P and V operations on semaphore variables. Interaction between invocations of P and

V is determined by the constraint that invocations of P are delayed until correspond-

ing V invocations have occurred.

� Communication primitives: Many languages support operations such as send and

receive for communication. These operations serve two purposes: i) transfer in-

formation from one node to another, and ii) act as a synchronization primitive. For

instance, in synchronous communication channels [Hoa78, Per87, Mil80] invoca-

tions of send and receive on a channel variable are delayed until both can occur.

In asynchronous channels [Sun90, AO93], on the other hand, every receive invo-

cation is delayed for a corresponding send invocation. There are no constraints on

invocations of send invocations.

� Logic variables: In logic-based concurrent programming languages, variables shared

among different clauses form the basis for specifying interaction relationships. The

clause

A(X) B1(X); : : : ;Bn(X)

holds true for all values of variables X . Hence, during an evaluation of a predicate Bi,

if the variable X is assigned a certain value, it must be assigned the same value in the

head and the body predicates of the clause. This implies that a shared variable is writ-

ten only once in an evaluation. Further, concurrent threads trying to read X are de-

layed until X has been written. Many programming languages such as PCN [FOT92]

and CC++ [CK92] have used the write-once shared variables to specify interaction

among concurrent programs.
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� Dataflow: A data dependency-based interaction relationship occurs in functional

programming languages. Here, reads of a parameter are delayed until the expression

associated with the parameter has been evaluated. Here, interaction occurs between

reads and writes over parameter variables.

� Tuple space operations: In Linda [Gel85, ACG86] interaction among programs is

specified by operations over a global tuple space. Programs place information in a

tuple form in the tuple space. They retrieve tuples by searching the tuple space. In-

teraction is specified by relationships between reads (in) and writes (out) of tuples:

i) in and out invocations are atomic, and ii) invocations of in are delayed until a

corresponding out has occurred.

� Critical regions: Critical regions and conditional critical regions [Hoa72, Bri72b,

Bri73, Bri72a] are used to assign unconditional or conditional mutual exclusion prop-

erties to a region with respect to other regions.

ADT Interaction Specifications: Here, synchronization primitives are used for specifying in-

teraction among procedures/methods of abstract data types [Par72] or objects. Interaction

among methods arises when they access common resources and data structures. They rep-

resent certain semantic dependencies such as data dependency, data consistency, and pri-

ority among method invocations. We place the different approaches to ADT interaction

specification into three categories:

� The first is the languages that use traditional synchronization primitives such as locks

and semaphores [CGH92, BS93], write-once-read-many variables [CK92], data flow

based data dependencies [Gri93], and signal variables [Hoa74] for specifying inter-

action among methods. In these approaches, methods include these primitives in or-

der to specify interaction.

� The second is approaches such as enable-based approaches [Geh93, Neu91, Tho92,

MWBD91, DKM+89, GC86], disable based approaches [Fro92, SG91], and behav-
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ior abstraction based approaches [KL89, TS89b, Mat93]. Here a set of boolean con-

ditions is associated with each method. A method is delayed until the associated

boolean conditions are true (in enable based approaches) or false (in disable based

approaches). Here, a conditional interaction relationship exists between a method

invocation and invocations of other methods of a class.

� The third is approaches that use regular expression and temporal logic expressions

for specifying interaction. For instance, in Path Expression [CH74, And79] interac-

tion among methods is represented as regular expressions. A regular expression here

can be thought of as representing a set of strings containing invocations of meth-

ods as symbols. A string represents a labeled total order of executions of meth-

ods [LSC81]. In SYSL [RK83], temporal logic operators such as always, until,

and eventually are used to assert relationships among method invocations.

Composition of Interaction Relationships

We now look at different mechanisms for combining interaction relationships. We empha-

size that it is essential that interaction specification mechanisms support techniques for rep-

resenting complex interactions as compositions of simpler interaction specifications. This

allows one to develop representations of interactions by partitioning a complex interaction

into a set of simple interactions, developing representations for the simple interactions and

combining them with suitable composition mechanisms. The modular approach to interac-

tion specification forms the basis for both modifiability and reusability of interaction spec-

ifications. We enumerate the different approaches below:

� Most concurrent programming languages use procedural mechanisms for combining

different interactions among operations. Here, operations on synchronization primi-

tives are like any other procedure call. Different interaction relationships therefore

are represented by procedurally manipulating the synchronization primitives, pro-

gram variables and the sequential program composition mechanisms such as if and
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while. However, since most procedural composition mechanisms are determin-

istic, many programming languages support additional constructs such as select

and accept in order to compose interaction relationships nondeterministically. For

instance, in ADA [Geh84] the accept statement is used to select, nondeterministi-

cally, one entry for execution from among many possible entries. Nondeterministic

selection constructs are derived from the notion of guarded commands first proposed

by Dijkstra. They occur in different forms in languages such as SR [AOC+88], Con-

current C [GR86], and Mentat [Gri93].

� In [Rep88] synchronization is a first class value. It is constructed from primitives

(send or receive over a channel), and composition operators such as “select” and

“filter.” The select operator allows one to choose a synchronization value from many

values, whereas the filter operator is used to select synchronization values on the ba-

sis of certain boolean conditions. Once a synchronization value has been constructed,

it can then be applied with a sync operator. This approach allows one to construct

interaction relationships by constructing synchronization values and combining them

with suitable operators. This approach is limited in that synchronization values can

only be constructed from a fixed set of primitives (send and receive) which have pre-

defined synchronization properties. This limits the possible kinds of interaction be-

haviors that can be constructed.

� In path expressions, the composition mechanism is based on regular expression oper-

ators. However, Bloom [Blo79] shows that path expressions do not support modular

development of interaction specifications because path expressions do not contain

general mechanisms for directly representing certain states of objects, and for speci-

fying interactions that depend on the states.
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2.4 Analysis

We now analyze the various approaches to concurrent programming. We do so by first

establishing the nature of parallel software development support that concurrent program-

ming languages must provide.

Design and implementation of concurrent programs is inherently complex. There

are a number of factors such as nondeterminism, complex interactions among programs,

program granularity, data partitioning, data distribution, load balancing, program schedul-

ing, and target machine configurations that drive the design of a parallel program. An

efficient and correct implementation of a concurrent program involves careful analysis of

the factors, interactions among them, and their representation. In addition, concurrency

is frequently used to represent problems that are large and computationally intensive. It

is therefore imperative that concurrent programming languages support software develop-

ment methodologies that allow modular and extensible development of large and complex

concurrent software systems.

Modularity allows one to partition complex systems into smaller and simpler mod-

ules, each of which can be developed independently and then combined suitably. Support

for extensibility is especially important because a complex concurrent system may evolve

incrementally through additions of component subsystems. Also, it may be extended in

order to implement new application requirements. Another important aspect of software

development is easy modifiability of concurrent programs, since changes in a concurrent

program may occur quite often during its lifetime, especially during the program develop-

ment process. In all of these cases, a concurrent programming language must support a

software development methodology that allows for changes and extensions in concurrent

programs to be easily carried out.

Portability of programs is also an important issue in the parallel domain. Since par-

allel machines vary widely in architecture, and since there is no consensus about a converg-

ing architecture, it is important that concurrent programs be easily modified to be able to

run on different architectures. Our view of portability of concurrent programs is that both
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examprog1()
f

channel buf;

producer(buf) || consumer(buf);
g

(a) Concurrent program

producer(channel buf)
f

while (TRUE) f
info = produce();
send(buf, info);

g
g

(b) Producer component

consumer(channel buf)
f

while (TRUE) f
info = receive(buf);
consume(info);

g
g

(c) Consumer component

Figure 2.1: An example concurrent program

portability and optimal efficiency of concurrent programs cannot be achieved at the same

time. The reason is that the optimal execution behavior of a concurrent program is driven

by a number of factors such as program scheduling, machine configuration, memory hierar-

chy, and interconnection network. These factors vary significantly from one machine to an-

other, and hence influence the design and structure of a concurrent program. The problem

of portability in such cases is, therefore, reduced to that of minimizing the possible changes

one needs to make in order to port a program from one parallel machine to another.

We focus our discussion on two aspects of concurrent software development in tra-

ditional concurrent programming languages: i) approaches for concurrent software devel-

opment, and ii) approaches for interaction specification. Both have direct implications for

modular and extensible development of programs as well as modifiability of the programs.
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2.4.1 Extensibility and Modifiability of Concurrent Programs

We observe that in a majority of concurrent programming languages, the general approach

to designing and implementing a concurrent program involves partitioning a problem into

a number of independent components, each of which is represented as a program. A rep-

resentation of a component includes specifications of both operations and interactions with

other components. We examine the extensibility and modifiability of such concurrent pro-

grams. We do so by taking a simple example concurrent program, and trying to extend and

modify it in various ways.

A Simple Concurrent Program

Let examprog1 be a concurrent program containing two components. One of the com-

ponents produces certain information, while the other consumes information. Semantic de-

pendency exists between the components. It specifies that information can consumed only

after it has been produced. We show a representation of examprog1 and its components

producer and consumer in figure 2.1.

The components interact with each other through send and receive primitives

over a communication channel. The channel is a FIFO asynchronous channel; it is a mail-

box [And91] where programs can deposit and retrieve information in a FIFO manner. Note

that specifications of the components include operations such as produce and consume,

and synchronization operations such as send and receive.

Extensibility of Concurrent Program

We extend examprog1 by adding another consumer component, for example because

the consumer program is slow relative to the producer program. In the extended pro-

gram, information produced by the producer is now shared between the two consumer

programs alternately. The extended program can be implemented by modifying producer,

consumer, or both components. We show one possible implementation of the extended

program in figure 2.2. Here, consumer1 is a modified version of consumer of fig-
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consumer1(channel buf, sync)
f

myTurn = myId % 2;
while (TRUE) f

if (myTurn) f
info = receive(buf);
consume(info);
send(sync, ack);
myTurn = FALSE;

g else f
ack = receive(sync);
myTurn = TRUE;

g
g

g

(a) Modified consumer program

examprog2()
f

channel buf;
channel sync;

producer(buf) k
consumer1(buf, sync) k
consumer1(buf, sync);

g

(b) Extended examprog1

Figure 2.2: A representation of an extended concurrent program

ure 2.1(c). Operations send and receive on the sync mailbox are used for representing

the interaction between the two consumer programs. We make note of the following:

� Interaction between the consumer components is implemented procedurally through

additional synchronization primitives, program variables, and language constructs.

� The extension requires that the consumer component be re-implemented.

Modifiability of Concurrent Programs

We now look at the modifiability of examprog1. We do that by defining additional con-

straints between the producer and consumer components: there are at most N uncon-

sumed values. The producer component therefore must wait for the consumer compo-

nent if there are N unconsumed values. This program is implemented by re-implementing

both consumer and producer components. One possible implementation is shown in

figure 2.3. In the implementation, the consumer program sends an acknowledgement af-

ter every received message.
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examprog3()
f

channel buf;
producer1(buf) || consumer2(buf);

g

(a) Modified concurrent program

producer1(channel buf)
f

while (TRUE) f
info = produce();
send(buf, info);
count = count+1;
if (count == N) f

ack = receive(buf);
count = count - 1;

g
g

g

(b) Modified producer

consumer2(channel buf)
f

while (TRUE) f
info = receive(buf);
consume(info);
send(buf, ack);

g
g

(c) Modified consumer

Figure 2.3: A representation of a modified concurrent program

Conclusion: Changes and extensions of a concurrent program may require that some or all

components be re-implemented. For instance, a modification of examprog1 required that

both producer and consumer (figure 2.3) be modified.

Implications

The above underlines many weaknesses in the concurrent program design method-

ology. The first is that concurrent programs are difficult to modify and extend since changes

and extensions may require that some of components be re-implemented. A concurrent

programming language must provide mechanisms that encapsulate different components

of a concurrent system so that changes in components or additions of components do not

involve changing some or all existing components of the concurrent program. However,
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as we saw earlier, changes in concurrent programs are often visible in most components.

Specifications of component programs are therefore not encapsulated. Also, changes in

components often involve making modifications in existing source code. Such modifica-

tions in source programs are error prone. Indeed, they are one of major sources of bugs in

concurrent programs.

This example also illustrates the problem associated with constructing new concur-

rent program abstractions in terms of existing program abstractions. A concurrent program

represents an abstraction of an activity of the application world, just as a sequential pro-

gram does. However, unlike other composition mechanisms such as sequential program

composition mechanism, concurrent program abstractions cannot always be composed eas-

ily with other program abstractions. Such compositions may often require changing the

abstraction itself. We call this phenomenon the program composition anomaly: the inabil-

ity to easily construct new concurrent program abstractions from existing program abstrac-

tions. Also, since programming languages use many composition mechanisms for defin-

ing abstractions in terms of other abstractions, the presence of the program composition

anomaly causes breakdowns in many of these composition mechanisms. One example is

the breakdown of inheritance in concurrent object-oriented languages. We describe these

breakdowns in Chapter 4.

One of the major impacts of the program composition anomaly is that specifica-

tions of components cannot be reused easily. For instance, in three different versions of

examprog1, much of the behavior of the producer and consumer component remains un-

changed. However, we were forced to create different versions of the components by dupli-

cating much of code from one version to another. In addition, synchronization code cannot

be reused because it is embedded inside the body of the program.

The program composition anomaly also inhibits porting concurrent programs across

parallel architectures. It is usually not possible to define a concurrent program that executes

optimally on parallel machines with different architectures. Different versions of the pro-

gram must be constructed that use architecture-specific parameters such as program granu-
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larity, interaction patterns, and underlying machine configuration to achieve efficiency. De-

velopment of concurrent programs for different architectures can be facilitated if the pro-

grams can be derived easily by composing components that are common to the different

architectures. However, in the traditional concurrent programming approaches, porting the

program from one architecture to another often requires major changes in many compo-

nents.

Finally, the conventional approach to development of concurrent systems is not

modular. Specifications of components are closely coupled. Design and implementations

of components therefore must be done with other components in mind.

2.4.2 Interaction Specification

We now analyze the approaches to interaction specification. We note that in most concur-

rent programming languages, interaction is usually specified in terms of synchronization

primitives such as send-receive, semaphores, and write-once variables. Also, procedural

mechanisms are used for composing the synchronization primitives so that a specific rela-

tionship can be specified. For instance, in the implementation of examprog2 (figure 2.2),

variables such as myTurn and myId along with certain procedural control flow constructs

are used for implementing additional constraints between the two consumer components.

Interaction relationships among operations of components are therefore specified

indirectly through synchronization primitives. For instance, in order to define an interaction

relationship between operations o1 and o2, one must specify suitable primitives that exe-

cute before and/or after o1 and o2 in order to represent the interaction relationship between

the operations. This approach to interaction specification requires one to reason about the

specifications of the operations in order to specify an interaction. In cases where concur-

rent systems may contain large number of components interacting in complex ways, this

approach is clearly inadequate. Also, formal reasoning with programs specified in such a

way is difficult. In addition, most approaches do not support modular development of inter-

actions because of lack of a powerful composition mechanisms for combining interaction
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relationships. Interactions are therefore difficult to specify, modify, and cannot be easily

reused.

2.5 Summary

We presented concepts of concurrent programming. We also presented a brief survey of

different approaches to concurrent programming. In the majority of concurrent program-

ming approaches, specifications of components of a concurrent program include both oper-

ation and synchronization primitives. We showed that concurrent programs specified in this

manner are difficult to extend and modify: changes in such programs require that some or

all components be re-implemented. Also, concurrent program abstractions cannot be eas-

ily constructed from other concurrent program abstractions. One of the implications of this

phenomenon is that specifications of component and interaction may not be reused easily.
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Chapter 3

The C-YES Model of Concurrent

Computation

3.1 Introduction

In the previous chapter we showed that concurrent programs are difficult to modify and ex-

tend. Changes and extensions in a concurrent program require that some or all components

be re-implemented. More importantly, the phenomenon underlines the problem of the pro-

gram composition anomaly: concurrent program abstractions cannot be composed easily

from other program abstractions. Such compositions may often require changing the pro-

gram abstractions themselves. In addition, presence of the program composition anomaly

causes breakdowns in other composition mechanisms such as aggregation and inheritance.

We also showed that most approaches to interaction specification are based on a set of

synchronization primitives. Interaction specifications often involve manipulation of pro-

gram variables, synchronization primitives, and computations operationally. It is difficult

to specify interaction through such interaction specification mechanisms. In this chapter,

we examine the reasons for the program composition anomaly. We also present a solution

for its resolution. We then develop the conceptual and theoretical foundation of a model of

concurrent computation that is based on the solution.
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The program composition anomaly arises because specifications of component pro-

grams include specifications of interactions. Changes in a concurrent program may change

interactions among its components. Since interactions are embedded inside the compo-

nents, such changes require modifying the implementations of the components. The pro-

gram composition anomaly can therefore be resolved by separating the specifications of

interaction from the specifications of the components.

We use the concept of separation to derive a model of concurrent computation,

called the C-YES model. In the C-YES model, specifications of computations and inter-

actions are completely separated in a concurrent program representation. There are three

elements of the C-YES model:

(a) Concurrent program composition: The model defines a composition mechanism for

specifying concurrent programs. Here a concurrent program is specified by composing

separate specifications of components and their interactions. Such a specification of

concurrent program is easier to modify and extend. For instance, additions of compo-

nents may only require changes in the specifications of interaction.

(b) Representation of component programs: The C-YES model defines a representa-

tion of component programs. In this representation, a component program is repre-

sented by operations it performs, and a set of entities called interaction points. Interac-

tion points denote operations where a component may interact with other components.

Interaction among components is represented by specifying the manner in which the

interaction points (operations) of a component may affect or be affected by the inter-

action points of other components. Note that such a model of component programs

forms the basis for including a component program in different concurrent program

compositions, where each program composition defines a different interaction for the

component by specifying suitable interactions for its interaction points.

(c) Interaction specification mechanisms: The C-YES model contains a declarative

mechanism for specifying interactions. The interaction specification mechanism con-
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tains a primitive for specifying execution ordering relationships, and a set of logical

operators (such as and, or, forall, and exists) for combining the relationships. The ap-

proach to interaction specification here is to first partition complex interactions among

component programs into a set of simpler interactions between pairs of component pro-

grams. The simpler interactions can be represented as relationships among the inter-

action points of the programs, and then combined to represent the global interaction.

This approach is the basis for easy modifiability and reusability of interactions specifi-

cations.

This chapter is organized as follows: We define a number of terms in Section 3.2. In Sec-

tion 3.3 we examine the reasons for the modularity and extensibility problems. We also

present the manner in which they can be resolved. In Section 3.4, we give the details of

the C-YES model. Section 3.5 contains a number of examples that illustrate the manner in

which concurrent programs can be specified in the C-YES model. We analyze the C-YES

model with respect to extensibility and modifiability of concurrent programs in Section 3.6.

Section 3.7 provides a summary.

3.2 Definitions

There are three components [Sch86] of a programming language - i) syntactic mechanisms

for representing programs, ii) semantics for interpreting a user program, and iii) pragmatics

used for evaluating applicability, suitability, and efficiency of the language. In this section

we establish the syntactic and semantic mechanisms that we use for specifying and inter-

preting the C-YES model.

Most programming languages identify a set of primitive abstractions and composi-

tion mechanisms for defining program or data abstractions in terms of other — primitive or

non-primitive — abstractions. An example of a composition mechanism is the sequential

program composition mechanism. We use the following terms to denote syntactic repre-

sentations of programs.
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Definition 3.2.1. (Action). An action is an identifiable operation. �

Actions represent the alphabet that a programmer uses for constructing a program. For

instance, operation produce denotes an action.

Definition 3.2.2. (Program). A program represents composition of primitive and nonprim-

itive actions. �

An example of a program is the producer program shown in figure 2.1. The producer

program is composed from the produce action and the while program composition

mechanism. A program may contain both sequential and concurrent compositions of ac-

tions. We use the syntactic mechanisms of the C++ programming language [Str91] for

specifying the sequential aspects of a program or an action.

We now define a number of terms that we use for specifying executions of pro-

grams.

Definition 3.2.3. (Computation). A computation is an execution of a program. �

Every program has a (possibly infinite) set of computations associated with it.

Notation: Let terms ξs(C) and ξ(C) respectively denote the set of computations and some

computation of program C. Note that ξ(C) 2 ξs(C).

Definition 3.2.4. (Event). An event is an identifiable occurrence of an action in a compu-

tation. �

The relationship between an action and an event is shown by the following program:

for (i = 0; i < 5; i = i+1)

sum();

In this program sum denotes an action. In a computation of the program, action sum is

executed five times. Every execution of sum within the context of the computation denotes

a unique event.
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Notation: We represent an event in a computation by Action[Selector]. Here, the

term Selector is used to uniquely identify an occurrence of Action.

We use the notion of event occurrence number as a selector. An event occurrence number,

i, of an event specifies that the event is the ith invocation of an action in a given computa-

tion. For instance, term produce[i] denotes the ith invocation of produce action in

a computation of examprog. Note that relative orderings in occurrence numbers merely

specify the order in which invocations of an action occur; they do not suggest that execu-

tions of the invocations are serialized. For instance, it is possible for an event, say X[5],

to occur before an event, X[4], in a computation.

Definition 3.2.5. (Event Ordering). The event ordering relation < between two events is

an asymmetric, non-reflexive, and transitive relation. The relation e1 < e2 specifies that e1

occurs before e2. �

Relation < models execution ordering between two events. It is identical to relation hap-

pens before [Lam78].

Definition 3.2.6. (Concurrent Event). Events e1 and e2 are concurrent if there is no order-

ing relation between the events. �

Notation: We use (e1 k e2) to denote concurrency between events e1 and e2.

e1 k e2 = :((e1 < e2)_ (e2 < e1))

Definition 3.2.7. (Pomset [Pra86, Gai88]). A labeled partial order is a 4-tuple (V;Σ;<;µ)

consisting of i) a set V of events, ii) an alphabet Σ of actions, iii) a partial order < on set V ,

and iv) a labeling function µ : V ! Σ assigning symbols to events, each labeled event repre-

senting an occurrence of the action labeling it. Each (V;Σ;<;µ) arises from a computation.

�

Notation: We will write (V;<) for pomsets when Σ and µ can be derived from the context.

Notation: We will use e 2V to mean that e is an event in computation (V;<).
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Definition 3.2.8. (Event Dependency Graph). An event dependency graph G = (V;E) is a

directed graph such that i) V is a set of events, and ii) (e1;e2) 2 E iff e1 < e2. �

Each event in V denotes a vertex, whereas each < relation between two events is repre-

sented as an edge between two vertices. We use event dependency graphs to visually rep-

resent computations.

3.3 Resolution of Program Composition Anomaly

We first explore the reason for the program composition anomaly. We observe that there

are two distinct behaviors of components of a concurrent program: computational behav-

ior and interaction behavior. The computational behavior of a component specifies the

operations performed during an execution of the component. For instance, computational

behavior of the producer component in examprog is to produce certain values. The in-

teraction behavior of a component determines the manner in which the component affects

or is affected by other components. For instance, the interaction behavior of the consumer

component in examprog specifies that every invocation of the consume action is depen-

dent on a preceding invocation of the produce action.

The program composition anomaly arises because specifications of component pro-

grams contain specifications of both — computational and interaction — behaviors. The

reason is that changes in a concurrent program (either by extension or modification) may

induce changes in interaction behaviors of its components. However, since specifications of

the components include specifications of both behaviors, changes in the interaction behav-

iors can be effected only by re-implementing the components. For instance, computational

behaviors of the producer and consumer components remains unchanged in different

variations of the examprog program; only their interaction behaviors change. However,

one must create different versions of the components because the specifications of the in-

teraction behavior are embedded in the specifications of the components.
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3.3.1 Separation of Concerns

We now present the general characteristics that a concurrent program composition mech-

anism must provide in order to support easy modifiability of concurrent program as well

as a resolution of the program composition anomaly. The program composition anomaly

can be resolved if specifications of computational and interaction behavior are separated.

The requirement for the separation highlights the orthogonality of the two behaviors. We

think of the computational behavior of a component as its intrinsic property. It exists inde-

pendently from the component’s possible inclusions in different concurrent programs. For

instance, the role of the producer component is to produce certain value. It is indepen-

dent of the fact that it can be combined with a single consumer, multiple consumers, or even

another producer. The intrinsic property — producing information — does not change. Its

interaction behavior, on the other hand, is dependent on other components of a concurrent

program. It should therefore be specified separately from the specifications of the compu-

tational behavior, and when the concurrent program is defined.

On the basis of separation of concerns, we can define a concurrent program as a

composition of two entities: specifications of computational behavior of its components

and specifications of interaction behavior among the components. Let program examprog

be represented in the following manner:

examprog= hS; Ii

In this expression, S = fproducer, consumerg. The expression specifies that pro-

gram examprog is composed from components producer and consumer, and inter-

action I between the components. Specifications of producer and consumer contain

specifications of only their computational behaviors.

3.3.2 Implications of Separation of Concerns

Separation of specifications of the two behaviors has direct implications on the modifia-

bility of concurrent programs, reusability of both computational and interaction behavior
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specifications, and the concurrent program design methodology. For instance, examprog

can be easily extended by defining a composition of the form:

examprog1= hS[fconsumerg; I1i

In the above, I1 represents interaction among the producer and the two consumer pro-

grams. Neither the producer nor the consumer component needs to be modified. Sim-

ilarly, examprog can be easily modified:

examprog2= hS; I2i

In the above, I2 represents the modified interaction behavior between the components.

The above approach to concurrent program composition allows us to encapsulate

the specifications of component programs. For instance, it is possible to change the imple-

mentation of a component in isolation from other components. Modifications of a concur-

rent program are therefore localized in that only specifications of interaction behaviors may

change when computational behaviors of components change.

Separation of specifications of the two behaviors also supports reusability of com-

ponent programs. For instance, once separation of specifications of computational and in-

teraction behavior is made, specifications of producer and consumer are reused in dif-

ferent versions of examprog. Also, since specifications of interaction behaviors are not

embedded inside the bodies of components, they can be reused in definition of concurrent

program compositions as well.

The separation of concerns approach to concurrent program composition empha-

sizes a concurrent program design methodology where program design involves identifying

components whose computational behaviors do not change over different implementations

of a concurrent program. Such an approach allows construction of different versions of a

program quickly from core components. Also changes in components can be isolated to a

subset of computational and interaction behavior specifications, thereby reducing the pos-

sibility of introducing bugs.
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3.4 The C-YES Model

The C-YES model is a model of concurrent computation. It is based on the concept of

separation of concerns. It supports a modular and extensible approach to concurrent pro-

gramming. There are three elements of the model:

� It defines a concurrent program composition mechanism in which specifications of com-

putational and interaction behaviors are completely separated.

� It contains an extended model of component programs in order to incorporate specifica-

tions of their interaction behavior.

� It contains a declarative approach to interaction specification.

We first describe the composition mechanism.

3.4.1 Concurrent Program Composition

Definition 3.4.1. (Constrained concurrent program composition). The expression

C = (C1 kC2 k : : : kCn)

where

φ

specifies a concurrent program C. Program C is composed from components C1;C2; : : : ;

and Cn and interaction specification φ. �

The above definition underlines the separation of computational and interaction behavior

specifications. Components C1;C2; : : : ; and Cn contain specifications of their computa-

tional behaviors only. Interaction among the components is defined separately by an ex-

pression φ. The above definition is based on the observation that the role of a concurrent

program composition mechanism is to establish two kinds of relationships among events

of computations: concurrency and interaction. Concurrency represents semantic indepen-

dence among the events. These events can occur in parallel. Interaction, on the other hand,
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represents semantic dependencies among the events. Semantic dependencies arise because

an event may depend on the information produced by another event (data dependency),

events must access a resource in an ordered manner (resource consistency and fairness), or

events must satisfy other application specific semantic constraints.

The k operator in the constrained concurrent program composition expression is

used to establish the concurrency relationship whereas expression φ is used to define the

interaction relationships among the components C1;C2; : : : ; and Cn. The semantics of the

composition, therefore, is that events of computations of C1;C2; : : : ; and Cn are concurrent

by default. Hence, during an execution of C, they may occur in parallel. However, there

are certain events that interact with each other. Occurrences of these events must satisfy all

ordering constraints specified by the expression φ.

The approach to program design in the C-YES model therefore is to partition a con-

current program into a set of components, define their computational behaviors, identify

events that interact, and specify interaction relationships among them.

3.4.2 Representation of Component Programs

Given that specifications of component programs do not include specifications of interac-

tion behavior, we focus our attention on formulating a model of component programs that

provides an answer to the question: how are component programs represented so that their

interaction behaviors can be specified?

We construct a model of component programs by observing the execution behav-

ior of a component: during execution of a concurrent program, the component repeatedly

performs certain action. Occasionally, it interacts with its environment (other components)

during the execution of certain actions. We call these actions interaction points. For in-

stance, in programming languages such as CSP [Hoa78] components are represented by

processes. A process interacts with other processes by sending and receiving messages on

communication channels. The sends and receives are the actions where processes interact

and, thus, form the interaction points of the processes.
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We observe that there are two elements of an interaction point: the first is its iden-

tification, which determines the action at which a program may interact. In CSP, for in-

stance, names of communication channels along with the send and receive actions identify

the interaction points of a process. The second is its role in an interaction. The role of an

interaction point determines the manner in which a program participates in an interaction at

the interaction point. For instance, the role associated with a synchronous “receive” inter-

action point determines a process’s behavior at the interaction point: the process is delayed

until a message arrives.

In the C-YES model, the two elements of an interaction point — its identification

and its role — are separated. Interaction points of a program are identified when the pro-

gram is specified. However, the roles of the interaction points are determined when the

program is composed with other programs by the concurrent program composition expres-

sion. A component program in the C-YES model is represented by its computations and

interaction points. We call such programs interacting programs.

We now look at the mechanisms that we use for defining interacting programs. The

approach taken here is to extend the notion of sequential programs in order to capture in-

teraction points of programs. A specification of a sequential program has two components:

i) interface of the form fs(p1; p2; : : : ; pn), where variables p1; p2; : : : ; and pn parameter-

ize the execution behavior of fs; and ii) an implementation specifying its computational

behavior. We extend this specification in the following manner:

1. Interface: An interacting program fc has an interface of the form

fc(p1; : : : ; pn ; i1; : : : ; im)

Here p1; p2; : : : ; and pn are parameter variables. Interaction parameters i1; i2; : : : ;

and im denote interaction points of fc.

2. Implementation: An implementation of an interacting program is partitioned into

two parts. The first specifies computational behavior of the program. The second is a
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mapping between the interaction parameters i1; i2; : : : ; and im and the actions of the

program.

Note that a sequential program is a special instance of an interacting program in that it

identifies — implicitly — two interaction points: i) entry point, where control and values

of the parameters are passed and ii) exit point, where the block terminates and returns any

values. All other interaction points are encapsulated.

We now look at the nature of interaction points and how they are specified. Since

events form the basis for specifying interactions in the C-YES model, an interaction point

represents a set of events. There are two ways in which the mapping between the interac-

tion parameters and set of events can be specified:

producer(buffer info)
f
while (TRUE) f
info.produce();
g
g

(a) Representation of producer

consumer(buffer info)
f
while (TRUE) f
info.consume();
g
g

(b) Representation of consumer

Figure 3.1: Representations of interacting programs

� Implicit: In this approach, interaction points of a component are derived from the param-

eter variables: all actions on objects denoted by the variables are the interaction points

of the component. (We assume that the parameters represent objects). For instance, we

show interacting program representations of producer and consumer in figure 3.1.

Note that they do not contain any interaction behavior specifications. Interaction points

of the producer program are represented by the term info.produce(), which de-

notes the set of all produce events associated with the producer program in a com-

putation.

� Explicit: In this approach, mappings between the interaction parameters and the sets of
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events are specified by explicitly labeling the sets of events. Interacting program rep-

resentations of producer and consumer are shown in figure 3.2. The interaction

parameters prod and cons explicitly name sets of events of the programs.

producer(buffer info; prod)
f
computation:
while (TRUE) f
info.produce();
g
interaction point:
prod names info.produce;

g

(a) Representation of producer

consumer(buffer info; cons)
f
computation:
while (TRUE) f
info.consume();
g
interaction point:
cons names info.consume;

g

(b) Representation of consumer

Figure 3.2: Explicit specification of interaction points

The implicit mapping approach has the advantage that additional language mechanisms for

specifying interaction points are not needed. Also, the scope rules of the parameters can

be used to specify the scope rules of the interaction points. However, approaches that use

implicit mappings do not have precise control over the visibility of interaction points: ei-

ther all method invocations on an object are visible or none are. Also, it is not possible to

capture an event that is not a method of a parameter object. This limits the kinds of inter-

actions that can be specified. The explicit approach, on the other hand, provides precise

control over the visibility of interaction points. However, this approach requires additional

language mechanisms for specifying the labeling and the scope rules of interaction points.

We chose the implicit approach for specifying interaction points in CYES-C++ (see

Chapter 5) for two reasons: the first is that we wanted to minimize the possible changes in

the base language C++ of CYES-C++. The second is that since most interactions occur

among actions over objects that are either parameter objects or global objects, the implicit

approach can be used to represent all such actions as interaction points.

Two interacting programs fc(v1; : : : ;vn ; i1; : : : im) and gc(w1; : : : ;wl ; j1; : : : ; ik) can
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thus be composed by the constrained concurrent composition mechanism to specify a con-

current program:

fc(v1; : : : ;vn) k gc(w1; : : : ;wl)

where

φ

Here, interaction specification φ is defined over the interaction points of programs fc and

gc.

3.4.3 Interaction Specification Mechanism

We now describe the interaction specification mechanism of the C-YES model. Unlike

many interaction specification approaches, where interaction among programs is specified

in terms of a set of synchronization primitives and is composed through procedural mech-

anisms, the approach here is declarative and compositional: complex interactions among

programs are specified by first partitioning the interactions into a set of simpler interactions

between pairs of component programs. Each of these interactions is individually repre-

sented and then combined to represent the global interaction. We will show that this ap-

proach leads to a modular development of interaction specification. Also, it forms the basis

for reusing specifications of interactions.

We first present the conceptual foundations of the interaction specification mecha-

nism. We then describe the interaction specification mechanism.

Approach

We describe our approach to interaction specification by examining the concept of concur-

rent program composition in terms of computations of programs, and the role synchroniza-

tion primitives play in a concurrent program composition. We first look at the sequential

program composition mechanism. A sequential program, such as the one shown in fig-

ure 3.3(a), contains a set of actions and combines these actions by the ; and for composi-

tion mechanisms. A computation of this program is shown as an event dependency graph
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x = 1;
for (i = 1; i < 2; i++)

sum();

(a) A sequential program

sum[1]

x=1[0]

sum[0]

(b) A computation

Figure 3.3: A sequential program and one of its computations

in figure 3.3(b). The role of the sequential composition mechanisms is to order occurrences

of events. For instance, operator “;” determines that event (x:= 1)[0] occurs before

the sum events, whereas operator for determines that sum[0] occurs before sum[1].

We now look at the role that concurrent program composition plays in defining a

concurrent program: assume that a concurrent program C is composed from components C1

and C2. Specifications of the components contain both actions and synchronization primi-

tives. Figure 3.4 shows an event dependency graph associated with a specific computation

of C. Event dependency graphs ξ(C1) = (V1;<1) and ξ(C2) = (V2;<2) respectively repre-

sent specific computations of C1 and C2 in the computation of C. Note that there are two

kinds of edges in G: one is the edges between events of a single computation and other is

the edges between events of different computations. Edges between the events of a single

computation are shown in the figure by the solid lines. For instance, the edge between e1

and e3 shows the order in which they occur. These orderings are specified by the computa-

tional behavior specifications of the component programs.

The second are the edges that exist between the events of ξ(C1) and ξ(C2) are

shown by the dashed lines. These edges specify the order in which the events of ξ(C1)

and ξ(C2) execute with respect to each other. For instance, occurrences of the events e1

and f1 are ordered. We call such edges interaction edges. The interaction edges represent

orderings among events so that occurrences of the events preserve certain data dependency,

data consistency, mutual exclusion, and other semantic constraints. For instance, events e2
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ξ(C1) ξ(C2)

e1

e3
e2

e4

f1

f2

f4

f3

Figure 3.4: Representation of concurrency and interaction in event dependency graphs

and f2 may respectively be read and write events over common data. Also, the application

may specify the constraint that a read event happens only after a write event (thereby rep-

resenting data dependencies among the events). We observe that the notion of execution

orderings among events can be extended to the concurrent domain as well: in addition to

the orderings between the events of a computation, orderings may exist between events of

computations of different components as well. One of the goals of operations over syn-

chronization primitives is to create these orderings. The program therefore must include

synchronization primitives such that

e2 < f2

in a computation of the program.

Our approach to interaction specification, therefore, is based on the following two

observations:

� interaction between two events can be represented by directly specifying execution

orderings between them, and

� interaction among programs can be defined by a set of relationships among events.

For instance, interaction among C1 and C2 is defined by relationships between e1 and

f1, e2 and f2, e3 and f3, e4 and f3, and e4 and f4.

Further, we can partition the interaction edges among the events according to the actions

that the events belong to. As shown in figure 3.5, a1, a2, b1 and b2 denote the actions
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a1

ξ(C1)

e1

e3
e2

e4

f1

f2

f4

f3

ξ(C2)ξ(C1)

f1

f2

f4

f3

ξ(C2)

a2

b1

b2

Figure 3.5: Interaction among programs as a set of relationships among invocations of
actions

that the events correspond to. Interaction among programs can, therefore, be defined by

specifying relationships among the occurrences of the actions. For instance, occurrences of

a2 are related to occurrences of both b1 and b2. This approach to interaction specification

can be generalized for specifying interaction among programs in the following manner:

� Decompose interaction among components of a concurrent as a set of local relation-

ships between pairs of programs.

� Identify local relationships among sets of events of two components. Each local re-

lationship is a set of relationships between event sets. For instance, the interaction

between C1 and C2 can be represented by a set of relationships among the event sets

a1, b1, a2 and b2 as shown in figure 3.5.

� Identify and represent the relationships among the events of the events sets. Combine

the relationships between the events to represent the relationship among the event

sets.

� Combine the relationships between the event sets to define the local interactions.

� Finally, combine the representations of the local interactions to represent the global

interaction.

The interaction specification mechanism can therefore be defined by defining mechanisms

for representing relationships between events, and by a set of operators for combining rep-
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resentations of different relationships. We present one such interaction specification mech-

anism below.

Event Ordering Constraint Expressions

Interaction among programs in the C-YES model is specified by an algebraic expression,

called the event ordering constraint expression. It is used to represent semantic depen-

dencies among events of component programs by specifying execution orderings — deter-

ministic or nondeterministic — among the events. An event ordering constraint expression

(evoce) is constructed from a set of primitive ordering constraint expressions and a set of

interaction composition operators. A primitive ordering constraint expression captures in-

teraction between two events, whereas the interaction composition operators are used to

represent nondeterministic interactions as well as interactions among sets of events.

Primitive Event Ordering Constraint Expression: A primitive event ordering expression de-

fines the interaction relationship between specific occurrences of two actions. It imposes

constraints on execution orderings of two events. A primitive event ordering constraint ex-

pression is represented as:

φ= (e1 < e2)

A computation satisfies φ if e1 occurs before e2 in the computation. The order of exe-

cution between the events is determined by issues such as data dependency, safety, and

progress properties. Primitive ordering constraint expressions allow one to capture interac-

tions when they are translated to the most primitive level of computations, that is, events.

For instance, e1 may denote an occurrence of a write action, whereas e2 may denote an oc-

currence of a read action. The ordering relationship therefore represents data dependency

between the events.

Interaction Composition Operators: Interaction composition operators are used to combine

primitive and non-primitive event ordering constraint expressions to construct more com-

plex expressions. A primitive ordering constraint expression specifies a deterministic or-

dering relationship between two events. In real applications both nondeterministic interac-
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C1

e2

C2

e1

(a) Ordering constraint

C1

e4

C2

e3

(b) Ordering constraint

e1

e3 e4

e2

ξ(C2)ξ(C1)

(c) A computation

Figure 3.6: Application of and constraint operator and a valid computation

tions, and interaction among sets of events are possible. We present a set of operators that

can be used to construct event ordering constraint expressions that represent such interac-

tions.

� And constraint operator (̂): The and constraint operator ̂ is used for combining

event ordering expressions in order to represent interactions among sets of events. It

allows one to express the fact that a set of interaction relationships holds in a compu-

tation. An event ordering constraint expression containing ̂ is defined:

φ= (φ1 ̂ φ2)

Intuitively, a computation satisfies event ordering constraint expression φ if it satis-

fies both φ1 and φ2.

Example 3.4.1. (̂ operator). Let events of program C1 and C2 be constrained by

two ordering relationships as shown in figure 3.6(a) and 3.6(b):

φ= (e1 < e2) ̂ (e3 < e4)
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C1

e2

C2

e1

(a) Ordering constraint

C1

e4

C2

e3

(b) Ordering constraint

e2e1

ξ(C1) ξ(C2)

(c) A computation

e4e3

ξ(C1) ξ(C2)

(d) A computation

e1

e3 e4

e2

ξ(C2)ξ(C1)

(e) A computation

Figure 3.7: Application of or constraint operator and valid computations

A computation containing C1 and C2 satisfies φ if event e1 occurs before event e2 and

event e3 occurs before event e4 in the computation. A valid computation is shown in

figure 3.6(c). �

� Or Constraint Operator(_ ): The or constraint operator _ is used to incorporate

nondeterminism in the orderings of events. An event ordering constraint expression

containing _ is defined:

φ= (φ1 _ φ2)

Intuitively, a computation satisfies event ordering constraint expression φ if it satis-

fies at least one of event ordering constraint expressions φ1 or φ2.

Example 3.4.2. (_ operator). Let events of program C1 and C2 be constrained by

nondeterministic ordering relationships as shown in figure 3.7(a) and 3.7(b):

φ= (e1 < e2)_ (e3 < e4)

There are three possible computations as shown in figure 3.7. In the first, event
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C2C1

S
e2

(a) forall constraint

e2

S

ξ(C1) ξ(C2)

(b) A computation

Figure 3.8: Application of forall constraint operator and a valid computation

e1 occurs before event e2 (figure 3.7(c)), whereas in the second e3 occurs before

e4(figure 3.7(d)) . In figure 3.7(e), both relationships hold true. �

� Forall operator: The and constraint operator ̂ is used for combining two event

ordering constraint expressions. Forall extends ̂ in order to specify ordering con-

straints over sets of events. Let S be a set of events and φ(e) be an event ordering con-

straint expression over event e. The relationship between forall and ̂ is shown

below:

forall var e in S:

φ(e)
= ̂

e2Sφ(e)

Example 3.4.3. (Forall operator). Let events of program C1 and C2 be constrained

by the expression (see figure 3.8(a)):

forall var e in S:

e< e2

A valid computation is shown in figure 3.8(b). Here, all events of set S occur before

event e2. �

� Exists operator: The exists operator is similar to forall in that it extends the

or constraint operator over a set of events. Let S be a set of events and φ(e) be an

event ordering constraint expression over event e. The relationship between exists

and _ is shown below:
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exists var e in S:

φ(e)
= _

e2S φ(e)

3.4.4 Formal Semantics of Concurrent Program Composition

We now present the formal semantics of the C-YES model. We do so by defining computa-

tional structures that are created when a concurrent program is executed. A computational

structure associated with a computation of a concurrent program identifies events in the

computation, and the ordering relationships among the events. A computational structure

can be represented in two ways:

� Interleaving model: In the interleaving model, a computation of a concurrent pro-

gram is represented by an interleaved execution of the atomic actions of the com-

ponents. Here, concurrency among events is represented as nondeterministic order-

ing relationships among the events. The interleaving model has been widely used

for defining semantics of many concurrent programming languages [Hoa78, Mil80,

Hen88]. It has also been used for proving safety and progress properties of pro-

grams [CM88, MP92].

� True concurrency model: In the true concurrency model, concurrency among events

of a computation is represented by lack of execution orderings among the events.

We chose the true concurrency model for defining the semantics of the C-YES model be-

cause it is more natural for modeling entities that are hierarchical, relativistic, and non-

atomic. Since our main interest here is in examining the computational structures of con-

current programs that result from constrained concurrent program composition and event

ordering constraint expressions, the true concurrency model allows us to focus our atten-

tion on only those events that have causal relationships due to interaction.

Let a concurrent program C be defined:

C = (C1 kC2) where φ
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<evoce> ::= <primEvoce>
j <nonPrimEvoce>

<primEvoce> ::= ( <eventId> < <eventId> )
<nonPrimEvoce> ::= <evoce> _ <evoce>

j <evoce> ̂ <evoce>
j forall var <varIter> in <eventSet>

<evoce>
j forall occ <varOcc> in <eventSet>

<evoce>
j exists var <varIter> in <eventSet>

<evoce>
j exists occ <varOcc> in <eventSet>

<evoce>
j (<evoce>)

Figure 3.9: BNF expression for event ordering constraint expressions

The computational structure associated with a computation of program C is represented

by a pomset (see Definition 3.2.7). It is specified by defining computational structures

associated with computations of C1 and C2 in the computation of C, and the ordering re-

lationships that exist among the events of the computational structures. A computation

ξ(C) = (VC;<C) of C is thus defined:

VC = VC1 [VC2

<C = <C1 [<C2 [<φ

In the above equation, terms ξ(C1) = (VC1 ;<C1) and ξ(C2) = (VC2 ;<C2) respectively rep-

resent computations of C1 and C2 in the computation ξ(C). The set <φ specifies the set

of ordering relationships between events of ξ(C1) and ξ(C2). It represents interactions be-

tween the components, and is defined by the event ordering constraint expression φ. We

now describe the manner in which <φ can be evaluated from event ordering constraint ex-

pressions.

The BNF expression for specifying event ordering constraint expressions is shown

in figure 3.9. Here, terms <eventId> and <eventSet> respectively denote events
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and event sets. Terms <varIter> and < varOcc> denote variables used for iterating

over event sets. Term <varOcc> is different from <varIter> in that it ranges over

occurrences numbers of events in an event set. Events can thus be represented by specifying

integer expressions over <varOcc> variables. The term <varIter> on the other hand

denotes events without making any references to their occurrence numbers. We develop the

semantics associated with event ordering constraint expressions by defining a term, called

the Ordering Constraint Set:

Definition 3.4.2. (Ordering Constraint Set). An ordering constraint set S is a set of sets of

ordered pairs (e1;e2) such that e1 and e2 are events and

(e1 < e2)

�

Notation: We use S(φ) to denote the ordering constraint set associated with the event or-

dering constraint expression φ.

We now specify the mechanisms for deriving ordering constraint sets, S(φ), from an event

ordering constraint expression, φ.

� Primitive event ordering constraint expression: For expression

<evoce>::= event id1 < event id2

S(<evoce>) = ffevent id1, event id2gg

� And constraint operator: For expression <evoce>::= φ1 ̂ φ2

S(φ1 ̂ φ2) =
[

si2S(φ1)

(

[
s j2S(φ2)

si[ s j)

� Or constraint operator: For expression <evoce>::= φ1 _ φ2

S(φ1 _ φ2) = S(φ1)[S(φ2)

� forall operator: For expression
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φ = forall var e in S:

φ1(e)

S(φ) = S( ̂e2S φ1(e))

� exists operator: For expression

φ = exists var e in S:

φ1(e)

S(φ) = S( _
(e2S) φ1(e))

We now formalize the semantics associated with concurrent constraint composition expres-

sions.

Definition 3.4.3. (Sat). For a computation (V;<v) and an event ordering constraint expres-

sion φ, the term Sat((V;<v);φ) is true if

h9 s : s 2 S(φ) :

h8 (ei;e j) : (ei;e j) 2 s :

(ei 2V )^ (e j 2V )^ (ei <v e j) i i

We say that (V;<v) satisfies φ. �

Intuitively, a computation satisfies φ, if all orderings specified in at least one sj;s j 2 S(φ),

are preserved in the computation. Note that the notion of Sat is used merely to ensure that

ordering constraints specified in φare preserved in the computation. It does not ensure that

computations do not contain additional orderings. For instance, figure 3.10 shows three

computations ξ1, ξ2, and ξ3, each of which satisfy the constraint that e1 and e2 are concur-

rent. In figure 3.10(a) the events are concurrent, whereas in figure 3.10(b) e1 occurs before

e2. Similarly, e2 occurs before e1 in figure 3.10(c).
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e1

ξ1

e2

(a) Concurrent e1 and e2

e1

ξ2

e2

(b) e1 before e2

e1

ξ3

e2

(c) e2 before e1

Figure 3.10: Valid computations of two concurrent events

Definition 3.4.4. (Constrained Concurrent Composition). The constrained concurrent com-

position

(C1 kC2 k : : : kCn) where φ

of programs C1;C2; : : : ;Cn denotes a program C such that for every execution ξ(C) of C,

h 8 i; j : i; j 2 f1 : : :ng^ i 6= j :

h 8 ek;el : ek 2 ξ(Ci)^ el 2 ξ(Cj) :

(:ek ke el))

h9 s : s 2 S(φ) :

h8 (ei;e j) : (ei;e j) 2 s :

(ei 2V )^ (e j 2V )^ (ei <v e j)

i^ ((ek;el) 2 s)

i

i

i

Computations ξ(Ci) and ξ(Cj) respectively are the specific executions of program Ci and

Cj that occur during the computation ξ(C). �

The constrained concurrent composition

C = (C1 kC2 k : : : kCn) where φ
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of programs C1;C2; : : : ;Cn, therefore, denotes a program C such that

h 8 (V;<v) : (V;<v) 2 Xs(C) : Sat((V;<v);φ) i

Properties of Event Ordering Constraint Expressions

Theorem 1. (Relationship between ̂ and ^) Sat(V;φ1 ̂ φ2) = Sat(V;φ1)^Sat(V;φ2)

A proof for the theorem follows directly from the definitions of Sat and event ordering

constraint set.

Theorem 2. (Relationship between _ and _) Sat(V;φ1 _ φ2) = Sat(V;φ1)_Sat(V;φ2)

A proof for the theorem follows directly from the definitions of Sat and ordering con-

straint set.

The following define algebraic properties of the different operators:

p ̂ p = p (3.1)

p ̂ q = q ̂ p (3.2)

p ̂ (q ̂ r) = (p ̂ q) ̂ r (3.3)

p _ p = p (3.4)

p _ q = q _ p (3.5)

p _ (q _ r) = (p _ q)_ r (3.6)

p ̂ (q _ r) = (p ̂ q)_ (p ̂ r) (3.7)

p _ (q ̂ r) = (p _ q) ̂ (p _ r) (3.8)

In addition, the forall operator distributes over the ̂ operator:

forall var e in S : (φ1(e) ̂ φ2(e)) =

( forall var e in S : φ1(e)) ̂

( forall var e in S : φ2(e))

Similarly, exists distributes over _. All of the above properties can be proved by evalu-

ating corresponding ordering constraint sets. In addition we have the notion of the T event
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ordering constraint expression:

S(T ) = ffgg

All computations of a concurrent program constrained by the event ordering constraint ex-

pression T are valid computations.

3.5 Examples

We now present a number of examples. The goal here is to not only illustrate the manner

in which the C-YES model can be used for specifying concurrent programs, but also to

highlight the various characteristics of the model.

3.5.1 Mutual Exclusion

Let S1 and S2 be sets of events. We want to specify that events of S1 and S2 are mutually

exclusive. For events e1 and e2 such that e1 2 S1 and e2 2 S2, mutual exclusion between the

two events can be represented as nondeterministic orderings of occurrences of e1 and e2:

MutexEvents(e1;e2) = (e1< e2)_ (e2< e1)

The above relationship holds for all events of sets e1 and e2. Therefore,

MutuallyExclusive(S1;S2) =

forall var e1 in S1 :

forall var e2 in S2 :

MutexEvents(e1;e2)

3.5.2 Producer/Consumer

We construct a concurrent program that is composed from the producer and consumer

components. The produce and consume actions of the components interact with each

other. All other actions are noninteracting and hence may execute in parallel during the

execution of the composite program. Let terms produce and consume denote the in-

teraction points of producer and consumer respectively. Recall that an interaction
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point denotes a set of events. Term produce[i] therefore denotes the ith invocation of

produce in a computation. The following expression defines a constrained concurrent

program composition of the two components:

examprog1 = (producer k consumer)

where

ConsExp

This expression specifies that during an execution of examprog1, events of producer

and consumer occur in parallel except for those that must satisfy the ordering constraints

specified by the event ordering constraint expression ConsExp. We now derive different

event ordering constraint expressions for ConsExp.

The simplest interaction arises from the mutual exclusion constraint between the

actions: no occurrences of produce and consume execute in parallel. We use the event

ordering constraint expression of Section 3.5.1 to specify mutual exclusion among events

of produce and consume events:

ConsExp = MutuallyExclusive(produce, consume)

Note that there are many possible executions of examprog1 that satisfy the event order-

ing constraint expression ConsExp. The event dependency graph for one such execution

is shown in figure 3.11. We have only shown the interacting events of the programs in

the figure. Here all occurrences of produce dominate the first occurrence of consume,

thereby causing the starvation of consumer. The event dependency graph in the figure is

captured by the following event ordering constraint expression:

Starv = forall occ i in produce :

produce[i] < consume[0]

Note

h8v : v 2 ξs(examprog1) : Sat(v;Starv)) Sat(v;ConsExp)i
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[0]
consumeproduce

:

[i]

[0]

[1]

Figure 3.11: Domination of produce events over consume events

Another possible interaction constraint between events of produce and consume

is that ith occurrence of consume cannot execute until the ith occurrence of produce

has executed. The following primitive event ordering constraint expression represents the

relationship between the two events:

produce[i] < consume[i]

Since the above relationship holds true for all invocations of produce, event ordering con-

straint expression ConsExp1 is defined in the following manner:

ConsExp1 = forall occ i in produce :

produce[i] < consume[i]

A different interaction semantics for the producer and consumer programs can

be specified by constructing a different event ordering constraint expression. For instance,

assume that producer and consumer access a buffer of size one. The semantic con-

straints on accessing and modifying the buffer are: i) No data is consumed until it is pro-

duced, and ii) No data is produced until the previously produced data has been consumed.

The following event ordering constraint expression captures these constraints:

SingleBuffer = forall occ i in produce :

(produce[i] < consume[i]) ̂

forall occ i in consume :

(consume[i] < produce[i+1])
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[i+1][i+1]

produce consume

:

[i]

:

[i]

[0]

[1]

[0]

[1]

Figure 3.12: Single buffer interaction between producer and consumer

In figure 3.12, we show the event dependency graph associated with a computation of

examprog1 constrained by SingleBuffer. Note that there are no starvation or dead-

locks.

3.5.3 Dining Philosopher

We now present a solution for the classical dining philosopher problem [Dij68a]. The prob-

lem occurs in different forms in many applications, especially in cases where multiple enti-

ties try to access a common resource. Also, it has often been used to illustrate the express-

ibility of an interaction specification mechanism.

Let G = (V;E) be a graph such that nodes of the graph represent philosophers,

whereas an edge represents a fork shared between two philosophers. The abstract behavior

of a philosopher is:

while (TRUE) f

think;

get hungry;

pick up both adjacent forks;

eat;

put down forks;

g
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x

C

z

y

A

B
Figure 3.13: Configuration of dining philosophers and shared forks

There is a conflict between two philosophers when they try to access a common adja-

cent fork. Any solution to the dining philosopher problem must satisfy the following con-

straints:

� A philosopher can eat only if he has acquired both of his forks.

� All philosophers must be able to eat in finite amount of time.

� Philosophers think and eat for finite amount of time.

The solution in [CM84] satisfies these constraints by first converting the graph G into a

directed graph. A directed edge (v1;v2) specifies that node v1 contains the fork associ-

ated with edge (v1;v2). It then assigns priorities to the philosophers such that the directed

graph is always acyclic. Also, the priorities are changed in a manner that the graph remains

acyclic. The solution is both deadlock and starvation free. (See [CM88] for a proof.)

We represent this solution of the dining philosopher by event ordering constraint

expressions. We assume that there are three philosophers, A, B, and C. The graph in fig-

ure 3.13 shows the forks that the philosophers share. The abstract behavior of each of the

philosophers is shown in figure 3.14.

We derive the solution by examining the interaction between two philosophers, say

X and Y (X and Y can be A, B, or C). The first part of the solution is to assign higher

priority to node X over node Y in such a way that i) ith invocation of get and put of X

over the shared fork has higher priority than ith invocation of get of Y. We can represent

this by the following event ordering constraint expression:
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A:
while (TRUE) f
think;
hungry;
x.get;
y.get;
eat;
x.put;
y.put;
g

(a) Philosopher A

B:
while (TRUE) f
think;
hungry;
x.get;
z.get;
eat;
x.put;
z.put
g

(b) Philosopher B

C:
while (TRUE) f
think;
hungry;
y.get;
z.get;
eat;
y.put;
z.put;
g

(c) Philosopher C

Figure 3.14: Abstract specifications of three dining philosophers

Prior1(X, Y, fork) = forall occ i in X.fork.put :

X.fork.put[i] < Y.fork.get[i]

In this expression, term X.fork.put[i] denotes philosopher X’s ith invocation of put

operation on fork. Once philosopher X has finished with the fork, the priority should now

reside with Y. The following expression represents this priority:

Prior2(X, Y, fork) = forall occ i in Y.fork.put :

Y.fork.put[i] < X.fork.get[i+1]

Since both of the above priorities must be satisfied, the following event ordering constraint

expression captures the relationship between X and Y:

Priority(X, Y, fork) = Prior1(X, Y, fork) ̂ Prior2(X, Y, fork)

Interaction between A and B is defined by expression Priority(A, B, x). Similarly

interaction between A and C, and between B and C respectively are Priority(A, C,

y), and Priority(B, C, z). The constraint over the philosophers therefore is

Priority(A, B, x) ̂ Priority(B, C, z) ̂ Priority(A, C, y)
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y.put[i]

A

CB

x.put[i] y.put[i]

z.put[i] z.get[i]

y.get[i]

A

CB

x.put[i]

x.get[i+1]

z.get[i]z.put[i]

A

CB
z.get[i+1]

A

CB

x.put[i+1]

z.put[i+1] z.get[i+1]

y.put[i+1]

y.get[i+1]
x.get[i+1]

x.put[i+1]
y.get[i+1]

z.put[i]

y.get[i+1]

x.get[i]

x.get[i+1] y.put[i]

Figure 3.15: States of dining philosophers

Figure 3.15 shows a computation. Note that the priority assignment to philosophers is static

in that the philosophers always eat alternately. The solution therefore does not guarantee

maximum concurrency. For instance, in the case when it is A’s turn to eat, and if A thinks

for a long time, both B and C must starve even if the forks are not being used.

3.5.4 Gaussian Elimination

We now develop a concurrent program for the Gaussian elimination algorithm. For a n�n

matrix A, the Gaussian elimination algorithm [Ste73] is used to solve the linear equation

Ax = b

There are two steps in the algorithm: forward elimination and back substitution. In the for-

ward elimination step, the matrix A is transformed into an upper triangular matrix, whereas

in the back substitution step the transformed matrix is used to derive solutions of the un-

knowns. We focus our attention here on the forward elimination step only.
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Figure 3.16: Transformation during a pivot step in the forward elimination step

There are (n� 1) steps, called pivots, in the forward elimination step. In the ith

pivot step, elements A[i+ 1; i] through A[n; i] are reduced to zero, while modifying other

elements of A as shown in figure 3.16. We represent each pivot step by an interacting pro-

gram. The forward elimination program is a constrained concurrent program composition

of the (n� 1) pivot programs. Interaction among the pivots is represented by an event or-

dering constraint expression.

The primary motivations for structuring the forward elimination program in this

manner are to show that i) there is concurrency among the different pivot steps, and ii) this

concurrency can be easily expressed by the composition mechanism of the C-YES model.

The representation of the ith pivot step is shown in figure 3.17. This implementation of the

pivot step is sequential.

We now derive the interaction points of P(i): all read and write events over the

elements of matrix A form its interaction points. Let the term Access(i, j, k) denote

the set of all P(i).A[j][k].read invocations. The set contains all invocations of reads

over the element A[j][k] in pivot P(i). Similarly assume that the term Modify(i,

j, k) denotes the set of all P(i)’s writes over the element A[j][k]. We derive an

expression for the interaction among the pivots in terms of these sets of events.

We use a bottom up approach to specify the interaction among the pivots. We first

derive an expression for the interaction among two events of the pivots P(i) and P(i+1).

We then extend this expression for all interacting events of P(i) and P(i+1). Finally, we
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P(int i, Matrix A)
f

int j, k;
for (j = i+1; j < n; j = j + 1)

for (k = i+1; k < n; k = k+1)
A[j][k] = A[i][k] - (A[j][k]*(A[i][i]/A[j][i]));

g

Figure 3.17: Representation of the ith pivot step

P(i+1)

i

i

(j, k)

P(i)

i

i

(j, k)

Figure 3.18: Interaction between reads and writes of pivots over a matrix element

define interaction for all pivots.

The first step is to examine the interaction between the ith and (i+1)th pivot steps

(see figure 3.18): Pivot P(i+1) cannot read or write to any A[j][k] until P(i) has

modified A[j][k]. There is an explicit ordering between the reads and writes of the

two pivots and an event ordering constraint expression must represent this data depen-

dency. The following event ordering constraint expression captures the relationship be-

tween events at A[j, k]:

ReadCons(i, j, k) = Change(i, j, k)[0] < Access(i+1, j, k)[0]

WriteCons(i, j, k) = Change(i, j, k)[0] < Change(i+1, j, k)[0]

The above constraints specify that P(i+1)’s first read and write events at A[j][k]must

occur after P(i)’s first write event at A[j][k]. We extend the above relationship over

all array elements that interact:
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ForwardElimination(Matrix A)
f

kn�1
i=1 P(i, A)

where
PivotInt

g

Figure 3.19: Specification of forward elimination step

IntExp(i) =

forall var j in f(i+1); : : : ;ng:

forall var k in f(i+1); : : : ;ng:

ReadCons(i, j, k)

̂

forall var j in f(i+2); : : : ;ng :

forall var k in f(i+2); : : : ;ng :

WriteCons(i, j, k)

The above defines interaction between pivots P(i) and P(i+1). The next step is to extend the

expression for all pivots:

PivotInt = forall var i in f1; : : : ;n�2g :

IntExp(i)

The forward elimination program is shown in figure 3.19.

3.6 Discussion

We now discuss the different aspects of the C-YES model. We show that the C-YES model

supports extensibility and modifiability of concurrent programs. In addition, the model

supports reusability of both computational and interaction behavior specifications. In this

section, we also highlight the modular and declarative nature of event ordering constraint
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expressions. We note that the interaction specification mechanism is general and is inde-

pendent of the underlying memory model.

3.6.1 Concurrent Program Composition

The C-YES model is based on the concept of separation of concerns: specifications of com-

putational behavior are separated from specifications of interaction behavior. We showed

in Section 3.3 that such a separation allows one to easily extend and modify a concurrent

program. We now show the manner in which the concurrent program composition and in-

teraction specification mechanisms of the C-YES model can be used to support easy exten-

sibility and modifiability of concurrent programs.

Extensibility of Concurrent Programs

In order to show that specifications of a concurrent program can be easily extended, we

derive a concurrent program for examprog2 of Section 2.4.1. Program examprog2 is

an extension of examprog in that it contains an additional consumer component. In the

extended program, the two consumer programs share the information produced by the

producer alternately. Program examprog2 is defined in the following manner:

examprog2 = (producer k consumer k consumer)

where

ConsExp2

Note that there are no changes in specifications of either producer or consumer. The

event ordering constraint expression ConsExp2 represents the new interaction relation-

ship among the three components. It is derived by observing that there are two sets of

relationships among the events of the producer and consumer components (See fig-

ure 3.20). The first is between odd events of produce and events of one consumer,

and the second is between even events of produce and events of the other consumer.

Let consume1 and consume2 denote the interaction points of the two consumer com-

ponents. The two relationships can be defined by the following event ordering constraint
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Figure 3.20: Interaction relationship among events in a computation of extended program

expressions:

(produce[2*i-1]< consume1[i])

(produce[2*i]< consume2[i])

Since the above relationship holds for all events of produce, ConsExp2 is defined as:

ConsExp2 = forall occ i in produce :

(produce[2*i-1]< consume1[i]) ̂

(produce[2*i]< consume2[i])

A concurrent program can therefore be extended by adding new components, and by re-

defining interaction among the components. Note that in certain cases, redefinition of in-

teraction may only involve adding new event ordering constraint expressions or modifying

only a small subset of event ordering constraint expressions. An example of such a case is

presented in Section 4.4.

Modifiability of Concurrent Programs

We now look at the modifiability of concurrent programs in the C-YES model. We present

two examples: one is the representation of program examprog3 of Section 2.4.1, and the

other is redefinition of the forward elimination step of the Gaussian elimination algorithm

(Section 3.5.4). In both cases, we construct different concurrent programs by composing
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Figure 3.21: Interaction relationships among events in a computation of modified concur-
rent program

existing component programs with different event ordering constraint expressions. The ex-

amples highlight a program design methodology where concurrent programs can be con-

structed quickly from existing core components.

Modification of producer/consumer program: We first derive a representation for examprog3.

In this program, there is additional constraint between the producer and consumer

components: there can be at most N outstanding un-consumed values. We show a rep-

resentation of examprog3 below:

examprog3 = (producer k consumer)

where

ConsExp3

In this program, there is relationship — in addition to the one defined by event ordering

constraint expression ConsExp1 of Section 3.5.2 — between produce and consume

interaction points: a produce event cannot occur until a certain consume event has oc-

curred (see figure 3.21). Event ordering constraint expression ConsExp3 is thus defined:

ConsExp3 = ConsExp1 ̂

forall occ i in consume :

(consume[i]< produce[i+N])

Forward Elimination: We now define a different concurrent program for the forward elim-

ination step of the Gaussian elimination algorithm. The focus here is to show that differ-
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ent concurrent programs can be constructed, each suitable for a different parallel machine,

from existing components.

In the Gaussian elimination algorithm (Section 3.5.4), pivot P(i)waits for P(i+1)

to modify the matrix element A[j][k] before it can read or write this element. The dif-

ferent pivot steps, therefore, interact at the level of single elements of the matrix. In many

systems (such as distributed systems), such closely coupled interactions among programs

can be very inefficient. We modify the ForwardElimination program in such a way

that the pivots interact with each other only after they have modified a certain row. We

construct the modified program by changing the event ordering constraint expression that

defines interaction between the different pivots. The specifications of the pivots remain un-

changed.

We derive an expression for the interaction between the pivots by observing that

writes to the last element of a row by P(i) must occur before reads and writes to the first

element of that row by P(i+1). These ordering relationships can be represented by the

following event ordering constraint expression:

PivotInt1 =

forall var i in f1, : : :, (n-2)g

forall var j in f(i+1); : : : ;ng:

Change(i, j, n)[0] < Access(i+1, j, i+1)[0]

̂

forall var j in f(i+2); : : : ;ng :

Change(i, j, n)[0] < Change(i+1, j, i+1)[0]

The modified ForwardElimination is thus represented as:

ForwardElimination1(Matrix A)

f

kn�2
i=1 P(i, A)

where

PivotInt1

g

80



Note that the composition relies on the fact that a row j is modified sequentially within

P(i). It exploits the ordering relationships between the reads and writes within a single

row. The above composition expression, therefore, cannot be used if the rows are not mod-

ified sequentially in P(i).

Encapsulation of Component Programs

Another implication of the separation of the two behaviors is that specifications of compo-

nent are encapsulated: changes to the specifications of the components or the interaction

behaviors do not affect the specifications of other components. It is, therefore, possible to

change the implementation of a component without changing other components or their in-

teraction behaviors as long as the nature of computation, interaction, and interaction points

do not change. We show this by defining an alternate implementation of the pivot step. The

change in the implementation of the pivot component does not require any changes in the

specification of the interaction behavior or the ForwardElimination program.

The idea is to change those aspects of the program that do not affect either the in-

teraction points or the semantic relationships among interaction points of the pivots. In

P(i) it is easy to do because we can parallelize aspects of the pivot without changing

either the interaction points (reads and writes to individual matrix elements) or the order-

ing constraints between them. Figure 3.22 shows such an implementation. The definitions

of the ForwardElimination program (figure 3.19) and the PivotInt event order-

ing constraint expression (Section 3.5.4) remain unchanged, since there are no changes in

either the interaction points or the orderings among interacting events. The program in

figure 3.22 is optimally concurrent in that no event is delayed unless it is semantically de-

pendent on some other event.

Reusability

In addition to the extensibility and modifiability of concurrent programs, the C-YES model

supports reusability of both computational and interaction behavior specifications. Both
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P(int i, Matrix A)
f
int j, k;

k j=n�1
j=i+1

kk=n�1
k=i+1

A[j][k] = A[i][k] - (A[j][k]*(A[i][i]/A[j][i]));
g

Figure 3.22: Parallel implementation of a pivot

computational and interaction behavior specifications can be used in defining different con-

current program compositions. For instance, we derived different concurrent programs

from the producer and consumer programs.

3.6.2 Interaction Specification

We now analyze the interaction specification mechanism. We discuss its support for mod-

ular development of interaction specification, the abstractions it captures, and support for

formal verification of certain classes of properties.

Modularity

Event ordering constraint expressions are declarative and compositional. The power of the

interaction specification mechanism stems from the ability to decompose global interac-

tions among programs into a set of local interactions. The local interactions can then be

represented by event ordering constraint expressions, and combined with suitable interac-

tion composition operators to represent the global interaction. One of the implications of

the modularity property of event ordering constraint expressions is that it allows one to

change interaction behavior of programs by changing only the relevant and local interaction

expression. Also, it forms the basis for reusability of interaction behavior specifications.

We show the modularity property of event ordering constraint expressions by ex-

tending the producer consumer example (Section 3.5.2). Assume that producer and

82



consumer programs access a buffer such that

produce = P(buffer[0]); P(buffer[1])

consume = C(buffer[0]); C(buffer[1])

Here, every produce event creates information in buffer[0] and buffer[1] and

every consume event retrieves information from buffer[0] and buffer[1]. Note

that produce and consume here are not atomic actions anymore; they are composed

(with the sequential operator ‘;’) from actions P and C respectively.

Expression SingleBuffer (Section 3.5.2) can be used to specify the interaction

between the produce and consume actions. However, it over-constrains the executions

of P and C events. It introduces unnecessary ordering among events when none is required.

In order to derive an event ordering constraint expression that does not impose any ordering

constraints among the events that occur at different buffers, we need to identify P and C as

the basis of interaction — not produce and consume.

We derive an event ordering constraint expression by first specifying single buffer

interactions at buffer[0] and buffer[1], and then by combining the two expressions

to construct an expression for both the buffers. Let P1 and P2 respectively denote P events

at buffer[0] and buffer[1]. Similarly, let C1 and C2 respectively denote C events

at buffer[0] and buffer[1].

The derivation of the event ordering constraint expression for the interaction be-

tween the events are shown in figure 3.23. Note that

h 8 i : i 2 f 1 : : : g : (P; i+1) ke (C; i) i

Intuitively, it means that consumer can access buf[0] while producer is modifying

buf[1]. Also, the above interaction expression can be extended to define interaction over

a buffer of size N:

forall occ i in P:

P[i] < C[i] ̂ C[i] < P[i+N]
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P1[i] = P[2i�1] (3.9)

P2[i] = P[2i] (3.10)

C1[i] = C[2i�1] (3.11)

C2[i] = C[2i] (3.12)

E1 E2
= finteraction at buffer[0]g = finteraction at buffer[1]g
forall i in f0 : : :g forall j in f0 : : :g

P1[i] < C1[i] ̂ P2[ j] < C2[ j] ̂
C1[i] < P1[i+1] C2[ j] < P2[ j+1]

= f eqn 3.9, eqn 3.11 g = f eqn 3.10, eqn 3.12 g
forall i in f0 : : :g forall j in f0 : : :g

P[2i�1] < C[2i�1] ̂ P[2 j] < C[2 j] ̂
C[2i�1] < P[2i+1] C[2 j] < P[2 j+2]

= f k = 2i�1 g = f l = 2 j g
forall k in f1, 3, : : :g forall l in f0, 2, : : :g

P[k] < C[k] ̂ P[l] < C[l] ̂
C[k] < P[k+2] C[l] < P[l+2]

f Combine E1 and E2 g
ConsExp3 = E1 ̂ E2 =

forall i in f0 : : :g
P[i] < C[i] ̂
C[i] < P[i+2]

Figure 3.23: Modular derivation of representation of interaction

Abstractions of Interaction

The interaction specification mechanism captures fundamental abstractions of interaction.

It specifies interaction by suitable ordering relations among the interacting events of pro-

grams. It does not depend on the semantics of these events. Hence, the model can be used

for both shared and distributed memory programs.

Also, the mechanism is general in that it is not based on the semantic properties of

any specific synchronization primitive. It can be used to specify any interaction behavior

for any invocations of any action. The mechanism therefore can be used to represent many
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different synchronization mechanisms. In addition, the abstraction of interaction can be

combined with other abstractions such as inheritance and genericity to construct powerful

concurrent program abstractions. (See Section 5.6.)

Formal Verification

Event ordering constraint expressions are algebraic in nature. An event ordering constraint

expression is constructed from a set of primitive event ordering constraint expressions and

the interaction operators. Since the properties of the primitives and the operators are well

defined, it is possible to verify certain safety and progress properties of the system from in-

teraction behavior specifications in a rigorous manner. In addition, the verification process

is facilitated by the separation of computational and interaction behaviors: many properties

can be verified — in isolation from component programs — solely from the event ordering

constraint expressions.

3.7 Summary

In this chapter we presented the conceptual foundation of a model of concurrent compu-

tation. We showed that concurrent programs are difficult to modify and extend because

their components include specifications of both computational and interaction behaviors.

Changes in a concurrent program (either by extension or modification) may induce changes

in interaction behaviors of components. However, since specifications of components in-

clude specifications of both behaviors, changes in the interaction behaviors can be effected

only by re-implementing the components. Concurrent programs can be easily modified and

extended by separating the specifications of computational and interaction behaviors. Also,

computational and interaction behavior specifications can be reused.

The C-YES model of computation is based on the above separation of concerns.

It defines a concurrent program composition mechanism where specifications of computa-

tional and interaction behaviors of component programs are represented separately. In the

model, the role of a concurrent program composition mechanism is to establish two kinds
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of relationships: concurrency and interaction. Concurrency represents semantic indepen-

dence among the events. Interaction, on the other hand, represents semantic dependencies

among operations of components. The semantic dependencies can be represented as a col-

lection of ordering relationships. The C-YES model also contains an interaction specifica-

tion mechanism that includes a primitive for representing individual ordering relationships

as well as a set of operators for combining the relationships. The interaction specification

mechanism supports modular development of interaction specification.
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Chapter 4

A Compositional Approach to

Concurrent Object-Oriented

Programming

4.1 Introduction

In this chapter we present a compositional approach to concurrent object-oriented program-

ming. The approach that we describe here forms an evolutionary middle point between the

ideas presented in the previous chapter and a realization of these ideas in terms of a concur-

rent programming language described in the next chapter. We describe only the conceptual

foundation of a concurrent object-oriented programming model here since it allows us to

focus on the mechanisms for specifying explicit or implicit concurrent program composi-

tions, and on the role of inheritance within the object-oriented model. The design of the

programming language described in the next chapter is derived completely from the model

described here.

In the previous chapter we described the C-YES model of concurrent computation.

The approach includes a concurrent program composition mechanism that separates speci-

fications of interaction behavior from specifications of computational behavior, an interact-
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ing model of component programs, and a declarative approach to interaction specification.

We also showed that such an approach supports extensibility and modifiability of concur-

rent programs as well as reusability of computational and interaction behavior specifica-

tions. We use these components of the C-YES model to describe a compositional approach

for concurrent object-oriented programming. The approach here is to identify the concur-

rent program compositions that exist, either implicitly or explicitly, within the concurrent

object-oriented paradigm, and to represent them by the mechanisms specified of the C-YES

model.

We chose to apply the C-YES model to the concurrent object-oriented model be-

cause concurrent objects provide a natural basis for modeling entities of applications. Such

entities exist independently, and many allow multiple activities to occur in parallel. The

notion of concurrency, both within entities and among different entities, exists naturally

and can be modeled in the concurrent object-oriented model through inter-object and intra-

object concurrency. In addition, there is a natural correspondence between the notions of

actions and events, and the notions of methods and method invocations. Also, the concur-

rent object-oriented model supports a natural model for extensibility of abstractions through

inheritance. They therefore provide a suitable ground where we can test the concepts of the

C-YES model with respect to extensibility and modifiability of concurrent program.

We represent both intra-object and inter-object concurrency by the constrained con-

current program composition mechanism of the C-YES model. We model concurrency and

interaction within a concurrent object in terms of a concurrent program composition. The

concurrent program composition of a concurrent object is represented as separate specifica-

tions of computational and interaction behavior specifications of methods of the object. The

interaction behavior of the methods is represented by event ordering constraint expressions.

The semantics of the composition is that invocations of the methods execute in parallel ex-

cept for those constrained by the event ordering constraint expressions.

We view concurrency and interaction among objects as a constrained concurrent

program composition of invoking and invoked methods. Interaction among two methods
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represent the manner in which one method affects another (for instance, by returning cer-

tain result objects synchronously or asynchronously), and is represented by event ordering

constraint expressions.

Within the framework of concurrent objects as concurrent program compositions

of computational and interaction behaviors, inheritance can be defined as a mechanism for

extending the concurrent program compositions of the concurrent objects. We show that a

problem associated with inheritance of methods, called the inheritance anomaly, is an in-

stance of the program composition anomaly in that a subclass extends a concurrent program

abstraction (defined in a superclass) by defining additional program abstractions. However,

the breakdown in the inheritance mechanism occurs because such compositions require that

the program abstraction itself be modified. Separation of specifications of computational

and interaction behavior of methods of concurrent objects allow us to avoid the inheritance

anomaly. Also, it supports reusability of method and interaction behavior specifications.

This chapter is organized as follows: in Section 4.2 we present the concurrent pro-

gram composition of concurrent objects. We describe the semantics associated with this

composition. We also present the mechanisms that allow us to define interactions among

methods in terms of event ordering constraint expressions. Interaction among objects is de-

scribed in Section 4.3. In Section 4.4 we present inheritance as a mechanism for extending

the concurrent program composition of a concurrent class by adding/modifying methods

and their interaction behavior. We also look at the notion of the inheritance anomaly and

present a resolution in terms of separation of concerns. In Section 4.5, we analyze the na-

ture of interaction behaviors specified during class and method invocation definitions.

4.2 Intra-object Concurrency and Interaction

Several concurrent programming languages have used the concept of an encapsulated “ob-

ject” as a basis for introducing concurrency. In some of these languages, objects are both

units of executions and encapsulation. There are, thus, two views of concurrent objects:

passive view and active view. In the passive view, an object encapsulates a data structure.
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In the active view, on the other hand, objects represent a concurrent program whose execu-

tion behavior can be defined in terms of concurrently executing methods within objects. In

this section, we will concentrate solely on the active view of concurrent objects — objects

as concurrent programs.

Within the active view of concurrent objects, each object supports an execution en-

vironment where method invocations may occur in parallel and interact while accessing

common data structures and resources. The execution environment determines the man-

ner in which method invocations are accepted and scheduled for execution. The behav-

ior of the execution environment can either be defined explicitly by the programmer as in

[GC86, Car93a] or can be implicitly determined from the interaction specification mecha-

nism and from the semantics of concurrent objects. In this section we present a model of a

concurrent object whose execution environment is derived implicitly from the specification

of the object. Indeed, we use specifications of concurrent objects to generate an implemen-

tation for concurrent objects that supports concurrent executions of method invocations as

well as synchronization among the invocations (see Chapter 6).

We represent concurrent objects by a concurrent program composition of two sep-

arate behaviors, namely computation and interaction behavior specifications. Formally, let

the tuple hM;Φi represent the concurrent program composition of instances of a concurrent

class C. Here, M is a set of methods m1; m2; : : : ; and mn, and Φ is a set of event ordering

constraint expressions φ1; φ2; : : : ; and φl . Methods of set M are represented as interacting

programs (see Section 3.4.2): they contain specifications of their computational behaviors

and interaction points. Note that every invocation of a method denotes an event.

Notation: Let the term mi[ j] denote the jth invocation of method mi.

We specify the semantics associated with the concurrent program composition by

defining a concurrent program. Let the term P (O) denote the concurrent program associ-

ated with an object O of class C. Program P (O) is derived from the specification of the

composition:

P (O) =

�
k

k2f1:::∞g
m j2M

m j[k]

�
where

�
̂

φk2Φφk

�
(4.1)
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The above expression specifies that all invocations of the methods of object O ex-

ecute in parallel, except for those whose executions must satisfy all ordering constraints

specified in the event ordering constraint expressions of set Φ.

Note that method invocations are concurrent by default. Unlike most approaches,

where concurrency is added to a sequential object, our approach is to start with a model

where concurrency is a fundamental aspect of the model. The reason is that the concurrent

program composition of concurrent objects can be viewed in terms of defining concurrency

and interaction relationships among invocations of methods. In the absence of any knowl-

edge about the application domain, concurrency is the fundamental relationship among the

methods since it captures semantic independence among them. Interaction, on the other

hand, represents semantic dependencies (such as data dependency, data consistency, and

priority) among the methods. It is, therefore, application specific, and should be specified

explicitly when the objects are specified.

In many languages, concurrent invocations of methods are always serialized and

scheduled for executions according to the policies of the implementation. Such language-

imposed serializations among methods define semantic dependencies among method invo-

cations when there should be none. Programmers must specify concurrent programs with

these dependencies in mind; programs otherwise may contain certain errors. For instance,

two independent and concurrent programs may deadlock if one program invokes a method

on an object B from a method of an object A, whereas another program invokes a method

on object A from a method of object B. The programs deadlock because the language im-

posed orderings create cyclic dependencies among the two independent programs. In our

approach, relationships are explicitly specified by event ordering constraint expressions,

and hence can be examined, possibly formally, for the presence of certain kinds of errors.

In addition to the implementation mechanisms used for creating and scheduling dif-

ferent execution threads for method invocations, the behavior of the execution environment

of a concurrent object is driven by the manner in which event ordering constraint expres-

sions are evaluated. We evaluate an event ordering constraint expression by constructing a
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boolean interaction constraint, and by ensuring that the interaction constraint remains true

during the life time of a concurrent object. Let B(φ) denote the interaction constraint as-

sociated with event ordering constraint expression φ. The event ordering constraint expres-

sions are transformed into corresponding interaction constraints in the following manner:

For a primitive event ordering constraint expression, the boolean interaction con-

straint is:

B(a < b) = (a 7! b) (4.2)

In the above, (a 7! b) is true if event a occurs before event b. Operationally, the execution

environment keeps the interaction constraint invariant by ensuring that event b is delayed

until event a has terminated.

For interaction expressions that include the interaction composition operators, the

corresponding interaction constraints are:

B(φ1 ̂ φ2) = (B(φ1)^B(φ2)) (4.3)

B(φ1 _ φ2) = (B(φ1)_B(φ2)) (4.4)

B(forall a in A:φ) = h8a : a 2 A : B(φ)i (4.5)

B(exists a in A:φ) = h9a : a 2 A : B(φ)i (4.6)

The evaluation of event ordering constraint expressions that define relationships among in-

finite and dynamic event sets is done by evaluating the boolean interaction constraint incre-

mentally, and by ensuring that the interaction constraint remains true over the lifetime of a

concurrent object. The above transformations provide suitable mechanisms for generating

an implementation for P (O) from the specification of a concurrent class (see Chapter 6).

4.2.1 Interaction Behavior Specification

We now examine the nature of interaction behavior of methods within a concurrent object,

and how they can be represented using event ordering constraint expressions. Interaction

among methods arise when they access common resources and data structures. They repre-

sent semantic dependencies such as data dependency, data consistency, and priority among
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method invocations. Representations of the dependencies depend on a number of attributes

[Blo79] associated with a concurrent object. We categorize them into two:

1. Naming mechanisms are needed for identifying invocations of methods, and for dis-

tinguishing among invocations of a method:

� Type of a request: It is used to associate a method invocation with a specific

method.

� Relative order of invocation: Since method invocations may occur randomly,

relative order of invocations distinguish among different invocations of a method.

2. There are attributes that form the semantic content of semantic dependencies. They

determine if interaction relationships exist among method invocations. They are:

� Request parameters: These denote parameters associated with a method invo-

cation. Values of parameters are often used for specifying semantic dependencies

among method invocations.

� Synchronization state: The synchronization state of a concurrent object captures

information such as methods that are waiting or running, or history of method in-

vocations. Many semantic dependencies among method invocations depend on

such information.

� Local state: It denotes states of an entity that a concurrent object models.

Different interaction specification mechanisms differ in their representations of these at-

tributes. Most languages have used different constructs for representing the different as-

pects. We surveyed some of these constructs in Section 2.3.2. Our approach to interaction

behavior specification is to represent the different attributes through the notions of event

sets and events. Interaction behaviors of methods can then be represented by event order-

ing constraint expression that are defined in terms of suitable event sets.
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4.2.2 Event Set

Event sets form the abstraction for identifying and representing invocations of methods that

interact with other method invocations. They are fundamental to the interaction specifica-

tion mechanism in that they allow us to represent both application-specific and application-

independent states of a concurrent object. The application-specific state of an object is de-

pendent on the semantics associated with an object. For instance, a queue object may have

two states: full and empty. Both of these states are derived from the semantics of the object.

An application-independent state, on the other hand, is defined for all objects. It is used to

define the semantics of objects in general. An example of an application-independent state

is the set of all methods that are waiting to be executed. We call all application-independent

states as synchronization states.

Event sets allow representations of different kinds of interaction behavior of meth-

ods by a single unified mechanism. We identify two kinds of event sets. The first, called

static event sets, are the event sets whose contents can be determined statically. An exam-

ple is the event set that we can associate with a method. This set includes all invocations

of the method. The second, called dynamic event sets, are the event sets whose contents

change during program execution. Dynamic event sets associate certain states of concur-

rent objects with method invocations. They change due to the changes in the states. For

instance, an event set that contains all invocations of a method that are currently waiting is

dynamic in nature. Its content changes as the execution proceeds.

We enumerate a number of event sets below that we use for specifying interactions.

Let m denote a method.

� m: This term denotes the set of all invocations of m.

� m:waiting: This term denotes the set of all invocations of m that are waiting to be

executed.

� m:running: This term denotes the set of all invocations of m that are currently

executing.
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� m:terminated: This term denotes the set of all invocations of m that have termi-

nated.

� m:<B>: This term denotes the set of all invocation of m for which the boolean con-

dition <B> is true.

Terms m:waiting, m:running, and m:terminated are used to capture the syn-

chronization states of a concurrent object. The term m:<B>, on the other hand, can be

used to represent the application-specific state of the object in terms of a boolean condition

so that interaction behavior of an invocation of m can be defined when the object is in that

state. In addition, occurrence numbers of events allow us to capture relative order of invo-

cations of methods. They provide syntactic mechanisms for representing specific method

invocations.

4.2.3 Representation of Interaction Behaviors

We use event ordering constraint expressions for defining interaction behavior of methods.

We make one simple extension to the mechanism described in Section 3.4.3. The primi-

tive event ordering constraint expression is extended to include the notion of conditional

ordering. It has the form:

p ) (e1 < e2)

The above expression specifies that event e1 must occur before event e2 if the condition

p is true. However, if p is false, the ordering relationship is not enforced, and the events

can occur in parallel. The above expression is more general. It captures representations of

certain relationships more directly.

4.2.4 Examples

We now present a number of examples that illustrate the manner in which concurrent ob-

jects and interactions among methods can be specified:
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Example 4.2.1. (Specification of concurrent objects). Let the tuple hM;Φi define a con-

current class queue. Here, M = f put, get g. Methods put and get access queue

objects, and interact while accessing common data structures. Interaction behavior of the

methods is specified by the following constraints: i) put invocations are sequential, ii)

get invocations are sequential, iii) put events are delayed if the queue is full, and iv)

get events are delayed if the queue is empty.

We represent the constraints by event ordering constraint expressions. Therefore,

Φ = f SeqPut, SeqGet, DelPut, DelGetg

We first derive event ordering constraint expressions for SeqPut and SeqGet. We define

an expression Serialize that orders events of an event set S according to their occur-

rence numbers:

Serialize(S) =

forall var i in S :

forall var j in S :

(i < j)) (S[i]< S[ j])

Event ordering constraint expressions for SeqPut and SeqGet can be derived by instan-

tiating the Serialize expression over event sets put and get:

SeqPut = Serialize(put)

SeqGet = Serialize(get)

We now derive event ordering constraint expressions for DelPut and DelGet. We do

that by defining conditional relationships between events of two sets. The relationships

hold as long as a boolean condition remain true. Event ordering constraint expression

WaitWhile below defines such a relationship:

WaitWhile(S1, S2, BooleanCond) =

forall var e1 in S1:BooleanCond :

forall var e2 in S2 :

(e2< e1)
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In the above, the set S1:BooleanCond contains all events of S1 for which the boolean

expression BooleanCond is true. Hence, as long as the condition BooleanCond is true,

events of S1 are delayed with respect to events of S2. Expressions DelPut and DelGet

therefore can be defined as:

DelPut = WaitWhile(put, get, full)

DelGet = WaitWhile(get, put, empty)

full and empty are boolean conditions that respectively determine if a queue object is

full or empty. In the above, DelPut specifies that all events of set put:full are delayed

with respect to events of set get. Here set put:full captures all put invocations for

which a queue object in full state. Such events are delayed with respect to get events

because it is the get events that change the full state of the queue object. Expression

DelGet is similarly defined.

Interaction behavior of invocations of get and put events is specified by the fol-

lowing interaction expression:

SeqPut ̂ SeqGet ̂ DelPut ̂ DelGet

Note that there are no serialization assumptions regarding invocations of methods. Behav-

iors of method invocations that may affect other method invocations are represented by a

single mechanism: event ordering constraint expressions. �

Example 4.2.2. (Simple priority). Let read and write be two methods of an object. In-

teraction behavior of the methods is specified by the following constraints: i) read and

write events are mutually exclusive, ii) write events are mutually exclusive, and iii)

waiting read events have higher priority that waiting write events. Note that the above

constraints permit concurrent executions of read methods. The three semantic constraints

are represented by three separate event ordering constraint expressions:

1. MutuallyExclusive(read, write)

2. MutuallyExclusive(write, write)

3. Priority(read:waiting, write:waiting)
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Expression MutuallyExclusive is defined in example 3.5.1. We define an expression

Priority that simply orders events of set S1 over events of set S2:

Priority(S1, S2) =

forall var e1 in m1 :

forall var e1 in S2 :

(e1< e2)

The event ordering constraint expression representing the interaction behavior of the meth-

ods is:

MutuallyExclusive(read, write) ̂

MutuallyExclusive(write, write) ̂

Priority(read:waiting, write:waiting)

If interaction behavior of read and write is changed such that the waiting write events

have higher priority than the waiting read events, only the interaction expressions associ-

ated with the priority constraint must be changed:

Priority(write:waiting, read:waiting)

The above illustrates the support for modular development of interaction behavior in the

interaction specification mechanism. The power of event ordering constraint expressions

stems from the ability to decompose interaction behaviors of methods into a set of local in-

teraction behaviors. The local interaction behaviors can each be represented by event order-

ing constraint expressions, and then combined with suitable interaction composition opera-

tors to represent the global interaction behavior. One of the implications of the modularity

property of event ordering constraint expressions is that it allows one to change interaction

behavior of methods by changing only the relevant and local event ordering constraint ex-

pression. For instance, we could modify interaction behavior of read and write events

by changing only the relevant priority expressions. Expressions that represent other rela-

tionships remained unchanged. �
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4.2.5 Representation of Synchronization Primitives

We now discuss the generality of the interaction specification mechanism by showing that

many synchronization primitives can be represented in terms of specific event sets and re-

lationships between events of these sets.

Representation of Enable Command

Enable-based approaches to interaction specification are derived from the concept of condi-

tional critical regions [Hoa72] in that a guard, called the activation condition, is associated

with the methods of a class. Guards determine interaction behavior of a method in that an

invocation of a method m1 can execute if its activation condition, say p, is true. However, if

p is false, the invocation is delayed until p becomes true. The form for an enable command

is:

enablem1 when p

Examples of languages that use enable-based approaches for specifying synchronization

are Capsule [Geh93], Scheduling Predicates [MWBD91], Synchronization Actions [Neu91],

Guide [DKM+89], PLOOC [Tho92], and Mediators [GC86]. The different approaches can

be differentiated on the basis of the nature of activation conditions. However, we will treat

the activation conditions as abstract entities and will not distinguish among different ap-

proaches on the basis of the nature of the activation conditions.

A representation of the enable command in terms of an event ordering constraint

expression is specified by examining the interaction relationship between an event, e1, of

method m1 and an event, say e2, of event set M�m1. Here set M contains all events of all

methods of an object. If condition p is false, e1 is delayed with respect to e2. However, if

p is true, there is no ordering relationships between the events; they can execute in parallel.

The following event ordering constraint expression represent the enable command:
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enable(p, m1) =

forall var e1 in m1 : (:p) :

forall var e2 in M�m1 :

(e2< e1)

The above expression allows us to compare the conceptual differences in our in-

teraction specification mechanism and other approaches, and to examine the possible im-

plications on implementation costs of enable commands and event ordering constraint ex-

pressions. Our approach to interaction specification mechanism allows specification of se-

mantic relationships among any event sets. In most other approaches to interaction spec-

ification, relationships are specified among specific event sets. For instance, in the enable

command relationship is specified between events of set m1 : (:p) and events of M�m1.

This restricts the possible kinds of interaction relationships that can be defined.

Also, in most implementations of the enable command, condition p is evaluated

every time an event of M�m1 terminates. This is to ensure that a blocked m1 event is

scheduled for execution if p is true. However, in many cases such evaluations may be un-

necessary because some events of M�m1 may not affect p. (Conceptually, these events

do not interact with events of m1.) However, in our approach interactions can be specified

only among those event sets that interact, thereby avoiding unnecessary evaluations of the

activation conditions.

Representation of Disable Command

Disable-based approaches [Fro92, SG91] are similar to enable-based approaches in that

they associate guards with the methods of a class. However, the disable-based approaches

interpret the guard differently in that a method is disabled (as opposed to enabled) if the

guard is true. We use the term deactivation condition for guards. The form of disable com-

mands is:

disablem1 when p
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The semantics of a disable command in terms of an event ordering constraint expression

is specified by examining the relationship between an occurrence, e1, of method m1 and

an occurrence, say e2, of event set M�m1. If p is true, e1 is delayed with respect to e2.

However, if p is false, there are no relationships among the two events; they can execute in

parallel. The following event ordering constraint expression represents a disable command:

disable(p, m1) =

forall var e1 in m1 : p :

forall var e2 in M�m1 :

(e2< e1)

Representation of Behavior Abstraction

In behavior abstraction-based approaches [KL89, TS89b, Mat93], interaction behavior of

methods is characterized by identifying a set of disjoint states, called accept states. Ev-

ery accept state determines the set of methods that can be enabled when an object is in

a state. (Many synchronization specification mechanisms [MTY93] include a number of

commands for specifying transition among states. We will ignore them here in order to

simplify our analysis.) The form for defining an accept state is:

A j = fm1; m2; : : : ; mng when B j

In the above, Aj denotes an accept state associated with boolean condition Bj. Methods

m1; m2; : : : ; mn are enabled when condition Bj is true.

We represent the above command by observing that the accept state denotes a spe-

cific event set:

A j = m1 : (:B j)+m2 : (:B j)+ � � �+mn : (:B j)

Also, the ordering relationship is defined between events of set Aj and set M�Aj:

forall var e1 in A j :

forall var e2 in M�Aj :

(e2< e1)
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Let a class defines accept states A1; A2; : : : ; and Ak with boolean conditions B1; B2; : : : ; and

Bk respectively. Let φj represent the event ordering constraint expression associated with

accept state Aj. The event ordering constraint expression associated with the methods of

the class is:

φ1 _ φ2 _ �� � _ φk

We therefore see that many of the synchronization primitives used in concurrent

object-oriented programming languages can be represented in terms of event sets and re-

lationship between events of the sets. We show representations of other commonly used

synchronization primitives in Section 5.6.

4.2.6 Aggregation Anomaly

We now look at the notion of aggregation in object-oriented programming languages. Ag-

gregation is used to define data composition of an object in terms of its component objects.

Within the active view of objects, we can look at aggregation as a program composition

mechanism as well: it defines the concurrent program associated with a concurrent object

as a composition of programs associated with its component objects and methods of the

concurrent object. A problem arises when we try to modify the program composition of an

component object by extending/modifying the interaction behavior of the object. We call

this problem aggregation anomaly. We describe the problem by the following examples:

Example 4.2.3. (Aggregation anomaly). Assume that a Buffer object contains an ob-

ject of a class AtomicBuffer. Also, assume that class AtomicBuffer defines two

methods: Read and Write, which are mutually exclusive. Let class Buffer impose

the following constraint on Read and Write invocations on the AtomicBuffer object

component: if certain conditions are true, Read and Write invocations must occur in

a certain order. Since specifications of Read and Write already include specifications

of interaction behavior, class Buffer can be defined in two ways: one is by construct-

ing a new class that implements the constraint that Buffer imposes, and by including an

object of this class as the component object. Here, we are duplicating most of the code
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from AtomicBuffer class. The other is by defining methods in Buffer that invoke

Read and Write with suitable synchronization operations. In this case one needs to de-

fine dummy methods. �

Another situation where the aggregation anomaly occurs is the case when interaction is

specified among methods of different component objects:

Example 4.2.4. (Aggregation anomaly). Assume that an object of class TwoBuffers con-

tains objects buf1 and buf2 of class AtomicBuffer. Interaction between Read and

Write on objects buf1 and buf2 is specified by the constraint that Read and Write on

buf1 have higher priority than the corresponding methods on buf2. The constraint cannot

be specified easily. One possible approach would be to define methods in TwoBuffers

that implement the constraint and invoke Read and Write methods on buf1 and buf2

appropriately. Note that this would require that all invocations of Read and Write on

buf1 and buf2 be replaced by invocations of the new methods. For objects that include

many objects, each containing a number of methods, the process of constructing methods

that implement interaction constraints can be quite cumbersome. �

The aggregation anomaly occurs because interaction among methods of component objects

cannot be changed or extended easily. One must either redefine the component objects or

define additional methods that implement the extended/modified interaction behavior. The

aggregation anomaly is an instance of the program composition anomaly in that we are ex-

tending/modifying the concurrent program abstraction associated with a component. How-

ever, such a composition requires that either the abstraction be changed or the composition

be implemented through indirect means. A resolution of the aggregation anomaly requires

that computational and interaction behavior specifications of methods be separated. This

permits easy extension and modification of interaction behavior of methods. In addition,

languages must support mechanisms for changing interaction behavior of method invoca-

tions of component objects by providing mechanism for identifying the method invoca-

tions.
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4.3 Inter-object Concurrency and Interaction

The notion of independence among objects represents concurrency among the concurrent

programs associated with the objects. Interactions among these programs occur through

method invocations. We define a method invocation mechanism for representing interac-

tions among concurrent objects. The method invocation expression

k O2:m2(p1; p2; : : : pn) where φ (4.7)

specifies the mechanism for invoking method m2 on an object O2 in parallel. The event

ordering constraint expression φ represents interaction between the calling and the called

methods. Expression 4.7 derives its form and semantics from the constrained concurrent

program composition expressions (see Definition 3.4.1). Assume that a method m1 includes

expression 4.7 in its specification. An execution of the invocation expression during an oc-

currence of m1, say m1[ j], maps1 m2 to an occurrence, say m2[k], in object O2. Events of

m1[ j] and m2[k] execute in parallel, except for those whose executions must satisfy the or-

dering constraints specified in φ. The event ordering constraint expression φ is defined over

the interaction points of m1 and m2. A more general form of the above method invocation

expression is:

k O1:m1 k O2:m2 k : : : k On:mn where φ (4.8)

In this expression, methods O1:m1;O2:m2 � � � and On:mn are invoked in parallel. Interaction

among the calling and the called methods is specified by φ.

The above invocation mechanism is general in that it subsumes the traditional syn-

chronous and future-based asynchronous method invocation mechanisms. For instance,

in the future-based method invocations, interaction occurs between a read (in the calling

method) event and a write (in the called method) event on a future object. It can be repre-

sented by the following event ordering constraint expression:

φ= (m2.var.write[0] < m1.var.read[0])

1The mapping can be done either by creating a new thread of execution within O2 or by scheduling an
existing thread. It depends on the technique used to implement concurrent threads within objects.
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Here, var is a future object, and var.write and var.read respectively denote sets of

write and read events over var.

The event ordering constraint expressions in method invocation expressions 4.7 and

4.8 can be used to represent relationships among method invocations on objects that meth-

ods share through the parameters. The expressions may represent complex protocols among

calling and called methods. Also, certain properties of the protocols can be verified by an-

alyzing the expressions formally.

4.4 Inheritance

In sequential object-oriented programming languages, inheritance [WZ88] provides a pow-

erful mechanism for organizing classes in a generalization-specialization hierarchy. In this

hierarchy, classes at the top capture more general information than the ones below. Such

an organization of classes provides the ability to incrementally extend superclasses by in-

heriting information such as conceptual behavior, data structures, and/or implementation

mechanisms, and by modifying or adding to the inherited behavior. In this section, we ex-

amine the notion of inheritance as a mechanism for extending program composition of a

concurrent class by adding and/or modifying methods and their interaction behaviors.

4.4.1 Inheritance Anomaly

In many concurrent object-oriented programming languages there is a problem with the

inheritance of method implementations. This problem, termed the inheritance anomaly

[MY93], arises due to the differences in synchronization requirements of a class and its

subclasses. We clarify the problem through the following example:

Example 4.4.1. (Inheritance anomaly). Let a concurrent class C define two methods m1

and m2. Implementations of m1 and m2 may contain, in addition to specifications of com-

putations, operations used to define their interaction behavior. Let S be a subclass of C.

It inherits definitions of m1 and m2. Assume that class S defines a new method m3. The
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method m3 interacts with m1 and m2. The interaction behaviors of m1 and m2, as specified

in C, therefore, have changed in S. Methods m1 and m2 may have to be re-implemented in

S in order to represent the modified interaction behaviors. Implementations of m1 and m2,

thus, cannot be inherited in S. �

The inheritance anomaly is an instance of the program composition anomaly. Here, we can

think of the definition of class C as defining a concurrent program abstraction. Inheritance

defines a mechanism whereby the concurrent program abstraction can be composed with

other abstractions to create more complex concurrent program abstractions. However, the

breakdown in inheritance occurs because such compositions require that the original pro-

gram abstraction itself be modified. This requires that the methods of C be re-implemented

in class S.

The reasons for the occurrence of the inheritance anomaly are similar to those of

the program composition anomaly: computational behavior of inherited methods remains

unchanged in the subclass; only their interaction behavior changes due to changes in the

concurrent program composition of a superclass. For instance, computational behaviors of

m1 and m2 do not change in S; only their interaction behavior changes due to the addition

of m3. The inheritance anomaly arises because specifications of methods contain specifi-

cations of both computational and interaction behaviors. Any changes in the interaction

behavior may, therefore, require changes in the implementation as well.

A resolution for the inheritance anomaly can be derived from the principles used

for resolving the program composition anomaly. There are two components: the first is

separation of specifications of computational and interaction behaviors of methods. Sep-

aration makes it possible to inherit the two behaviors separately, and to modify either to

reflect changes in the concurrent program composition of a concurrent class. The second

is the ability to make changes in the interaction behaviors of methods. The inheritance

anomaly has been studied in great detail and many solutions [KL89, TS89b, BF92, Shi89,

RdP91, Neu91, Tho92, Mes93] have been proposed. Most of these solutions are based

on the separation of synchronization constraints from the method specifications. Changes
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in interaction behavior of a method is achieved by changing the relevant synchronization

constraints. The inheritance anomaly does not arise in our model because the concurrent

program composition of concurrent objects is specified in terms of separate computational

and interaction behavior specifications. In addition, we provide mechanisms for changing

interaction behaviors specifications of methods. We describe them below.

4.4.2 Model of Inheritance

Interaction behaviors of methods add an extra dimension to concurrent class specifications.

In this section, we examine what it means to extend this additional component through ex-

tension and modification. We also present a model of inheritance which specifies the man-

ner in which interaction behavior of a method can be extended in subclasses.

The model is derived from the idea of representing interactions as semantic de-

pendencies among methods. A class may extend its superclasses by adding new methods,

by modifying the existing methods, and by defining new interaction behaviors among the

methods. These modifications engender additional semantic dependencies among methods.

In the C-YES model, since semantic dependencies are represented by defining ordering re-

lationships among events, changes in interaction behaviors of methods imply additional or-

dering relationships among the methods. The and constraint operator ̂ precisely captures

such additions of relationships. The interaction behavior of the methods of a class is there-

fore represented by the ̂ composition of event ordering constraint expressions specified

in the superclasses and the class. Formally, let class C and class S define event ordering

constraint expressions φc and φs respectively for representing the interaction behavior of

the methods. Interaction behavior of the methods of class S is defined by event ordering

constraint expression φ:

φ = φs ̂ φc (4.9)

We now look at support for inheritance of interaction specifications Our focus is on min-

imizing changes in interaction specifications due to changes in the concurrent program

composition of a concurrent class when complete reusability cannot be achieved. Com-
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plete reusability can be achieved if i) additional semantic dependencies due to new meth-

ods can be incrementally added, ii) modifications in semantic dependencies due to changes

in methods can be localized, and iii) interaction behaviors of methods can be extended in-

crementally. We show that event ordering constraint expressions allow representations of

incremental extensions and localized changes in interaction behaviors.

For a class C = hM;Φi, an event ordering constraint expression in Φ character-

izes interaction among a set of methods. The methods of the class can therefore be par-

titioned into interaction groups, each characterized by an event ordering constraint expres-

sion. Changes in interaction behavior due to changes in the concurrent program composi-

tion of a class can therefore be limited to changes and/or additions that are localized to the

interaction groups. We analyze these changes below formally by examining the possible

interaction behavior changes that can occur.

Let a subclass S extend class C = hMc;Φci by defining the tuple h∆Mc;∆Φci. Here,

∆Mc and ∆Φc denote sets of methods and event ordering constraint expressions respec-

tively. Let ∆Mn and ∆Mm be two components of ∆Mc:

∆Mc = ∆Mn[∆Mm

Set ∆Mn is a set of methods that are added in class S. Methods of set ∆Mm are defined in C,

but are modified in S. Set Mc�∆Mm, therefore, contains methods that are defined in C and

are inherited in S without any changes.

We now examine the components, ∆Φn and ∆Φm, of set ∆Φc, and the manner in

which they arise:

∆Φc = ∆Φn[∆Φm

Set ∆Φn contains event ordering constraint expressions that represent new semantic depen-

dencies among the methods of S. These expressions represent the following interactions:

1. Interactions among the methods of Mc�∆Mm: These interactions specify additional

relationships among the methods of C that are inherited in S. They are represented by event

ordering constraint expressions that impose additional ordering constraints on the methods
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of Mc�∆Mm. Interaction behaviors of methods can also be organized in a hierarchy, where

interaction behaviors can be made more specific by defining additional ordering relation-

ships. This leads to the organization of class hierarchies where common and more general

interaction expressions are captured in more general classes. These interaction expressions

can then be inherited and extended in subclasses. Also, this gives rise to a class hierar-

chy where highly concurrent and nondeterministic classes occur at the top of the hierarchy,

while serialized and deterministic classes occur at the bottom.

Example 4.4.2. (Extension of interaction behavior of methods). Consider the example of

a class queue which defines two operations put and get. A general class may specify

that put and get events are mutually exclusive. Different subclasses can be defined that

extend the nondeterministic constraint by specifying additional constraints (such as priority

and single buffer access constraints). The mutual exclusion constraint among the events of

get and put is inherited in the subclasses. �

2. Interaction among the methods of ∆Mn: These define interactions among the newly

added methods of S. event ordering constraint expressions here characterize interaction

groups containing methods of set ∆Mn.

3. Interactions among the methods of ∆Mn and Mc �∆Mm: These arise among the

newly added methods and inherited methods of S. We present an example that shows how

such interactions arise, and how they can be represented by event ordering constraint ex-

pressions:

Example 4.4.3. (Inheritance of event ordering constraint expressions). Let class

readlastqueue be a subclass of queue (see example 4.2.1). The subclass adds a

method getlast. Method getlast retrieves the last element of the queue. It inter-

acts with method put, since it must wait for a put event to occur if the queue is empty.

Interaction behavior of the methods of readlastqueue is extended by defining event or-

dering constraint expressions that define ordering relationships among getlast and put

events:
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DelayGetLast = WaitWhile(getlast, put, Empty)

Note that events of put also interact with those of getlast. Hence, the interaction be-

havior of put is also extended by the expression:

DelayPutWithGetlast = WaitWhile(put, getlast, Full)

Other event ordering constraint expressions in ReadFirstQueue are inherited from the

queue superclass. The interaction behavior of the methods of ReadFirstQueue is

specified by the expression:

SequentialGet ̂ SequentialPut ̂

DelayPut ̂ DelayGet ̂

DelayGetlast ̂ DelayPutWithGetlast ̂ SequentialGetlast

�

4. Interactions among the methods of ∆Mn and ∆Mc: These represent interactions

among the newly added methods and methods that exist in C but are modified in S.

Event ordering constraint expressions in ∆Φm are defined in C but are modified in S in

order to incorporate changes in the methods of C. They capture interactions i) among the

methods of ∆Mc, representing modified interactions among the modified methods, and ii)

among the methods of ∆Mc and Mc�∆Mc, representing additional semantic dependencies

among the modified and inherited methods of S.

The set of event ordering constraint expressions, I(S), of S therefore is:

I(S) = f φi j (φi 2 ∆Φc) _ ((φi 62 ∆Φc)^ (φi 2 I(Superclass(S))))g

Event ordering constraint expressions are not only defined in S but are also inherited from

the superclasses. In class S, the event ordering constraint expressions in set Φc�∆Φm are

inherited from the superclass C. The following event ordering constraint expression repre-

sents interaction behavior of the methods of class S:

φs =

�
̂

φi2∆Φn
φi

�
̂

�
̂

φi2∆Φm
φi

�
̂

�
̂

φi2(Φc�∆Φm)
φi

�
(4.10)

The set of methods, M(S), of S is:
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M(S) = fm j (m 2 ∆Mc) _ ((m 62 ∆Mc)^ (m 2M(Superclass(S))))g

The program P (Os) associated with an object Os of S is:

P (Os) =

�
k

k2f1:::∞g
m j2M(S)

m j[k]

�
where φs

4.5 Incremental Specification of Interaction Behavior

In a concurrent object-oriented programming language interactions among concurrent meth-

ods can be specified either during class definitions or during method invocations (through

expressions 4.7 and 4.8). Our goal in this section is to examine the nature of interaction be-

havior specifications in the two definitions, and to establish relationships between them. We

discuss the implications of these specifications on the reusability of concurrent classes and

interaction specifications, and examine their representations by event ordering constraint

expressions.

We motivate our discussion through an example. Consider two concurrent pro-

grams that interact by sending and receiving messages over a communication channel. There

are two semantic constraints: i) every receive event must wait for a corresponding send

event, and ii) there are at most N outstanding messages. There are three ways in which the

constraints can be represented in an application. The first approach is to define a concur-

rent class appChannel that defines both constraints along with the send and receive

methods. In the second approach, one defines a concurrent class conChannel that does

not define any of the semantic constraints. The constraints are specified where the send

and receive methods are invoked. In the third approach, the first semantic constraint

is defined in a concurrent class, say channel, whereas the second constraint is specified

during method invocations.

We now examine the three approaches with respect to reusability of concurrent

classes and interaction behavior specifications. The first approach advocates construct-

ing concurrent classes that precisely implement requirements of an application. The prob-

lem with this approach is that the class definitions are too specialized. They may not be
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reused in applications that do not impose similar semantic constraints. Applications must

re-implement these classes in order to specify diverse semantic constraints. The second

approach advocates defining classes that do not specify any semantic constraints. All se-

mantic constraints are represented during method invocations. Class conChannel is too

general since applications that require asynchronous communication implement the speci-

fication of the first constraint repeatedly. The third approach is based on the decomposition

of the interaction behavior. Here, the definition of the channel class captures only those

semantic constraints that are common across many applications. Additional constraints

are specified incrementally in individual applications, thereby facilitating the reusability

of both class and interaction behavior specifications.

The above analysis suggests that interaction behaviors of invocations of a method

can be decomposed into two kinds of interaction behavior: the first, which we call universal

interaction behavior, represents interaction behaviors that are common across all possible

invocations of the method. All occurrences of the method inherit universal interaction be-

havior. The second, which we call specialized interaction behavior, is specific to a method

invocation. For instance, in the above example, the semantic constraint — every receive

event must wait for corresponding send event — is valid for all invocations of send and

receive. On the other hand, the semantic constraint — send events must be delayed if

specific receive events have not occurred — is valid for specific invocations of send

and receive in an application. Different applications may specify different specialized

interaction behaviors for invocations of send and receive.

Universal interaction behavior represents a single set of semantic constraints that

guide execution behaviors of all occurrences of a method. Since a class captures and rep-

resents semantic constraints that govern access to its objects, universal interaction behavior

of methods is defined where the methods are defined. Examples of such semantic con-

straints are data consistency, fairness, mutual exclusion, and priority. Note that universal

interaction behavior of methods should depend only on intrinsic properties of objects and

the methods. This allows one to maintain the notion of independence and encapsulation
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that classes exhibit — the ability to define classes in isolation from other aspects of appli-

cations. Specialized interaction behavior of method invocations, on the other hand, depends

on the environment in which the invocations occur. It is, therefore, possible that different

occurrences of a method exhibit different specialized interaction behaviors, each extending

the universal interaction behavior of the method.

Our programming model supports this incremental approach to interaction specifi-

cation by allowing one to define universal and specialized interaction specifications sepa-

rately. The ability to separate the two is supported by the modularity property of event or-

dering constraint expressions. Interaction behavior of a method invocation is ̂ composi-

tion of the two — universal and specialized — interaction behaviors. Hence, if event order-

ing constraint expression φu represents universal interaction behavior of methods M1 and

M2, and if interaction expression φs represents specialized interaction behavior of events

M1[p] and M2[q], interaction behavior of M1[p] and M2[q] is represented by the event or-

dering constraint expression:

φu ̂ φs

Intuitively, we can think of universal interaction behavior as defining a set of possible or-

dering relationships among method activations, some of which must hold true. Specialized

interaction behaviors of method invocations impose additional constraints on the possible

orderings among the method invocations.

An example of a class that defines universal interaction behavior is SafeBuf, whose

methods, put and get, are mutually exclusive. The event ordering constraint expression

MutuallyExclusive(put, get) (see Section 3.5.1) represents their universal inter-

action behavior. Specialized interaction behavior of method events of interacting programs

is specified by identifying the method events of the programs, and by defining event order-

ing constraint expressions that include the events. Interaction points of methods allow one

to capture such invocations. Specialized interaction behaviors, therefore, are specified by

defining event ordering constraint expressions that establish orderings among the interac-

tion points of programs. We illustrate this by the following example:
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Example 4.5.1. (Specialized interaction behavior). Let m1 ( SafeBuf X) and m2 (

SafeBuf X ) be two methods that interact. Methods m1 and m2 invoke methods put

and get over a shared buffer X. Assume that an application imposes a constraint on put

and get events of m1 and m2: every put event in m1 occurs before the corresponding get

event in m2. The constraint represents specialized interaction behaviors of put and get

events.

Terms m1.X.put and m2.X.get denote sets of all put and get events invoked

in m1 and m2 respectively. The expression

φ1 = forall var k in m1.X.put:

m1.X.put[k] < m2.X.get[k]

specifies that all put events in set m1.X.put occur before the corresponding get events

in set m2.X.get (the correspondence is made through the occurrence numbers of the

events). Executions of put and get events in m1 and m2 must satisfy both i) the mu-

tual exclusion constraint (universal interaction behavior), and ii) the above data dependency

constraint (specialized interaction behavior). In the absence of any specialized interaction

behavior specifications, the put and get events of m1 and m2 inherit the universal inter-

action behavior from class SafeBuf. �

Interaction behavior of a method invocation is, thus, ̂ composition of its universal and

specialized interaction behaviors. Such a separation of the interaction behaviors facilitates

reusability of both concurrent class and interaction behavior specifications.

4.6 Summary

In this chapter we have presented an active view of concurrent objects where an object is

represented as a concurrent program. In this view, a concurrent object is defined by spec-

ifying a concurrent program composition of a set of methods and a set of event ordering

constraint expressions. The semantics of the composition specifies that invocations of dif-

ferent methods start to execute in parallel with respect to each other. However, in cases
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when method invocations interact, execution orderings of the invocations must satisfy or-

dering constraints specified in the event ordering constraint expressions.

We have shown that separation of computational and interaction behavior speci-

fications allows one to extend/modify the concurrent program composition of a concur-

rent object easily. We considered two cases (the aggregation anomaly and the inheritance

anomaly) when changes (extensions or modifications) in the program composition of a con-

current object result a breakdown in the aggregation and inheritance composition mecha-

nisms of the concurrent object-oriented model. We have also shown that the two anomalies

are instances of the program composition anomaly and they occur because specifications of

methods include specifications of both computational and interaction behaviors.

In addition, we have presented a model of inheritance for concurrent object-oriented

programming languages. Within this model, a subclass extends interaction behavior of

methods by defining additional semantic relationships between the methods. Since addi-

tions of semantic relationships are captured by the ̂ operator in the interaction specifica-

tion mechanism, interaction behavior of methods in a class is ̂ composition of ordering

relationships specified in superclasses and in the class.
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Chapter 5

CYES-C++

5.1 Introduction

In this chapter we describe the design of a concurrent object-oriented programming lan-

guage, called CYES-C++. The conceptual and semantic foundations for CYES-C++ are

based on the ideas developed in Chapters 3 and 4. We focus our attention here mainly on

the design principles. The details of the language appear in its specification document [Pan].

Design Approach

One approach to language design is to start from the first principle and design a completely

new language. This approach, though intellectually fulfilling, requires major effort since it

involves complete development of both the specification of the language and the software

development tools such as compilers and debuggers. Also, users must learn a new language

and a set of tools. We therefore decided to choose an existing object-oriented program-

ming language and extend it. We base our language design on the C++ programming lan-

guage [ES90]. The reason for choosing C++ from among many object-oriented languages

such as SmallTalk is the wide acceptability of C++. In addition, we were also motivated by

the availability of many C++ tools. Indeed, we have been able to reuse many existing C++

and C libraries and tools for constructing a prototype implementation for CYES-C++. (See

116



Chapter 6 for more details on implementation.)

There are three ways in which concurrency can be included in C++. The first two

approaches, which we call the implicit approach, require no changes in the base language

and its compiler. One of them is based on defining a set of libraries [SS87, Gau] that

support representations of concurrency and synchronization. In these approaches, a class,

say Task, implements creations of independent execution threads. A user class can con-

struct independent execution threads by inheriting from the Task class. The second ap-

proach [Par90] involves using the interface definition of a method of a class as an RPC stub

specification. A stub generator can use the definition for constructing an RPC implemen-

tation for the method. The generated RPC implementation can then be used for invoking

the method on an object that resides on a remote processor. In the third approach, which

we call the explicit approach, additional constructs are added to the C++ programming lan-

guages. Examples of languages based on the explicit approach are: CC++ [CK92], Men-

tat [Gri93], Charm++ [KK93], Molecule [Geh93], COOL [CGH92], pC++ [GL91], Con-

current C++ [GR88], DC++ [Car93b], µC++ [BS93], PANDA [ABB+93], ESP [SC90],

and ACT++ [KL91]. Languages based on the explicit approach require that a preprocessor

or a compiler be developed for the languages.

Languages based on the implicit approach have the advantage that no changes need

to be made in either the base language or the software tools. The library approach has the

added advantage that different libraries can explore different models of concurrency. Li-

brary based approaches are especially appealing in C++ since C++ supports many language

mechanisms for defining and reusing libraries. Further, since C++ is still evolving, lan-

guages based on the explicit approach are based on a language that may change in future.

This means that preprocessors or compilers for these languages must be re-implemented.

This is especially difficult due to the complexity involved in constructing a parser for C++.

Despite the arguments against explicit approaches, we chose the explicit approach

for designing the concurrent programming language. The reasons are based on the fun-

damental nature of concurrency and its role in the programming process. In the library
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approach, representations for concurrency and interaction are derived implicitly from class

libraries. They can therefore be included in programs only through the sequential com-

position mechanisms of the C++ programming languages. This involves embedding con-

currency and synchronization classes and methods within sequential class definitions and

method invocations. As we showed earlier, such composition definitions are difficult to

extend and modify. Also, library-based approaches represent concurrency and interactions

as specific types. We, on the other hand, view concurrency and interaction as composi-

tion mechanisms, mechanisms that specify relationships among method invocations. Such

a view cannot be easily added through the library mechanism since the composition mech-

anisms (mostly aggregation and inheritance) associated with libraries do not directly sup-

port representations of such views. Also, library-based approaches support a passive view

of concurrent objects. Here objects are merely units of encapsulation. Concurrency is

achieved through task objects which do not represent a natural model of active entities of

applications.

Design principles

The primary goals of our design are to support true concurrency both within and among

concurrent objects, allow modular development of interaction specifications, support reus-

ability of both method and interaction specifications, and integrate inheritance with concur-

rency. In addition, we want to keep the number of extensions small. Further, we wanted

to keep the essential spirit of C++ by supporting similar definition, declaration, and expres-

sion specification mechanisms.

We achieve these goals by providing mechanisms for representing abstractions that

are orthogonal to the abstraction mechanisms of sequential C++. One such abstraction is

the notion of concurrent classes. Concurrent classes support true concurrency within ob-

jects. They are generalizations of C++ classes. (In a sequential class, all method invoca-

tions are serialized.) Therefore, many of the C++ language constructs (for instance, the

definition and declaration mechanisms and the notion of special member functions such as
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constructors and destructor) apply to concurrent objects as well. The method invocation

mechanisms of CYES-C++ also are generalizations of the C++ method invocation mecha-

nism.

One major addition in CYES-C++ is support for interaction specification through

event ordering constraint expressions. CYES-C++ supports language mechanisms for defin-

ing events, event sets, primitive event ordering constraint expressions interaction composi-

tion operators, and event ordering constraint expressions.

The design approach for CYES-C++ is on supporting orthogonal abstraction and

composition mechanisms. A direct outcome of the approach is that the abstractions of

CYES-C++ can be combined with other abstractions and composition mechanisms (such as

inheritance and the template mechanism) of C++ to create powerful concurrent programs

abstractions. For instance, the template and inheritance mechanism of C++ can be used

to create generic concurrent classes. The generic concurrent classes capture common in-

teraction and computational behaviors. They can be instantiated or extended with differ-

ent user classes in order to create concurrent user classes with suitable computational and

interaction behaviors. Our abstraction mechanisms therefore complement the abstraction

mechanisms of C++ to create a powerful concurrent programming language.

This chapter is organized as follows: In Section 5.2 we define the concurrent class

mechanism of CYES-C++. Section 5.3 describes the synchronous and asynchronous method

invocation mechanisms. We present the interaction specification mechanism in Section 5.4.

Section 5.5 contains a number of examples that describe the manner in which inheritance

and the template mechanism can be combined with the notion of concurrent classes. Fi-

nally, Section 5.7 contains a summary of the chapter.

5.2 Concurrent Objects

In this section we describe the syntactic mechanisms that can used for defining, declaring

and accessing concurrent objects.
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concurrent class queue f
public:

queue();
˜queue() f g;
void put(char);
char get();
Boolean Full();
Boolean Empty();

interaction:
SequentialAdds;
SequentialRemoves;
SyncQueueFull;
SyncQueueEmpty;

private:
...

g;

Figure 5.1: Concurrent class specification of concurrent queue objects

5.2.1 Definition of Concurrent Objects

Concurrent objects in CYES-C++ are represented by defining a concurrent class. An inter-

face of a concurrent class contains, in addition to public, private, and protected

entities of C++ classes, interaction section. An interaction section of a concurrent

class contains definitions of event sets and event ordering constraint expressions, which

can be used to represent interaction among the public methods of the concurrent class.

In figure 5.1, we show the concurrent class specification for a class queue (exam-

ple 4.2.1). There are four constraints on the methods of queue, each of which is repre-

sented symbolically in the concurrent class definition. Section 5.4.3 contains definitions of

these constraints. The semantics associated with a concurrent object is that methods exe-

cute in parallel by default. However, their executions must satisfy all ordering constraints

specified by the event ordering constraint expressions specified in the interaction sec-

tion.
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5.2.2 Declaration of Concurrent Objects

Concurrent objects are declared by the declarator mechanism of C++. The declarator

mechanism contains a number of naming schemes for sequential objects. Below we show

how they apply for declarations of concurrent objects:

� Simple concurrent object declaration: Here, a name is associated with an object

by defining it to be of a concurrent class type. For instance, the declaration

queue q;

associates a name q with a concurrent queue object.

� Pointers to concurrent objects: Pointer declarations provide an indirect way of

naming concurrent objects. The specification

queue *qptr;

declares qptr to be a pointer to a concurrent queue object.

� Array of concurrent objects: Concurrent objects can also be named through the

array mechanism of C++. For instance, the declaration

queue qarray[100];

specifies that qarray is an array of 100 concurrent objects. Expression qarray[i]

names the (i+1)th queue object.

� Reference: Another mechanism for naming objects is through the reference opera-

tor:

queue &qname;

In this declaration, qname is a reference to a concurrent queue object.
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Definitions and declarations of concurrent objects are therefore similar to C++ ob-

jects. In addition, expressions used for accessing sequential objects can be used for access-

ing concurrent objects as well. For instance, an execution of the expression

qptr->put(val);

invokes method put synchronously on a concurrent object named through the qptr ob-

ject.

There is one place where names of concurrent objects take a different meaning from

those of sequential objects. It occurs during method invocations. In C++, function parame-

ters can be passed by value. Execution of a function therefore involves copying the actual

parameters and passing them to the called function. (C++ also supports call by reference

through references.) We do not support the call-by-value semantics for concurrent object

parameters because the call-by-value semantics involves creating concurrent objects every

time concurrent objects are passed as parameters. Creation of concurrent objects is compu-

tationally expensive, thereby making method invocations computationally inefficient. Con-

current objects therefore are always passed by reference. This involves copying only the

name description of a concurrent object in the invoked method. For instance, a method

invocation of the form

queue q;
...

obj.func(q);

involves copying the name of the concurrent object q and passing it to func. This has the

implication that all method invocations on the parameter object within func are made on

the object named by q.

Restrictions: The following restrictions are imposed on the definitions and declarations of

concurrent objects:

� Concurrent classes cannot contain static members. The reason is that static variables

are shared among instances of a class. Since each instance of a concurrent class rep-
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resents a concurrent program, static variables act as shared variables among the in-

stances. It is difficult to support accesses to such variables on distributed systems.

� Instance variables of concurrent objects cannot be accessed directly. They must al-

ways be declared private. They can be accessed and modified through the public

methods.

� Currently there is no support for global concurrent objects. However, we do plan to

remove this restriction in the future.

� A sequential object cannot include concurrent objects as instance variables.

5.2.3 Special Member Functions of Concurrent Classes

In C++, there are a number of special member functions associated with a class. These

functions are either be specified explicitly in the class, or given a default implementation

by the C++ compiler. In this section, we discuss these functions within the context of con-

current objects.

Constructor: A constructor is used for initializing instance variables of an object, and for

allocating any resources that the object may require. It is invoked when the declaration of

the object is within the scope of execution or when the new operator is invoked to create the

object. Constructors for concurrent objects have identical behavior. For instance, during

the execution of the expression

qptr = new queue;

the constructor of the queue class is invoked. Currently there are no special requirements

for constructors of concurrent objects. They are therefore mostly used for initializing in-

stance variables of concurrent objects. We do, however, plan to provide mechanisms that

can be used for allocating processor and other resources for concurrent objects.

Destructor: A destructor is used for freeing up the resources associated with an object. It

is invoked when the declaration of the object goes out of the scope or when the delete
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operator is invoked. Destructors for concurrent objects are invoked in a similar fashion.

However, their semantics is different from that of C++ destructors. The difference arises

due to the fact that a concurrent object can be accessed through multiple names. In CYES-

C++, we distinguish between a primary name and a secondary name of a concurrent object:

the primary name of a concurrent object is the one used for creating the object. Secondary

names for the concurrent object are created when the object is passed as a parameter during

method invocations. In CYES-C++, a concurrent object is deleted only when its primary

name go out of scope or is deleted by the delete operator. The destructor of a concur-

rent object applies the destructor on the instance variables of the object, and deletes any

processor and synchronization resources allocated to the object.

Copy constructor: A copy constructor is invoked during parameter passing and during the

execution of an assignment expression. Since CYES-C++ does not support the call-by-

value semantics for parameter passing, copy constructors for concurrent objects are invoked

only during the execution of an assignment expression. The following describes the seman-

tics associated with a default copy constructor of a concurrent object:

� Apply copy constructors on instance variables.

� Copy resource specifications.

� Create a separate execution thread for left hand side object.

Note that the synchronization states (such as the states of different event sets) of concurrent

objects are not copied.

Initialization and assignment operators: Initialization and assignment operators for concur-

rent object derive their semantics from the constructors of concurrent objects.

5.3 Method Invocation

In Section 4.3 we showed that inter-object concurrency and interaction can be represented

by method invocation mechanisms. In this section we describe the syntactic mechanisms
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for specifying inter-object concurrency and interaction. Note that the method invocation

mechanisms are primary mechanisms for constructing different kinds of concurrent pro-

gram structures in CYES-C++. There is another view of method invocations, specifically

the notion of remote procedure calls in distributed programming languages. CYES-C++

supports this view indirectly in that there are no assumptions in the language regarding

the underlying machine architecture. A CYES-C++ program can therefore execute on both

shared and distributed machines1. On distributed systems, method invocations on a concur-

rent object that resides on a different processors are equivalent to remote procedure calls.

CYES-C++ supports both synchronous and asynchronous method invocations on concur-

rent objects.

5.3.1 Synchronous Method Invocation

In synchronous method invocation, an invoking method is blocked until the invoked method

terminates. The syntax for invoking a method synchronously is identical to the one used for

invoking methods in C++. For instance, during an execution of the expression

q.put(val);

the invoking method is blocked until put terminates. Similarly, execution of the expres-

sion

val = q.get();

blocks the invoking method until get terminates and returns a value.

5.3.2 Asynchronous Method Invocation

A method func can be invoked asynchronously on a concurrent object obj by an expres-

sion of the form:

par obj.func(p1, p2, : : :, pN)

where evoce

1An implementation of the language currently runs on a network of IBM RS6000 workstations.
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The term evoce is an event ordering constraint expression. It represents interaction among

the interaction points of the calling method and an occurrence of func. A simple instance

of the asynchronous method invocation is:

par q.put(val)

Here method put occurs in parallel with the invoking method. CYES-C++ also supports

the ability to invoke many methods in parallel through the parfor operator:

parfor (int i=0; i < n; i++)

obj.func(param1, param2, : : :, paramN)

where evoce

The above operator is similar to parfor of CC++ [CK92]. However, invocations of meth-

ods are asynchronous in CYES-C++. The above parfor expression terminates once all

methods have been invoked. This is unlike the parfor operator of CC++ where a parfor

expression terminates only after all invoked methods have terminated. In certain applica-

tions the CC++ parfor operator is more suitable since they support a default synchro-

nization point for the invoked methods. We are looking at ways of introducing the operator

in CYES-C++.

5.4 Interaction Specification

Interaction in CYES-C++ is represented by event ordering constraint expressions. In this

section, we describe the syntactic mechanisms used for representing event sets, events, and

event ordering constraint expressions. Their detailed semantics can be found in Chapters 3

and 4.

5.4.1 Event Sets

Events sets form the abstraction for identifying and representing invocations of methods

that interact with other method invocations. An event set is either a primitive event set, or

is constructed from other events sets.
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Primitive Event Sets

For every method M of a concurrent object, the following primitive event sets are supported:

� The term M denotes the set of all invocations of method M.

� The term M:waiting denotes the set of all invocations of M currently waiting.

� The term M:running denotes the set of all invocations of M currently executing.

� The term M:terminated denotes the set of all terminated invocations of M. .

Nonprimitive Event Sets

Nonprimitive sets are constructed from other event sets through the mechanisms describes

below:

Parameters of Methods: Event sets can be constructed on the basis of values of parameters of

method invocations. For instance, the expression add(2) denotes an event set containing

all invocations of method add with the parameter value 2. Such event sets are useful in

representing interactions among method invocations that can be distinguished by values of

their parameters. Currently we support only integer parameters.

Conditional Event Sets: Conditional event sets are used to capture states of concurrent ob-

jects and to associate them with the events of the sets. They are represented by a term of

the form M:B, where M is an event set and B is a boolean condition. The term denotes the

set of all events of M for which B is true. For instance, the term get:empty() denotes all

invocations of get for which the condition empty() is true.

Named Event Sets: CYES-C++ supports the ability to name event set expressions. For in-

stance, the expression

fullqueue = put:full()

defines an event set fullqueue that contains all events of set put:full.

Event Set Expressions: Event sets can be combined with other event sets with the following

set operators:
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1. Union (+)

2. Difference (�)

Hence, an expression of the form

fullqueue = fullqueue + putlast:full()

extends the event set fullqueue to include the events of set putlast:full(). The

named event set and the set operators are useful when extending and modifying the interac-

tion behavior of methods of superclasses in a subclass. Named event sets are also used for

constructing generic concurrent classes (see Section 5.6).

Interaction Points: Interaction points of methods are denoted by the NamedSelector

mechanism. It is used to select event sets from a set of events. Hence, in the method invo-

cation expression

par obj1.m1(p1), obj2.m2(p2)

where evoce

the term obj1.m1 denotes a set of events. The events in this set are the method invoca-

tions on its parameterp1, and on local and global objects. The term obj1.m1:p1.op1

denotes all op1 method invocations on object p1 in an invocation of m1 on obj1.

5.4.2 Events

Events are represented by selecting specific events from an event set. We support two

mechanisms for denoting events:

1. Occurrence Number: Events can be selected through their occurrence numbers.

The occurrence number of an event in an event set denotes its invocation order. (Note

that an event can have different occurrence numbers in different event sets.) The

term S[exp] is used to denote an event in the event set S. The integer expression

exp determines its occurrence number in S. For instance, term put:full()[2]

denotes the third occurrence of an event in set put:full().
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2. Event variable: Operators forall and exists use event variables to iterate over

an event set.

5.4.3 Event Ordering Constraint Expressions

Interaction among methods of concurrent objects is represented by event ordering con-

straint expressions. In this section, we briefly describe the syntactic mechanisms used for

specifying event ordering constraint expressions. The detailed semantics can be found in

Chapters 3 and 4.

Interactions can be defined by instantiating a named event ordering constraint ex-

pression with suitable parameters or by explicitly specifying an event ordering constraint

expression. A named event ordering constraint expression is defined in the following man-

ner:

evocename(p1, p2, : : :, pn) f

evocexp

g

The above definition associates the event ordering constraint expression evocexp with

evocename. Terms p1, p2, : : : and pn are parameters. The expression evocexp may

contain references to the parameters. Named event ordering constraint expressions allow

one to define expressions that can be reused by instantiating them with different parameters.

Also, named event ordering constraint expressions can be used for changing interaction

behaviors of methods of superclasses in subclasses.

An event ordering constraint expression is constructed from a set of primitive or-

dering constraint expressions and a set of interaction composition operators. The syntactic

representations of the primitive expression and the operators in CYES-C++ are shown in

table 5.1.

Example 5.4.1. (Interaction specification). We present an example that illustrates the man-

ner in which the concepts of event sets, events, and event ordering constraint expressions

can be used to specify interaction. In this example, we derive the event ordering constraint
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Primitive expression B => (e1 < e2)
And constraint operator evoce1 && evoce2
Or constraint operator evoce1 || evoce2

forall constraint operator forall var v in S f
evoce

g
forall occ i in S f

evoce
g

exists constraint operator exists var v in S f
evoce

g
exists occ i in S f

evoce
g

Table 5.1: Syntactical representation of event ordering constraint expressions

expressions that were symbolically specified in the interaction section of class queue (fig-

ure 5.1). Note that example 4.2.1 also contains specifications of the interaction among the

methods of queue. However, we use a different approach here: the interactions are spec-

ified in terms of named event sets. This approach has the advantage that specifications of

the interactions can be extended easily by modifying the definitions of the named event sets

in a subclass.

We first define two named event ordering constraint expressions. Terms S, S1, and

S2 in the expressions below denote events sets.

Serialize(S) f

forall occ i in S f

(S[i] < S[i+1])

g g

WaitWhile(S1, S2) f

forall var a in S1 f

forall var b in S2 f

(a < b)

g g g

Below We define four named event sets that capture different aspects of a queue

object and associate them with specific events:
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QueueEmpty = get:empty()

Queuefull = put:full()

AddToQueue = put

RemoveFromQueue = get

Set QueueEmpty contains all invocations of get for which a queue object is

in empty state. Similarly, set QueueFull contains all invocations of put for which a

queue object is in full state. Set AddToQueue contains all events that add information

to the queue. Set RemoveFromQueue contains all events that remove information from

the queue. We now instantiate the named event ordering constraint expressions with suit-

able named event sets:

SyncQueueEmpty = WaitWhile(AddToQueue, QueueEmpty)

SyncQueueFull = WaitWhile(RemoveFromQueue, QueueFull)

SequentialAdds = Serialize(AddToQueue)

SequentialRemoves = Serialize(RemoveFromQueue)

�

5.5 Inheritance

In Section 4.4 we presented a model of inheritance in which inheritance is a composi-

tion mechanism for extending the concurrent program composition of a concurrent class

through additions and modifications of methods and their interaction behaviors. In this

model, interaction behavior of methods in a class is ̂-composition of event ordering con-

straint expressions specified in the class and the superclasses. The inheritance model of

CYES-C++ is derived from this model. In this section we present a number of examples

that illustrate the ways in which concurrent classes can be extended.

Extension of Interaction Behavior: The first example shows the manner in which interaction

behaviors of methods of a class can be extended when the class is extended by adding a

method.
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Example 5.5.1. (Method addition). Let readlastqueue be a subclass of class queue:

concurrent class readlastqueue: public queue f

public:

char getlast();

interaction:
...

g

Method getlast retrieves the last element of a queue object. It interacts with method

put of class queue: invocations of getlast must wait for invocations of put if the

queue is empty. Similarly invocations of put must wait for invocations of getlast if

the queue is full.

The interactions between the added method and the inherited methods can be spec-

ified easily by adding invocations of getlast in the named event sets of queue:

RemoveFromQueue = RemoveFromQueue + getlast

QueueEmpty = QueueEmpty + getlast:empty

Both computational and interaction behavior specifications of the methods of class queue

are inherited in class readlastqueue. In addition, the event ordering constraint expres-

sion that were specified in class queue over the named event sets apply to the invocations

of getlast as well:

� The expression SyncQueueEmpty specifies that events of both get and getlast

are delayed with respect to events of AddToQueue if the queue is empty.

� The expression SyncQueueFull specifies that the events of set QueueFull are

delayed with respects to the events of RemoveFromQueue (containing events of

both get and getlast).

� Since the events of RemoveFromQueue are serialized (by the event ordering con-

straint expression SequentialRemoves), all invocations of getlast are serial-

ized as well. �
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State Partitioning: In the next example, we show the definition of a concurrent subclass that

partitions a specific state of its superclass.

Example 5.5.2. (Concurrent object state partitioning). Let queueone be a subclass of

queue:

concurrent class queueone: public queue f

public:

void gettwo(char val[]);

interaction:

SyncQueueOne
...

g

Method gettwo accesses two elements of the queue object atomically. Invocations of

gettwo are delayed with respect to put if the buffer is empty or has one element. Note

that a queue object can be in one of the three states: full, empty, or partially filled. The

addition of method gettwo partitions the partially filled state into two: queue with one

item, and queuewith more than one item. State partitions can be represented through def-

initions of new event sets. Let method one() return true if a queueone object contains

one item. We first define the following event sets:

QueueOneObject = gettwo:one()

The event ordering constraint expression

SyncQueueOne = WaitWhile(AddToQueue, QueueOneObject)

represents the interaction between gettwo and events of AddToQueue. We add events

of gettwo to the following sets:

EmptyQueue = EmptyQueue + gettwo:empty()

RemoveFromQueue = RemoveFromQueue + gettwo
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The event ordering constraint expressions of queue apply to invocations of gettwo as

well. �

Multiple Inheritance: We now present an example where a concurrent class is constructed

by composing two concurrent classes. The goal here is to show that interaction behaviors

defined in different concurrent classes can be combined and extended easily through the

notion of event sets.

Example 5.5.3. (Composition of two concurrent classes). Below we show the interface of

a concurrent class LockObj :

concurrent class LockObj f

public:

lock();

unlock();

int locked();

interaction:

LockEventSet = lock:locked()

UnlockEventSet = unlock

LockObjExp(LockEventSet, UnlockEventSet)

g

Method lock is used to lock an instance of LockObj. Method invocations on a locked in-

stance of LockObj are delayed until the unlock method is invoked on the instance. Ex-

pression LockObjExp represents interaction among the events of sets LockEventSet

and UnlockEventSet. (For brevity, we have left out the definition of event ordering

constraint expression LockObjExp.)

We construct a class LockedQueue that is composed from concurrent classes

LockObj and queue:
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concurrent class LockedQueue: public LockObj, queue f

interaction:

LockEventSet = LockEventSet+put:locked()+get:locked();

g

Invocations of put and get on an instance of LockedQueue are delayed if the instance

is locked. This additional interaction behavior is specified by including invocations of put

and get in set LockEventSet. �

Models of concurrency: We now show that inheritance can also be used to represent different

models of concurrency. The example below constructs an interleaving model by serializing

all invocations of methods.

Example 5.5.4. (Interleaving concurrency model). In CYES-C++, methods of concurrent

objects are concurrent by default. However, certain applications may require that execu-

tions of method invocations be interleaved. In order to represent such concurrent classes,

the following concurrent class can be defined:

concurrent class interleaving f

public:
...

private:
...

interaction:

AllInvocations = fg

Interleave(AllInvocations) =

MutuallyExclusive(AllInvocations, AllInvocations);

g

Expression MutuallyExclusive(S1, S2) is defined in Section 3.5.1. A concurrent

class, say userclass, can thus be defined as an extension of the interleaving class:
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concurrent class userclass: public interleaving f

public:
...

private:
...

interaction:

AllInvocations = AllInvocations + S

g

For methods M1, M2, � � �, and Mn of userclass, event set S is defined:

S = M1 +M2 + � � � + Mn

Executions of methods of userclass satisfy all ordering constraints specified on the

events of set AllInvocations: the method invocations are mutually exclusive. �

5.6 Generic Concurrent Classes

The C++ programming language provides the template mechanism for specifying generic

classes. Templates allow one to capture essential elements of objects or functions. In this

section, we describe the manner in which the template mechanism can be extended to de-

fine generic concurrent classes.

Generic concurrent classes capture common computational and interaction behav-

ior specifications of methods of concurrent classes. They can be instantiated with user

classes to associate the computational and interaction behaviors with user defined abstrac-

tions. Such classes support reusability of both computational and interaction behavior spec-

ifications. We show an example of a generic concurrent class below:

Example 5.6.1. (Generic sync class). CC++ [CK92] supports the notion of sync synchro-

nization variables. A sync variable is a write-once variable. All reads to the variable are

delayed until the first write has taken place. We define a generic sync class in the follow-

ing manner:
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template <class T> concurrent class sync f

public:

virtual T & read();

virtual write(T &);

private:

int wrcnt;

T data;

interaction:

ReadSet = freadg;

WriteSet = fwriteg;

Interaction(WriteSet, ReadSet)

g

The expression Interaction(WriteSet, ReadSet) is defined as:

Interaction(WriteSet, ReadSet) f

forall occ i in ReadSet f

(WriteSet[0] < ReadSet[i])

gg

Methods read and write are defined:

template<class T>

T & sync<T>::read() f

return(data);

g

template<class T>

T & sync<T>::write(T &val) f

if (wrcnt++ > 1) error();

data = val;

g

The generic sync class can now be instantiated to define different sync concurrent classes

and objects. We show two instantiations of the sync generic concurrent class below:
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sync<int> intSyncVar;

typedef sync<userClass> userClassSync;

Variable intSyncVar is an integer sync variable. Class userClassSync is a sync

class whose contents are defined by the class userClass. Interaction behaviors of reads

and writes to intSyncVar and objects of userClassSync are defined by the event

ordering constraint expression Interaction(ReadSet, WriteSet): reads are de-

layed until the first write has occurred. We would like to underline the fact that there are

no restrictions on instantiations of the sync generic concurrent class: any user defined class

can therefore behave like a sync primitive.

Note that the generic sync class specifies a default implementation for the read

and write methods. The user may override the default implementations through inheri-

tance:

template<class T>

concurrent class userclass: public sync <T> f

public:

T & read();

write(T &);

g

In addition, sets ReadSet and WriteSet can be changed to include any method invo-

cations. The sync class therefore not only captures the abstraction associated with write-

once variables but also the abstraction of interaction relationships between the read and

write methods. �

Example 5.6.2. (Generic mailbox class). Another example of a generic concurrent class

is a first-in-first-out mailbox class. This class captures the abstraction associated with stor-

ing and retrieving information from a first-in-first-out mailbox. It includes interactions be-

tween sends and receives over the mailbox. The following describes the essential elements

of a generic mailbox class:
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template<class T>

concurrent class mailbox f

public:

virtual T &receive();

virtual send(T &);

private:

T data[MAILBOXSIZE];

int size;

interaction:

RemoveSet = freceiveg;

AddSet = fsendg;

MailboxInt(RemoveSet, AddSet)

g

For brevity, we omit the definitions of send and receive here. One possible defini-

tion of event ordering constraint expression MailboxInt(RemoveSet, AddSet) is

shown below:

MailboxInt(RemoveSet, AddSet) f

forall var i in AddSet f

(AddSet[i] < ReadSet[i])

g &&

forall var i in RemoveSet f

(RemoveSet[i] < AddSet[i+MAILBOXSIZE])

g g

The mailbox generic concurrent class can now be instantiated with a user class to create

user-specific mailboxes. Note that the event ordering constraint expression MailboxInt

is dependent on the size of the mailbox. This limits the possible ways in which the

mailbox generic concurrent class can be instantiated. However, it is possible to rede-

fine the mailbox generic class such that a set of boolean conditions are used to specify

the interaction relationships between events of AddSet and RemoveSet. Event ordering
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constraint expression here will be similar to the ones defined in the queue concurrent class

(example 5.4.1). �

The template and concurrent class mechanism can therefore be used to define generic con-

current classes that capture essential concurrency, interaction, and computational attributes

of concurrent classes. These generic classes can then be composed with other classes to

construct concurrent classes.

5.7 Summary

We presented the design of a concurrent object-oriented programming language CYES-

C++. The language includes concurrency in the C++ programming language with the con-

cept of a concurrent class type and synchronous and asynchronous method invocation mech-

anisms. It contains mechanisms for representing interactions among method invocations

through the notion of event sets and event ordering constraint expressions. It supports in-

heritance of both method and interaction specifications. More importantly, it supports cre-

ation of abstractions associated with concurrency and interaction. These abstractions can

be composed with other abstraction mechanisms (such as template and inheritance) of C++

to construct reusable concurrent classes.
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Chapter 6

Implementation of CYES-C++

6.1 Introduction

In this chapter we briefly describe the design and implementation of a translator for the

CYES-C++ programming language. The goals are to demonstrate the feasibility of the im-

plementation of a concurrent programming language based on “separation of concerns”,

and to establish an experimental platform for the performance analysis of the execution be-

haviors of CYES-C++ programs.

6.1.1 Problem

The problem of implementing CYES-C++ can be partitioned into two subproblems: the

implementation of different aspects of a concurrent object-oriented programming language,

and the implementation of those aspects that are specific to the C-YES model.

Implementation of concurrent object-oriented programming languages aspects

An implementation of a concurrent object-oriented programming language includes imple-

mentation of concurrent objects, concurrent method invocations, object distribution, object

communication, and load balancing. One problem is the management of communication

and method invocations among concurrent objects that reside on different processors. In
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most implementations [TMY93, CKS93, Kal90, GWS93, Nak91, KC93, BPG+93] of con-

current object-oriented programming languages, a globally unique representation of a con-

current object is used to determine the processor on which the object is located. Differences

among the approaches occur in the implementations of the global representation of concur-

rent objects. In the CYES-C++ implementation, a concurrent object is represented by a

pair — name and value — of C++ objects. The name object implements the mechanisms

needed for accessing a remote value object. The value object, on the other hand, stores the

state of the concurrent object.

The other implementation problems are load balancing and object distribution, which

involve distribution of objects across different processors in a way that minimizes the cost

of communication among the objects while keeping the load on the processors balanced.

The two goals are orthogonal. There may not be an optimal solution for the most general

problem. Some programming languages [CGH92, CK92] therefore provide language con-

structs for specifying how objects should be placed on processors. Currently, the CYES-

C++ implementation employs a simple algorithm for distributing objects: an object is placed

on a processor with the least load. The algorithm does not take communication cost into ac-

count. In certain applications, this algorithm may be extremely inefficient. We plan to ex-

tend the object distribution algorithm in order to incorporate additional information such as

interaction relationships among objects, memory hierarchy, machine load factor, and ma-

chine configuration.

Implementation of C-YES model aspects

The two unique elements — separation of concerns and event ordering constraint expres-

sion — of the C-YES model are implemented in the following manner:

Separation of concerns: In the C-YES model, specifications of computational and interac-

tion behaviors of programs are separated. Separation of the two behaviors creates compli-

cations in that the CYES-C++ translator must find suitable places in source programs where

synchronization code for components can be inserted. The synchronization code should be
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placed in such a way that its execution implements the interaction behaviors of the compo-

nents.

Interactions are specified at two places in CYES-C++ programs: one in concurrent

class definitions (see Section 5.2.1), and the other in method invocation expressions (see

Section 5.3). Implementation of the first involves establishing and preserving execution or-

derings among method invocations. Event ordering constraint expressions specified in a

concurrent class can be easily implemented by generating two synchronization procedures

for each method of the class. One, called the prefix of the method, is executed before the

execution of an invocation of the method, while the other, called the postfix of the method,

is executed after the execution of a method invocation. The execution of the prefix ensures

that all ordering constraints associated with a method invocation are satisfied. The execu-

tion of the postfix, on the other hand, wakes up all method invocations that are waiting on

a method invocation. The execution behavior of an invocation of a method M is therefore

represented in the following manner:

M prefix();

M();

M postfix();

In this program M prefix and M postfix are the prefix and postfix of M respectively.

Event ordering constraint expressions defined in method invocation expressions are

used to specify interaction behaviors of interaction points of calling and called methods.

Implementation of such event ordering constraint expressions is much more difficult. The

reason is that it is difficult to find a suitable place where the synchronization code for the

interaction points of the calling and called methods can be inserted. There are two possible

implementations:

1. The method specifications can be modified so that synchronization codes are inserted

before and after the textual occurrences of interaction points. However, this involves

modifications of the specifications of the calling and called method.
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2. The generated synchronization code can be associated dynamically with an interac-

tion point (method invocations on an object) in the object upon which the method

is invoked. However, this requires the ability to access the context of the invoked

method from within an object. This is made more difficult by the fact that the invok-

ing and invoked methods may reside on different processors.

Currently, we have not implemented event ordering constraint expressions speci-

fied in method invocation expressions. While this does not restrict the set of application

programs that can be written, it does have implications on the extensibility and reusability

of programs. (See Section 4.5 for more detail.)

Event ordering constraint expressions: Interactions in CYES-C++ are defined in terms of the

primitive event ordering constraint expression and the interaction composition operators.

The language includes mechanisms for defining event sets. Note that event sets may be dy-

namic in nature in that their content may change over time. Also, they may contain infinite

events. Event ordering constraint expressions containing such event sets may assert infi-

nite possible ordering relationships. They may also define relationships among events that

may occur in the future. Such event ordering constraint expression cannot be evaluated by

synchronization code that statically defines and preserves all relationships among method

invocations. Our approach therefore is to generate synchronization code that incrementally

evaluates event ordering constraint expression. In this approach, execution of each method

invocation creates and preserves all possible relationships of which it may be a part.

6.1.2 Design goals and approach

The primary concerns of the design are: portability, support for true concurrency within

concurrent objects, and reusability. We describe each in detail below:

Portability: One of the primary design goals was the portability of the translator across both

shared and distributed memory machines. We attain this goal by designing the runtime

system of CYES-C++ as a machine-independent abstraction of a parallel machine. Here a

parallel machine is represented as a collection of execution spaces and mapping functions.
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source.C

source.CS

Linker Runtime Library

Figure 6.1: Compilation and linking steps of a CYES-C++ program

An execution space supports the ability to execute multi-threaded programs. The mapping

functions implement communication among programs that reside in different execution

spaces. A CYES-C++ program is transformed into a concurrent program whose compo-

nents execute in different execution spaces and communicate with each other through the

mapping functions.

In figure 6.1, we show the different steps in the compilation of a CYES-C++ pro-

gram. The translator parses a CYES-C++ source program, and generates a set of C++ pro-

grams. The generated programs contain transformed source programs along with calls to

the runtime library. The programs are then compiled with a C++ compiler in order to gen-

erate object files. The object files are then linked with the runtime library creating an exe-

cutable.

The translator can be ported easily by re-implementing the execution spaces and

the mapping functions. No changes need to be made to either the front end of the compiler

or the nature of the generated code.
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Intra-object concurrency

There are two reasons for supporting true concurrency within an object: the first arises from

the semantics associated with the composition of a concurrent object. Here, method invo-

cations are concurrent by default. The second is that true concurrency within concurrent

objects can be used on represent massively parallel programs. We are interested in examin-

ing the execution behavior of such objects as well as exploring techniques for implementing

them efficiently.

Our current implementation supports true concurrency by associating a thread of

execution with every method invocation. One of the direct implications of this approach is

that it significantly simplifies the code that is generated for the management and scheduling

of method invocations. However, the approach is expensive both from computational re-

source usage and computational efficiency point of view. We are examining ways in which

event ordering constraint expressions can be analyzed to determine if a thread should be

created for a method invocation. For instance, an event ordering constraint expression that

serializes events of a set can be analyzed to determine that only one thread needs to be

created for all events of the set.

Development with libraries

We used the implementation of the translator as an exercise in testing the reusability of ex-

isting libraries. The intention from the beginning was not to write any code that existed in

a usable form elsewhere. We evaluated many libraries in order to find those that are ex-

tensible and efficient, and conform to a standard so that the translator can be easily ported

to different machines. We came across many problems: most libraries were inadequately

tested and had many bugs. Also, many C++ compilers had problems compiling certain

constructs. Further, some libraries could only be compiled with specific compilers on spe-

cific machines. This exercise provided insights into the seamless integration of systems

from predefined components. It also underlined difficulties due to incompatibilities in soft-

ware development tools such as compiler and loaders, special requirements of the libraries,
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learning curves associated with the libraries, and difficulties in debugging.

We settled on using three libraries – i) a C++ parser library, ii) a standard C++ com-

ponent library called STL (Standard Template Library) [SL94], and iii) a distributed thread

library called Nexus [FGT94]. STL provides many template-based container data struc-

tures such as lists, vectors, sets, multisets, and maps. Nexus was designed and implemented

at Argonne National Laboratory for implementation of back-ends for concurrent program-

ming languages. It has been used for implementing the CC++ and Fortran-M [CF95] pro-

gramming languages. It provides support for creating threads on a processor, for specify-

ing synchronization among the threads of a node, and for communication among threads

through the active-message paradigm. In the active message paradigm, it is possible to di-

rectly invoke a function on a remote node.

Status

The current CYES-C++ implementation runs on a network of IBM RS/6000 workstations.

It supports creation and distribution of concurrent objects both on local and distributed

nodes. In addition, both synchronous and asynchronous method invocations on local and

remote objects are supported. Event ordering constraint expressions containing forall,

&&, and primitive event ordering constraint expressions are supported. We chose these op-

erators for implementation because these operators are most commonly used in applica-

tions.

This chapter is organized as follows: In Section 6.2 we describe the design of the

runtime system. Section 6.3 describes the manner in which CYES-C++ programs are trans-

formed. Finally we describe an implementation of event ordering constraint expressions in

Section 6.4.

6.2 Runtime System

The runtime system supports creation of concurrent objects, concurrent method invoca-

tions, and evaluation of event ordering constraint expressions. It is implemented by a run-
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Figure 6.2: The runtime model of a parallel machine

time library. The primary role of the runtime system is to implement an abstraction of a par-

allel machine so that a CYES-C++ program can be mapped to the machine and executed.

We first describe the parallel machine abstraction, and the manner in which CYES-C++

programs are executed. We then briefly describe the abstractions that the runtime system

implements.

6.2.1 Model of Parallel Machines

In the runtime system, a parallel machine is modeled as a set of execution spaces and a

map as shown in figure 6.2.

Execution Space

An execution space implements the elements necessary for executing multi-threaded dis-

tributed programs. It supports the ability to i) create and destroy objects, ii) construct

threads of executions on a processor, and iii) specify synchronization among threads. It is

used for implementing both intra-object and inter-object concurrency. For instance, intra-

object concurrency is supported by constructing one execution thread for every method in-

vocation. Further, inter-object concurrency is implemented by constructing separate execu-

tion threads for invoking and invoked methods.

Implementation note: The concept of execution space is implemented by the node and con-

text mechanisms of Nexus. In Nexus, a node is an abstraction of a physical processor.

Within a node, multiple contexts can be created. A context is characterized by an address
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(a) Create a named location
in target execution space

ES2ES1

(b) Map object into the
named location

ES1 ES2

(c) Unmap object from the
named location

Figure 6.3: Steps in mapping of an object from one execution space to another

space and an executable. In CYES-C++ runtime system, an execution space is represented

by a node containing a single context. The executable associated with the context is the

executable created after compiling and linking a CYES-C++ program. �

Map

Address spaces of execution spaces are disjoint. It is therefore not possible to directly ac-

cess an object residing in a different execution space. We implement an abstraction, called

map, for accessing remote objects. The following steps are used for accessing a remote

object (Figure 6.3):

� Create a named address in the target execution space (figure 6.3(a)).

� Copy the object into the named location (figure 6.3(b)).

� Unmap the object from the named location(figure 6.3(c)).

A map is implemented by a set of mapping and unmapping functions. The steps in fig-

ures 6.3(a) and 6.3(b) are implemented by the mapping functions whereas the step in fig-

ure 6.3(c) is implemented by the unmapping functions.

A map provides an abstraction of the memory model of the underlying machine.

Different maps can be implemented, each representing a specific memory model of the par-

allel machine. For instance, in distributed systems (figure 6.4(a)) where execution spaces
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Figure 6.4: Abstraction of memory models of parallel machines

may reside on processors with distributed memory, mapping an object involves i) copying

the object into a message buffer, ii) sending the message over a communication channel

to the remote processor, and iii) copying the message into a named location in the execu-

tion space. In shared memory systems (figure 6.4(b)), on the other hand, the mapping may

involve copying the object into a named location in the shared memory and then copying

a pointer to the named location into the remote execution space. If the object already re-

sides in the shared memory, the first step can be eliminated. Similarly, for hierarchical sys-

tems (systems containing distributed clusters where each cluster is a collection of proces-

sors with shared memory), a map will depend on the characteristics of the source and target

execution spaces to determine if a mapping requires distributed mapping, shared memory

mapping, or a combination of the two. A map may also use machine specific characteristics

of the execution spaces to efficiently implement mappings among the execution spaces.

This model of parallel machines is the basis for the portability of the CYES-C++

runtime system. The runtime system can be ported to different architectures by porting the

implementation of execution spaces, and mapping and unmapping functions. Currently, we

have implemented the mapping and unmapping functions for distributed systems.

6.2.2 Model of Execution of a CYES-C++ Program

We now describe the manner in which executions of CYES-C++ programs take place.
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In order to create execution spaces on different processors, the user provides the

names of the processors in a resource description file. The resource description file re-

sides in the same directory as the program executable. An execution of the program starts

by first creating an execution space on the processor on which the program execution is

started. We call this execution space the primary execution space. The primary execution

space is responsible for creating execution spaces, called secondary execution spaces, on

other processors, initiating program executions, and terminating the CYES-C++ runtime

system. The execution behavior of a program is partitioned into three distinct phases: i)

initialization phase, ii) program execution phase, and iii) termination phase. We describe

each in detail below:

Initialization Phase

During the initialization phase, the runtime system initializes the system data structures and

starts different daemons. The primary execution space initiates this phase in the following

manner:

1. Initialize local data structures.

2. Read the resource description file, and create secondary execution spaces on the spec-

ified hosts.

3. Create local system state and system load daemons. These daemons in turn create

corresponding daemons in the secondary execution spaces.

The system state daemons maintain the global state of the runtime system. They keep track

of information about execution spaces, concurrent objects, communication data structures,

and states of different threads. State daemons interact with each other in order to apprise

each other of changes in the state of the runtime system.

The system load daemons store load information of the execution spaces. Cur-

rently, a load daemon keeps track of the number of objects and threads that exist in its
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execution space. The load computation algorithm computes the load of an execution space

in terms of numbers of objects and threads currently active in the execution space.

The load information is used for distributing newly created concurrent objects: a

concurrent object is placed in an execution space with least load. Although there are provi-

sions in the system for overriding this object distribution algorithm, they are mostly ad hoc

(such as locating the aggregates of a concurrent object in the same execution space as the

object). Also, the object distribution algorithm is clearly not optimal. We plan to change

this algorithm in order to incorporate additional semantic information such as interaction

relationships, memory hierarchy, load factor, and the underlying machine configuration in

a future implementation.

Program Execution Phase

During this phase, the execution of the user program takes place. It is started by transfer-

ring the control of the main execution thread of the primary execution space to the main

procedure of the user program. The user program performs computations by creating con-

current objects in different execution spaces and by invoking methods on these objects. We

describe the typical execution behavior of a user program by the following example:

Example 6.2.1. (CYES-C++ program execution). We show an example execution of a pro-

gram. We assume that there are three execution spaces, one primary execution space PES

and two secondary execution spaces SES1 and SES2. Figure 6.5 shows configurations of

the execution spaces at different points in the program execution. We describe them below:

1. In figure 6.5(a) we show the state of the program, just before the program enters the

program execution phase. The main execution threads of the secondary execution

spaces SES1 and SES2 are blocked. Thread t1 in PES is the main execution thread,

and is about to start to execute the main subroutine of the user program.

2. In figure 6.5(b) we show the state after thread t1 has created local threads, t2 and

t3, and sequential objects, o1 and o2. Note that creation of sequential objects, and
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(d) System state after a method creates a concurrent object and
invokes method on the object

Figure 6.5: Execution behavior of a CYES-C++ program
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invocations of methods on sequential objects occur in the execution space in which

they are invoked.

3. In figure 6.5(c) we show the state of the user program after thread t2 has created a

concurrent object, C1, and has invoked a method on C1. The concurrent object is

created by first selecting an execution space (SES1 in this case), followed by placing

the object in the execution space. The method invocation on C1 is executed by a

thread, t4, in SES1. Sequential object, o3, in SES1 is created by t4. Note that a

method invocation on a concurrent object occurs in the execution space in which the

concurrent object resides.

4. Finally, figure 6.5(d) shows the state of the user program after thread t4 has created

a concurrent object, C2, in SES2. Also thread t5 executes the method invoked by

thread t4 on object C2. �

To summarize, creation of sequential objects and invocations of sequential methods take

place in the execution space in which they are initiated. A concurrent object, on the other

hand, may be created in an execution space different from the one in which the create op-

eration was initiated. Also, method invocations on a concurrent object take place in the

execution space in which the concurrent object resides.

System Termination Phase

The system termination phase involves gracefully terminating the runtime system. It starts

once the main subroutine of the user program terminates. It is initiated in the primary exe-

cution space. The following steps are taken during the system termination phase:

� Terminate all load server daemons.

� Terminate global state daemons of the secondary execution spaces.

� Delete the secondary execution spaces.

154



� Release local resources. This is done by deleting the global state daemon of the pri-

mary execution space.

� Exit by deleting the primary execution space.

6.2.3 Runtime Abstractions

The runtime library implements abstractions for representing concurrency, synchroniza-

tion, and communication.

Concurrency

The runtime library defines two classes for creating concurrent threads of execution: Class

LocalComputation supports creation of threads in the local execution space, whereas

class RemoteComputation supports creation of threads in remote execution spaces.

Implementation note: LocalComputation is implemented on top of Nexus’s thread

management utilities. RemoteComputation, on the other hand, is built on top of Nexus’s

communication facilities. �

Synchronization

The runtime library defines two classes for specifying synchronization among threads in

an execution space: Class SynchVar is a simple lock primitive. Class CondSynchVar

implements a conditional synchronization primitive.

Implementation note: SynchVar and CondSynchVar respectively are class wrappers of

Nexus’s nexus mutex and nexus cond synchronization primitives. �

Communication

The runtime library implements many abstractions for communication among threads that

reside in different execution spaces. Two examples are CommnicationBuffer and

Mailbox. CommunicationBuffer is a simple buffer mechanism. It is used for storing
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information that will be sent from one execution space to another. The Mailbox class

implements named mailboxes in different execution spaces. Threads of different execution

spaces can communicate with each other by appending to and retrieving information from

named mailboxes.

Implementation note: The CommunicationBuffer abstraction is built on top of the

communication mechanism of Nexus, whereas the Mailbox abstraction is built on top of

the CommunicationBuffer abstraction. �

Mapping and Unmapping Functions

Mapping and unmapping functions also implement communication between entities of dif-

ferent execution spaces. They manage connections between execution spaces through named

mailboxes. Mapping and unmapping functions have the following form:

Map(SpaceMap &, ObjectType &);

Unmap(SpaceMap &, ObjectType &);

Class SpaceMap implements the necessary abstractions for mapping objects and func-

tions from one execution space to another. The runtime library provides mapping and un-

mapping functions for primitive types such as integer, character, floating point, and string.

These functions can be combined with other mapping functions in order to construct map-

ping and unmapping functions for user classes. Although the CYES-C++ translator can

generate default mapping and unmapping functions for an object from its class definition,

the programmer may need to override the default functions in cases when the object may

have more than one possible mappings. One example is the mapping of a pointer object.

Mapping a pointer object may involve either mapping the value of the pointer (the address

of the object it points to) or the set of objects that it points to. While the former can be

generated automatically, it may not be possible to automatically generate the latter. This is

because it is not possible to determine the number of objects to which a pointer may ad-

dress. In these cases the programmer must provide the mapping and unmapping functions.
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We show both the default and one possible user-defined mapping and unmapping functions

for a user defined class called userclass:

class userclass f

public:
...

private:

int sz;

exclas *ptr;

g

In this class specification, size contains the number of exclas objects to which the vari-

able ptr points. In figure 6.6, we show both the default and user defined mapping and

unmapping functions. The mapping and unmapping functions in figures 6.6(b) and 6.6(d)

use the value of size to map and unmap objects.

In addition to the resolution of the semantic ambiguities, the programmer may want

to map only specific aspects of a class. Also, she may optimize the mapping and unmap-

ping functions on the basis of semantic information unavailable to the translator.

Mapping Methods for Concurrent Classes: The runtime library also supports mappings of

methods of concurrent classes. For instance, an invocation of the form obj->M(par1,

� � �, parN) requires that method M be executed in the execution space in which obj re-

sides. The runtime library provides a number of mapping functions for mapping meth-

ods from one execution space into another. For instance, the above method invocation is

mapped in the following manner:

Map(smap, MethodIdentifier("M"), METHOD);

Map(smap, par1);
...

Map(smap, parN);

applyFunction(smap);
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void Map(SpaceMap &sm,
userclass &val)

f
Map(sm, val.sz);
Map(sm, val.ptr);
g

(a) Default mapping function

void Map(SpaceMap &sm,
userclass &val)

f
Map(sm, val.sz);
for (i=0;i<val.sz;i++)

Map(sm, val.ptr[i]);
g

(b) User defined mapping function

void Unmap(SpaceMap &sm,
userclass &val)

f
Unmap(sm, val.sz);
Unmap(sm, val.ptr);
g

(c) Default unmapping function

void Unmap(SpaceMap &sm,
userclass &val)

f
Unmap(mp, val.sz);
val.ptr = new exclas[val.sz];
for (i=0;i<val.sz;i++)

Unmap(mp, val.ptr[i]);
g

(d) User defined unmapping function

Figure 6.6: Mapping and unmapping functions for a user defined class

In the above, smap is a map associated with concurrent object obj. We first map the iden-

tity of method M (a unique integer). Mapping also includes mapping M’s arguments, and

then applying the method on the remote node. Unmapping a method involves identifying

the method, unmapping its parameters, and then executing the method with suitable param-

eters. Mapping and unmapping functions for methods are generated by the translator.

Implementation note: The mapping and unmapping functions are implemented in terms of

named mailboxes. �

6.3 Transformation of CYES-C++ Programs

We now describe the manner in which CYES-C++ programs are transformed. The trans-

formation process can conceptually be divided into two parts: one involving the transfor-
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mation of concurrent object-oriented programming language constructs such a concurrent

class definitions and method invocations, and the other involving the transformation of con-

structs that are specific to the C-YES model. We describe the first part in this section. The

implementation of the later is described in Section 6.4.

A CYES-C++ program contains class definitions, method definitions, object dec-

larations, and method invocation expressions. These expressions form a program name

space. In this name space, a program entity can access another entity within its scope.

An example is an object’s ability to invoke a method on another object that is defined in

the same scope. The target space in which programs are executed, on the other hand, are

represented by a set of disjoint execution spaces: an entity cannot directly access another

entity that resides in a different execution space. The primary goal of the transformation

process is to transform a CYES-C++ program in such way that an entity’s ability to access

another is preserved in the transformed program.

We describe the technique used by the CYES-C++ translator for the transformation

of different CYES-C++ expressions below:

6.3.1 Transformation of Concurrent Class Specifications

The CYES-C++ translator constructs a representation for concurrent objects from their

class definitions. The representation is an extension of the (l-value, r-value) [ASU86] rep-

resentation of objects in a shared memory space. The r-value of an object denotes the value

associated with the object. The l-value of the object is the memory location at which its

r-value is stored. Note that in the shared memory space an object can be represented solely

by its l-value: its l-value can be used to uniquely determines its r-value. In a partitioned

memory space, however, the l-value is not sufficient since there are many possible r-values

associated with an l-value (one for each execution space). A representation of an object

must contain, in addition to its address, information about the execution space.

In a transformed program of CYES-C++ program, a concurrent object is repre-

sented by two C++ objects: a name object, and a value object. The name object contains the
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location (execution space and address) information of the value object. The value object (r-

value) implements the instance variables and methods of the concurrent object. Any state

change in the concurrent object is reflected by corresponding changes in its value object.

The name object implements mechanisms for invoking methods on value objects. Note that

name and value objects for a concurrent object may reside in different execution spaces. We

show an example of the transformation of a concurrent class in terms of a name class and a

value class below:

class queue name f
public:

queue name();
˜queue name();
void put(char val);
char get();
Boolean Full();
Boolean Empty();

private:
ExecutionSpace *space;
Address *location;

...
g;

(a) Name class of queue concurrent class

class queue value f
public:

queue value();
˜queue value();
void put(char val);
char get();
int full();
int empty();

private:
int size;
char buffer[BUFSIZE];

private:
void put prefix(Event *);
void put postfix(Event *);
void get prefix(Event *);
void get postfix(Event *);
void queueServer();

g;

(b) Value class of queue concurrent class

Figure 6.7: Transformation of queue concurrent class

Example 6.3.1. (Transformation of queue). Figure 6.7 shows the (name, value) repre-

sentation of concurrent class queue. Class queue name stores (ExecutionSpace, Ad-

dress) information of a queue value object. Also, the public interface of queue name

is identical to that of queue.

Class queue value contains methods and instance variables of queue object.

In addition, it contains a number of additional methods such as put prefix which are
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generated by the translator in order to evaluate event ordering constraint expressions. Exe-

cution behaviors of these methods are described in Section 6.4. �

Methods of Name Objects: The sole purpose of the methods of name objects is to map

method invocations and their arguments into the execution space of the value object, and

execute the method invocations in the execution space of the value object. We show this

through the following example:

Example 6.3.2. (Methods of name objects). we show an implementation of put method

of queue name below:

void queue name::put(int val)

f

InvokeFunction( put );

Map(*map, val);

applyFunction(*map);

g

The implementation of method put first maps a representation of method put (through

InvokeFunction routine), maps its argument, and applies the function in the execution

space of the queue value object. Any values returned by the remote method execution

are also returned by the method of the name object. �

6.3.2 Transformation of Object Declarations and Method Invocations

We now look at how declarations of concurrent objects, and method invocation expressions

are transformed.

Transformation of Object Declarations

Declarations of concurrent objects are transformed into declarations of name objects. For

instance, in figure 6.8 we show declarations of queue concurrent objects (figure 6.8(a))

and their corresponding transformations (figure 6.8(b)). All references to queue concur-

rent class have been transformed into references to queue name. We now show the
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queue *qobj;
queue qarray[100];

...
qobj = new queue;

...
delete qobj;

(a) Declaration of concurrent
objects

queue name *qobj;
queue name qarray[100];

...
qobj = new queue name;

...
delete qobj;

(b) Transformation of concurrent ob-
jects

Figure 6.8: Transformation of concurrent object declarations

manner in which the above transformations of object declarations can be used for creating

and deleting concurrent objects.

Object Creation: In a CYES-C++ program, a concurrent object is created when a variable

declaration is within the scope of execution or is created explicitly by the new operator.

For instance, declaration of qarray in figure 6.8(a) is used to creates 100 queue ob-

jects. In the transformed program, a name object and a value object are created for every

concurrent object of a CYES-C++ program. It is achieved through the invocation of the

constructor function of the name object. Note that since we have transformed a concurrent

object declaration into a corresponding name object declaration, a concurrent object con-

structor invocation is transformed into a name object constructor invocation. For instance,

in figure 6.8(b) the constructor of the queue name class is invoked when qobj object is

created by the execution of the new operator. The following steps take place during the

execution of the name object constructor:

� Determine an execution space for a value object.

� Create a value object in the chosen execution space.

� Record the location and address of the value object in the name object.

� Initialize local data structures.
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qobj->put(val);

...
val = qobj->get();

...
par qobj->put(val);

(a) Method invocation expres-
sions

qobj->MakeMethodSynchronous();
qobj->put(val);
qobj->WaitForSynchronousMethod();

...
val = qobj->get();

...
qobj->put(val);

(b) Transformed method invocation expressions

Figure 6.9: Transformation of method invocation expressions

Object Deletion

Deletion of a concurrent object requires that the corresponding name and value objects be

deleted. A concurrent object is deleted when its declaration goes out of scope or is deleted

explicitly by the delete operator. Hence, in the transformed program, this occurs when

the corresponding name object goes out of scope or is deleted. This in turn invokes the

destructor associated with the name object. The destructor executes the following steps:

� Map the destructor to the value object. The value object executes the destructor and

deletes itself.

� Release local data structures and resources.

Method Invocation Expressions: Method invocation expressions on concurrent objects are

transformed into method invocations on name objects. For instance, in figure 6.9(a) we

show method invocations on a queue object. Figure 6.9(b) shows the transformed method

invocation expressions. The first put invocation is a synchronous method invocation. The

calling thread therefore synchronizes by calling routine WaitForSynchronousMethod.

A method invocation on a concurrent object is therefore implemented by an invo-

cation of the method on its name object. The execution of the method invocation on the

named object maps the invoked method along with its parameter into the execution space
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Figure 6.10: Execution behavior of an object controller

of the value object. The mapped method is executed in the execution space. The name

object therefore provides an interface between the invoking method and the value object.

Name classes therefore implement the mechanisms needed for creating, deleting,

and invoking methods on remote value objects.

6.3.3 Implementation of Concurrent Objects

We now describe the manner in which concurrency and interaction within a concurrent ob-

ject is implemented.

The semantics associated with a concurrent object specifies that method invocations

on the concurrent object are concurrent by default. However, their executions must satisfy

all ordering constraints. An implementation of the concurrent object must preserve this se-

mantics. There are two aspects of the implementation: one involves creation and manage-

ment of concurrent threads for method invocations, and the other involves implementation

of event ordering constraint expressions. We describe the first here. The latter is described

in Section 6.4.

There are two views of a concurrent object: one is the passive view which captures

the state of the concurrent object. In the transformed program, the passive view of a con-

current object is represented by its name and value objects. The other is the active view
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which manages the execution environment of a concurrent object. The CYES-C++ transla-

tor creates a thread, called controller, for implementing the active view of the object. The

controller is started during the creation of the value object. It first initializes the data struc-

tures and resources associated with the value object. It constructs an event for every method

invocation, unmaps the arguments of the invocation, constructs a thread, and associates the

event with the thread. The thread executes independently and performs the computations

associated with the method.

In figure 6.10(a) we show the role that a controller plays in the execution of a

method:

� Method get is invoked on a queue name object (n) (figure 6.10(a)).

� The execution of get of queue name maps the method into the execution space of

the queue value object (figure 6.10(b)).

� The controller (c) receives the method request, unmaps it along with its arguments,

and constructs a thread of execution (figure 6.10(c)).

� The thread executes independently, and returns any results directly to the invoking

thread (figure 6.10(d)).

6.3.4 Execution Behaviors of Method Invocations

We now describe the behavior of the thread associated with each method invocation. A

method is executed only if all ordering constraints associated with the method are satisfied.

The behavior of an invocation of method M on a value object obj is thus defined:

obj->M prefix();

obj->M();

obj->M postfix();

The execution of routine M prefix ensures that all execution ordering relationships are

created and maintained. The execution of method M postfix, on the other hand, en-
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sures that all events that are waiting for an event to finish are signaled when the event ter-

minates. Both M prefix and M postfix are generated from event ordering constraint

expressions.

6.4 Implementation of Event Ordering Constraint Expressions

Event ordering constraint expressions define execution ordering relationships among events.

An implementation therefore must ensure that events occur in the order that satisfies the

constraints specified in interaction specifications. There are two aspects of the implemen-

tation of the event ordering constraint expressions. The first is the technique used by the

translator for generating code. The second is the nature of the generated code, and the

manner in which it implements the semantics of the event ordering constraint expressions.

We first described the code generation process.

6.4.1 Code Generation

The translator generates code by first transforming event ordering constraint expressions

into a normalized form. It then uses the normalized expressions to generate the prefix and

postfix routines for methods.

Normalization

The translator normalizes event ordering constraint expressions so that each normalized

expression contains at most two nested levels of the forall operator and the primitive

event ordering constraint expression. We show two examples of normalized expressions in

figure 6.11.

The normalization process is based on the application of the following two rules:
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forall var e1 in S1:B1 f
forall var e2 in S2:B2 f

(e1 < e2)
gg

(a) Normalized event variable expression

forall occ i in S1 f
(S1[i] < S2[i])

g

(b) Normalized occurrence vari-
able expression

Figure 6.11: Examples of normalized event ordering constraint expressions

1. forall var e1 in (S1+S2) fEg =

( forall var e1 in S1 fEg) &&

( forall var e1 in S2 fEg)

2. forall var e in S f(E1 && E2)g =

( forall var e in S fE1g) &&

( forall var e in S fE2g)

The first rule is based on the definitions of forall and event sets. It is used to remove set

operators (such as + and �) from event ordering constraint expressions. The second rule

shows the distributive property of forall over &&. It is used to remove the && operator

from inside the forall expressions.

The resulting normalized expression defines ordering relationship among events of

two event sets.

Code Generation

The second step is to use the properties of the event sets and the ordering relationships to

generate prefix and postfix behavior of methods. The ordering relationships are preserved

by methods when they execute their corresponding prefix and postfix. We now describe

the nature of the generated code and how its execution implements the semantics of event

ordering constraint expressions.
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6.4.2 Implementation of Normalized Expressions

A normalized expression contains two entities: event sets and ordering relationships among

the events of the sets. A correct implementation of the expression must ensure that all or-

dering relationships specified among the events are preserved.

An ordering relationship between events e1 and e2

(e1 < e2)

can be implemented operationally by delaying the occurrence of e2 until e1 has termi-

nated. Hence the prefix and postfix behaviors of e1 and e2 can be defined as shown in

figure 6.12.

prefix of e1:

postfix of e1:
Signal lockX;

(a) prefix and postfix behav-
iors of e1

prefix of e2:
Wait on lockX;

postfix of e1:

(b) prefix and postfix behav-
iors of e2

Figure 6.12: Prefix and postfix execution behaviors of two ordered events

In the above, the two events share the primitive lockX. This suggests that the above imple-

mentation can be extended for a normalized expression in that the generated code defines a

lock between each pair of events of event sets, and generates appropriate waits and signals

on the locks for the events. However, the characteristics of event sets render this solution

impractical. The reason is that event sets may contain an infinite number of events. Also,

they may be dynamic in nature and their contents may change over time. Event ordering

constraint expressions containing such event sets may not only assert infinite possible re-

lationships but may also define relationships among events that do not exist or may never

occur.
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Our approach therefore is to generate code that incrementally evaluates event order-

ing constraint expressions. It is based on the following relationship between the forall

and && operators:

forall var e in S fE(e)g =

E(e1) && ( forall var e in S-fe1g fE(e)g)

The above expression suggests that an event ordering constraint expression E(e) that holds

true for all events e of a set S is equivalent to the expression in which E holds for a single

event, e1, and for events of set S-fe1g. Hence, the forall expression can be imple-

mented by ensuring that every event occurrence in S preserves all relationships specified in

E. This suggests the following behavior for an event of S:

1. Create relationship by evaluating E

2. Wait for preceding events

3. execute method

4. wake up all waiting events

Items 1 and 2 form the prefix, and item 4 forms the postfix of an event of S. Both prefix and

postfix are dependent on the event ordering constraint expressions and are generated from

the specifications of the expressions. We now describe the actual generated code.

Generation of Prefix and Postfix of a Method

CYES-C++ supports two kinds of forall operators: one containing event variables and

the other containing occurrence number variables (see table 5.1). We describe the generated

code for the first forall operator.

Event Ordering Constraint Expressions Containing Event Variables: The most general event

ordering constraint expression containing event variables has the following form:

forall var e1 in S1:B1 f

forall var e2 in S2:B2 f

(e1 < e2)

g g
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The translator generates prefix and postfix for events of event sets S1:B1 and S2:B2.

They are shown in figure 6.13.

if (B1) f
S1:B1 = S1:B1+e1;
HappensBefore(e1, S2:B2);

g

(a) Prefix for events of set S1:B1

While (TRUE) f
if (B2) f
S2:B2 = S2:B2+e2;
if (B1) f
Wait on S1:B1 events

g
g

(b) Prefix for events of set S2:B2

Signal S2:B2 events
S1:B1 = S1:B1-e1;

(c) Postfix for events of set
S1:B1

S2:B2 = S2:B2-e2

(d) Postfix for events of set
S2:B2

Figure 6.13: Prefix and postfix execution behaviors of methods

The prefix behavior of an event of S1:B1 (represented by e1) is to record (through

HappensBefore) that the event occurs before events of set S2:B2. This captures the

relationship with both current and future events of S2:B2. Its postfix behavior is to signal

the events of set S2:B2. The effect is that all waiting events of S2:B2 are awakened.

The prefix behavior of an event of S2:B2 (represented by e2) is to check condition

B1 in order to ensure that the event set S1:B1 exists and that it must wait for events of

S1:B1. It waits by delaying on a lock. When it is awakened by an event of S1:B1, it

must recheck if the ordering relationships still exist. If they do, it waits again otherwise it

exits the while loop. Its postfix behavior involves removing it from the event set S2:B2.

Note that the ordering relationships among the events of S1:B1 and S2:B2 are preserved

by each event. It does so by i) checking for ordering relationships with existing events, ii)

setting locks if relationships exist, and by iii) waiting or signaling on the locks.

Event Ordering Constraint Expressions Containing Occurrence Variables: We now describe
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the postfix and prefix behaviors of events constrained by an event ordering constraint ex-

pression of the following form:

forall occ i in S1 f

(S1[exp1] < S2[exp2])

g

In the above, exp1 and exp2 are integer expressions used for determining occurrence

numbers of events. They are defined in terms of the occurrence variable i. The above ex-

pression specifies relationships between two specific events of S1 and S2. The algorithm

for prefix and postfix are shown in figure 6.14. The generated prefix behavior of each

occNum = occurrence number;
while (TRUE) f

eval exp1(i);
eval exp2(i);
i = i+1;
HappensBefore(exp1, exp2);
if (i > occNum)
break;

g

(a) Prefix for events of S1

occNum = occurrence number;
while (TRUE) f
eval exp1(i);
eval exp2(i);
i = i+1;
HappensBefore(exp1, exp2);
if (i > occNum)
break;

g
If (Related)
Wait for S2 events

(b) Prefix for events of S2

Signal related events
S1 = S1 - e;

(c) Postfix for events of S1

S2 = S2 - e

(d) Postfix for
events of S2

Figure 6.14: Prefix and postfix execution behaviors of methods

event evaluates exp1 and exp2. This is done to determine the occurrences numbers of

events that are related. There is a need to put constraints on allowable occurrence number

expressions. This is because we need some mechanism to determine when an event should
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stop evaluating occurrence number expressions. The problem occurs because the occur-

rence variable i may range over the set of natural numbers. We require that occurrence

number expressions be monotonically increasing. This property can be used to determine

if an event should stop evaluating exp1 and exp2: the event can stop when the occur-

rence variable i is greater than the occurrence number of the event. The reason is that

by evaluating exp1 and exp2 until its occurrence number, the event has ensured that all

relationships containing this event have been examined.

Each event records the occurrence number of events in a table. An event of S2 is

delayed if there is an ordering relationship for the event in the table. Similarly an event of

S1 uses the table to signal events of S2.

6.5 Summary

We have presented the design of a translator for the CYES-C++ programming language.

The problem of implementing the language can be divided into two subproblems: one com-

mon to concurrent object-oriented programming languages and the other specific to the

C-YES model. The first subproblem includes support for concurrent objects, concurrent

method invocations, and object distribution. The CYES-C++ translator transforms program

entities (such as class definitions, object declarations, and method invocation expressions)

of a CYES-C++ program in such a way that objects can be created on different nodes in the

generated program. Also, methods can be invoked on objects that reside on different nodes.

Creation and deletion of objects as well as communication among the objects is supported

through a runtime library.

The second subproblem involves implementation of event ordering constraint ex-

pressions. Event ordering constraint expressions are implemented by generating a prefix

and a postfix for each method of a concurrent class from interaction specifications. The

role of the prefix of a method is to ensure that all ordering constraints associated with invo-

cations of the method are satisfied. Every method invocation therefore determines ordering

relationships with existing events, and waits if the method’s execution may violate the re-
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lationships. The postfix of a method is used by an event to signal all events waiting for

the termination of the event. An evaluation of the event ordering constraint expression is

therefore carried out incrementally and in parallel by different method invocations.

The translator supports both intra-object and inter-object concurrency. Also, it can

be easily ported to different architectures by re-implementing a small set of classes.
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Chapter 7

Experimental Results

7.1 Introduction

In this chapter, we describe the experiments we performed in order to analyze the different

aspects of the CYES-C++ implementation. The primary goals of the experiments are the

following:

� Validate that CYES-C++ provides compact and usable abstractions for representing

concurrent programs.

� Show that concurrent programming languages based on “separation of concerns” can

be implemented efficiently.

� Explore ways in which the implementation can be improved.

The focus of the experiments therefore is on i) measurements of the overheads of the im-

plementation, ii) evaluation of performances of application programs, and iii) comparisons

of the execution behaviors of application programs specified in CYES-C++ with the exe-

cution behaviors of corresponding programs specified in a language which uses low level

primitives for specifying concurrency and interaction.
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7.1.1 Experiment Execution Environment

The experiments were carried out on a network of RS6000 workstations, connected by an

FDDI network. The Pablo instrumentation library [RAN+94] was used for collecting data,

and the xgraph tool was used for plotting the measurements.

7.2 Applications

We now describe the various applications and the results of the experiments.

7.2.1 System Overhead Measurements

We first present the measurements of the various overheads associated with the CYES-C++

implementation. We have divided this section into two parts. In the first part, we describe

the various resource overheads associated with the current implementation. In the second

part, we present the execution times associated with different aspects of the implementa-

tion.

Resource Requirements

The CYES-C++ implementation uses the thread and synchronization primitive resources

of the Nexus thread library for implementing concurrency and interaction among method

invocations. It is resource intensive in terms of the utilization of both thread and synchro-

nization resources: We describe the usages of these resources below:

Thread Usage: Table 7.1(a) shows the thread requirements of the various aspects of the

implementation. In the current implementation, two threads are created for every method

invocation: one for storing the parameters of a method invocation in a named location, and

another for executing the invocation. One of the threads can be eliminated by changing

the implementation of the value object and the object controller such that a single thread is

used for both storing the parameters and method executions. The thread overhead can be

reduced further by analyzing event ordering constraint expressions in order to determine if
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Implemented entity Number of threads

Runtime system 2
Object 1
Method invocation 2

(a) Thread overhead

Implemented entity Number of locks

System 3
Mailbox 1
Value object 6
Name object 2
Event set 1
Event 1

(b) Synchronization primitive overhead

Table 7.1: Thread and synchronization primitive overheads

a new thread should be created for a method invocation. For instance, we can deduce from

the following expression

forall occ i in p f

p[i] < q[i+N] g

that the thread for an event p[i] can be used for event q[i+N] as well.

Synchronization Resources: In table 7.1(b) we show the use of the synchronization prim-

itives in various aspects of the implementation. Currently, all synchronization primitive

resources are allocated statically. The synchronization primitive overhead can be reduced

by modifying the implementation in the following manner:

� Dynamic allocation of the synchronization primitives for events: The synchro-

nization primitives for a method invocation could allocated only if the method is in-

cluded in an event ordering constraint expression.

� Allocation of the synchronization primitives from a pool: The runtime system

could maintain a pool of synchronization primitives. Creation of a synchronization

primitive would involve picking a primitive from the pool. Similarly, its deletion

would involve returning it to the pool.
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System overheads (in seconds)
Processors Termination Object creation Object deletion

(10) (100) (200) (10) (100) (200)
2 .010 .124 .464 .975 .031 .021 .432
3 .012 .158 .552 1.127 .030 .074 .519
4 .013 .187 .593 1.181 .035 .076 .163
5 .016 .214 .630 1.254 .015 .078 .166
6 .016 .244 .680 1.351 .020 .263 .510
7 .017 .265 .705 1.434 .021 .268 .518
8 .019 .295 .758 1.543 .022 .267 .170
9 .020 .322 .814 1.663 .023 .261 .550
10 .023 .336 .875 1.782 .015 .083 .180
11 .026 .338 .963 1.910 .016 .264 .562
12 .028 .339 1.044 2.022 .015 .278 .487
13 .047 .342 1.121 2.164 .016 .250 .534
14 .032 .344 1.199 2.286 .016 .261 .558

Table 7.2: Execution times of operations such as system termination, object creation and
deletion

7.2.2 Execution Time Measurements

We measured the execution time associated with the following operations: i) system termi-

nation, ii) creation of concurrent objects, and iii) deletion of concurrent objects.

Experiment

The measurements are carried out by defining a concurrent program that contains a concur-

rent class, called queue. The interface of the queue object is shown in figure 5.1. The

concurrent program starts the CYES-C++ runtime system, creates and deletes a number of

queue objects, and then shuts down the system. We recorded the execution times for each

of these operations on 2 to 14 processors. Table 7.2 shows the costs associated with the

different operations. We now analyze the execution times of the operations.

Object Creation: Figure 7.1 contains plots of execution times associated with creation of

objects (as shown in table 7.2). We make the following observations:
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Object Creation

10 objects
100 objects
200 objects

Execution Time (in seconds)

Processors
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1.20

1.40

1.60

1.80

2.00

2.20

5.00 10.00 15.00

Figure 7.1: Execution times associated with creation of concurrent objects

� The cost of creating concurrent objects increases as the number of processors is in-

creased. Ideally, this cost should decrease because objects are distributed over larger

number of processors, thereby decreasing the load factors for the processors. It should

therefore be faster to create new objects. However, we believe that the cost increase

is due to increase in the number of messages that are exchanged among the execution

spaces. Each object creation causes a change in the load factor of an execution space.

This change triggers the local load daemon to inform other load daemons about the

change in its load. As the number of processors increases, the number of messages

that the load daemon must send increases as well. The performance can be improved

by modifying the load daemon such that it does not send messages every time there

is a change in its load. This phenomenon underlines the conflict between the effort

to keep the loads of different execution spaces balanced and the performance effects

of doing so.

� As the number of objects is increased, the execution cost increases as well. The av-

erage cost for creating an object on a 7 processor system configuration is 0.0265 sec-
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Object Deletion
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Figure 7.2: Execution times associated with deletion of concurrent objects

onds when 10 objects are created, 0.0705 when 100 objects are created, and 0.0717

when 200 objects are created. The differences in the costs, we believe, are again due

to increase in the number of messages exchanged among the load daemons.

Object Deletion: Figure 7.2 contains the plots of the execution times of the deletion of ob-

jects. The cost associated with the deletion of object does not show any specific pattern.

This, we believe, is because of the fact that the deletion of concurrent objects is imple-

mented asynchronously. The figure only shows the costs of dispatching delete messages

to the controllers. We believe that a synchronous version (invoking method waits for an

acknowledgement from the controller) of the delete operation will have execution charac-

teristics similar to that of the create operation.

System Termination: The system termination cost is shown in figure 7.3. The system ter-

mination involves i) termination of all daemons at remote nodes ii) shutting down the re-

mote execution spaces, and iii) terminating local daemons. The system termination cost

increases as the number of processors increases.
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Set 0

Execution Time (in seconds) x 10-3

Processors
10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

5.00 10.00 15.00

Figure 7.3: Execution times associated with termination of runtime system

7.2.3 Queue

In this application, a concurrent queue object (see figure 5.1 for its definition) is shared

between two component programs. The component programs are represented as instances

of a concurrent class called comp. The interface of class comp is shown below:

concurrent class comp f

public:

comp();

˜comp();

void compute(queue & q);

g;

The two components repeatedly add and remove information from the queue object. There

are two goals of this application: i) test the implementation of the event ordering con-

straint expressions, and ii) evaluate the costs of method invocations and synchronization.

A method invocation on a concurrent object is implemented by the following set of steps:

1. Map method and arguments into the remote execution space (map),
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Method invocation costs (in seconds)
Method Map Unmap Prefix Computation Postfix
get 0.000215 0.000282 0.000479 0.000017 0.000331
put 0.000278 0.000181 0.000472 0.000017 0.000704

Table 7.3: Method invocation costs

2. unmap the method and arguments (unmap)

3. construct a thread for the method,

4. execute the prefix associated with the method (prefix),

5. execute the method (computation), and

6. execute the postfix (postfix).

In table 7.3, we show the costs associated with the different steps of methods put and

get of the queue object. The table does not show the communication and thread creation

costs. The method invocation cost can be reduced by the following optimizations:

� Generate prefix and postfix for methods only if they are included in event ordering

constraint expressions.

� Make prefix and postfix methods inline functions.

� The current implementation always maps arguments of methods even if the name and

value objects reside in the same execution space. This involves packing and unpack-

ing data in communication buffers unnecessarily. By modifying the mapping and

unmapping functions to recognize this special case, the extra cost can be avoided.

7.2.4 The Gaussian Algorithm

We implemented the forward elimination step of the Gaussian elimination algorithm. The

goal of this experiment was to test the implementation of event ordering constraint expres-

sions containing event sets with parameter variables.
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concurrent class Matrix f
public:

Matrix(int size);
˜Matrix();
float Read(int i, int j, int k);
void Write(int i, int j, int k, float val);

private:
int size;
float mat[100][100];

interaction:
Write(i, j, k)[0] < Read(i+1, j, k)[0]
Write(i, j, k)[0] < Write(i+1, j, k)[0]

g;

Figure 7.4: Interface of a concurrent class Matrix

The CYES-C++ program for the forward elimination step is derived completely

from the one presented in Section 3.5.4. The program contains two concurrent classes:

pivot, and matrix. The pivot concurrent class encapsulates the program associated

with a pivot step. Its interface is shown below:

concurrent class pivot f

public:

pivot();

˜ pivot();

void Pivot(int i, matrix A, int matsize);

g;

Method Pivot implements the ith pivot step over concurrent object A. The concurrent

class Matrix encapsulates a n�n matrix. Its interface is shown in figure 7.4.

Class Matrix supports methods Read and Write for accessing the elements of

the matrix in parallel. For instance, method Read(i, j, k) is used to read the element

A[j][k] of the matrix. Note that both Read and Write methods define an additional

parameter, i. This parameter is needed because we have not yet implemented event order-

ing constraint expressions that are defined in terms of interaction points of methods. (In the
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case of the Gaussian elimination algorithm, interaction points of a pivot denote the pivot’s

reads and writes to the matrix object.) Our approach is to represent the interaction among

the interaction points of the pivots in the matrix object itself. This is done by associating

an additional parameter with the Read and Write methods. The additional parameter,

i, identifies the pivot that invokes Read or Write methods on a Matrix object. For

instance, the event ordering constraint expression

Write(i, j, k)[0] < Read(i+1, j, k)[0]

specifies the following interaction relationship between the ith and (i+1)st pivot: the first

event in the event set Write(i, j, k) (denoting the ith pivot’s writes to the element

A[j][k]) occurs before the first event in the event set Read(i+1, j, k) (denoting

(i+1)st pivot’s read of the same element). Such expressions allow us to represent interaction

relationships on the basis of the values of the parameters.

7.2.5 The Barnes-Hut Algorithm

The Barnes-Hut algorithm [BP86] is used for computing the positions of N particles in

space. The positions of the particles change due to the gravitational forces they exert on

each other. For instance, the acceleration ai on a particle pi due to a particle pj is:

ai =
G �m j

r2
i j

In this equation, G is the universal gravitational constant, mj is the mass of pj, and ri j is the

distance between pi and pj.

A simple approach to computing the positions of the particles is to calculate the

acceleration between every pair of particles. An algorithm using this approach is shown

below:

183



foreach time step ∆t :

foreach particle pi

foreach particle p j

ai = ai +
G�mj

r2
i j

vi(t +∆t) = vi(t)+∆t �ai

pi(t +∆t) = pi(t)+∆t � vi(t)

The computational complexity for each time step is O(n2), where n is the number of par-

ticles. The Barnes-Hut algorithm reduces the computational complexity of the above al-

gorithm through the concept of far relationship between particles: a particle is far from

another particle if its distance is beyond a certain constant. If all particles in a cluster are

far from another particle, the cluster can be treated as a single particle when calculating the

gravitational interaction among the particles of the cluster and a particle outside the cluster.

Therfore, the algorithm for evaluating the acceleration between a particle and a cluster of

particles is:

Acc(particle, ClusterOfParticles)

if far(particle, ClusterOfParticles)

Acc = PairwiseAcc(particle, ClusterOfParticles);

else

foreach cluster c in ClusterOfParticles

Acc = Acc + Acc(particle, c);

In this algorithm, the space containing the particle is organized in terms of clusters. In

the Barnes-Hut algorithm, the clusters are represented by quad trees. The details regarding

the quad tree and its representations can be found in [CT92]. The simulation algorithm is

shown below:

foreach time step ∆t

Create QuadTree from SetOfParticles;

foreach particle pi in SetOfParticles

ai = Acc(pi, QuadTree);

move(pi, ai, t);
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A CYES-C++ Implementation of Barnes-Hut Algorithm

We define a CYES-C++ program for the Barnes-Hut algorithm by dividing the number

of particles equally among a set of concurrent objects. The concurrent objects encapsu-

late the notion of spaces, quad trees, and particles. They are represented by a concurrent

class, called BarnesHutSolver. This class supports methods for adding particles, con-

structing a quad tree, and computing the accelerations of particles. The interface of class

BarnesHutSolver is shown below:

concurrent class BarnesHutSolver f

public:

BarnesHutSolver(int myIndex);

˜BarnesHutSolver();

void CreateParticles(SetOfParticles &particles);

void SetSolvers(SetOfSolvers &otherSolvers);

void Compute(int iterations);

SetOfParticles &GetParticles();

Vector &Acc(Particle &part);

private:

SetOfSolvers solvers;

Space *spc;

int numIt;

int myId;

g;

Class SetOfSolvers is used to store a set of BarnesHutSolver objects. Method

CreateParticles adds particles to the space encapsulated by the BarnesHutSolver

class. Each BarnesHutSolver object keeps track of other BarnesHutSolver ob-

jects. The main routine of the algorithm uses method SetSolvers for storing informa-

tion about the different BarnesHutSolver objects with each BarnesHutSolver ob-

ject. Method Acc computes the gravitational interaction between a particle and the parti-

cles of a BarnesHutSolver object. Method Compute is used to compute the position
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of the particles contained in the space encapsulated by the object. It is defined in the fol-

lowing manner:

create quad tree from particles

for each particle pi

for each solver in solvers

ai = ai + solver.Acc(pi)

ai = ai + space->Acc(pi);

pi.move(ai, time);

The parallel algorithm for the Barnes-Hut algorithm is therefore defined below:

create solvers = set of m BarnesHutSolver objects;

create n particles;

foreach solver in solvers

solver.SetSolvers(solvers);

solver.CreateParticles(set of m
n particles);

for each iteration i

foreach solver in solvers

solver.Compute(i)

All interactions among the BarnesHutSolver objects take place through method invo-

cations on the objects.

Experiment

We ran the Barnes-Hut algorithm for 100 particles over 10 iterations. The program was run

on 2 to 14 processors.

Measurements

In figure 7.5, we show the execution times for the Barnes-Hut algorithm on different num-

bers of processors. We ran two sets of experiments:

Set 1: We first ran a normal version of the Barnes-Hut Algorithm. Figure 7.5(a)) shows

the execution times of the program for different number of processors. We observe that
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Barnes-Hut N-Body Algorithm (Set 1)
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Figure 7.5: Execution times for the Barnes-Hut algorithm
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the execution time increases as the number of processors increases. This behavior occurs

because, as the number of processors is increased, the number of remote method calls in-

creases while the actual computation for each method invocation remains small. For N

processors and P particles, the total number of remote method invocations is P� (N � 1).

The communication cost therefore increases linearly with the number of processors. The

increase in the communication cost is not offset by a decrease in the cost of computation

since there is little computation to execute.

Set 2: We ran another set of experiments in which we modified the particle acceleration

routine by adding computation of 0.037464 seconds (the additional computation is a nested

loop). This effectively increases the computation time associated with the acceleration rou-

tine. We made this modification in order to determine if the execution time of the algo-

rithm improves as the number of processors is increased. Figure 7.5(b) shows the execu-

tion times for this set. Note that the execution time decreases as the number of processors

is increased. This shows that additional performance can be achieved through addition of

processors only if granularity of the computation is large with respect to the communication

cost.

7.2.6 Parallel Evaluation of value of π

The primary goal of this experiment is to compare the performance behavior of the CYES-

C++ implementation with the performance behavior of other concurrent programming lan-

guages. For this experiment, we chose to compare CYES-C++ against a low level concur-

rent programming language that uses C++ for specifying computation and the Nexus thread

library for thread creation, communication, and synchronization. We will call this language

C++Nexus. We chose C++Nexus because CYES-C++ is implemented on top of Nexus and

C++. A comparison of the execution behaviors of CYES-C++ and C++Nexus will allow us

to determine if the implementation of CYES-C++ is inordinately expensive in comparison

to a low overhead concurrent programming language.
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Algorithm

We use a parallel algorithm [GLS94] for the evaluation of the value of pi as a basis for

comparing the two languages.

The value of pi can be evaluated by the integration of the function 1
1+x2 :

π
4
=

Z 1

0

1
1+ x2

Function f (x) = 1
1+x2 can be integrated numerically in the following manner:

1. Divide the interval between 0 and 1 into n subintervals. Larger values of n give better

approximations of the value of π. We chose n to be 100.

2. Evaluate the area enclosed by function f (x) in each subinterval. The area for an

interval between points x1 and x2 can be evaluated approximately by computing the

area of the rectangle with length (x2� x1) and height 1

1+(
x2�x1

2 )
2 .

3. Sum the areas of the subintervals to determine the value ofπ
4 .

In a parallel version of the above algorithm, computations of areas of the subintervals can

take place in parallel. We describe the parallel versions of the algorithm below:

CYES-C++

In the CYES-C++ program, a concurrent class picomp supports methods for computing

the area of a set of subintervals. The interface of picomp is shown in figure 7.6.

In this definition, variable myId stores an integer identifier for a picomp object.

Variable numProcs specifies the number of objects used for evaluating the value of πand

the variable parts stores the total number of subintervals. These variables are used to

determine the subintervals that a picomp object evaluates. Method compute is used to

evaluate the areas of the subintervals.

The concurrent program evaluates the value of π by first creating n picomp ob-

jects where n is the number of processors. It then invokes methods compute on the ob-
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concurrent class picomp f
public:

picomp(int id, int totalProcs, int n);
˜picomp();
double compute();

private:
int myId;
int numProcs;
int parts;

g;

Figure 7.6: Concurrent class specification of a component of a parallel algorithm for eval-
uation of value of π

jects. The objects execute the methods in parallel, and return the partial result to the main

program. The main program adds the partial results to compute the value of π.

C++Nexus Program

In the C++ version of the program, the thread facility of the Nexus library is used to cre-

ate n parallel threads on n processors. Each thread computes the areas associated with its

subintervals, and returns them to the main thread. The main thread adds the results to com-

pute the value of π.

Performance Results

Both programs were run on 2 to 13 processors. We ran two set of experiments:

Set 1: We first ran a normal version of the programs.In figure 7.7(a), we show the execution

times associated with the two programs on different number of processors. The execution

time of the CYES-C++ program increases as the number of processors is increased. The

reason is that the number of remote method calls increases as the number of processors is

increased. However, since the actual computation for each invocation is quite small, The

increase in the communication cost is not offset by a decrease in the cost of computation.

In figure 7.7(a), we also show the execution time for the C++Nexus program. The execu-
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Figure 7.7: Execution times for parallel πalgorithms
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tion time of the C++Nexus program also increases as the number of processors is increased.

However, the increase is not as pronounced as it is in the case of the CYES-C++ program.

The differences arise due to costs associated with method invocations, load balancing, ob-

ject management, and extra thread creations in the CYES-C++ implementation.

Set 2: We ran another set of experiments in which we added extra computation (a loop of

4.2 seconds) to the algorithm. Figure 7.7(b) shows the execution times of the two programs

on different processors. The performances of both CYES-C++ and C++Nexus programs

improve as the number of processors is increased. We note that the execution behaviors of

both programs are similar. Indeed, the performance of the CYES-C++ program is slightly

better than that of the C++Nexus program. We surmise that this could be due to the fact that

the system was more heavily loaded when the C++Nexus program was run. However, these

measurements do show that the CYES-C++ implementation is not inordinately expensive

compared to the C++Nexus implementation.

7.3 Summary

In this chapter we describe the experiments we carried out in order to measure different as-

pects of the CYES-C++ implementation. We have presented experiments designed to mea-

sure the overheads associated with different aspects of the CYES-C++ implementations.

We have analyzed a number of techniques that can be used to reduce the overheads. For

instance, in the current implementation, two threads are created for each method invoca-

tion. One of the threads can be eliminated by changing the implementation of the value

object and the controller. Thread overhead can be reduced further by analyzing the event

ordering constraint expressions to determine if a thread should be constructed for a method

invocation. We have also presented a number of examples that showed the feasibility of the

CYES-C++ language for concurrent programming.

The current implementation of CYES-C++ runs on a network of RS6000 worksta-

tions. In this system configuration, the cost of communication among the processors plays
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an important role in the design of concurrent programs. We showed that parallel speed-

up can be achieved through additions of processors if there is sufficient computation in an

application.

The experimental analysis of the CYES-C++ implementation has demonstrated that

the programming paradigm is usable, and that implementation of a programming language

based on “separation of concerns” is feasible.
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Chapter 8

Summary and Conclusion

In this dissertation we developed a compositional approach to concurrent programming.

The conceptual foundations for the approach are based on the postulate that computation

and interaction are two orthogonal elements of concurrent programming, and they should

be specified separately in a concurrent program composition mechanism. In Chapter 2, we

showed that concurrent programs are difficult to extend and modify in concurrent program-

ming approaches that do not separate specifications of computations and interactions. More

importantly, there is a problem associated with the derivation of concurrent programs in

terms of existing program abstractions. Program abstractions for representation of concur-

rency cannot be composed easily from existing program abstractions. Such compositions

may often require changing the abstraction itself. Also, since programming languages use

composition mechanisms for defining abstractions in terms of other abstractions, the in-

ability to construct new program abstractions from existing program abstractions causes a

breakdown in many of these composition mechanisms. We presented two examples of such

breakdowns, one in inheritance and the other in aggregation, for concurrent object-oriented

programming languages.

In Chapter 3 we developed a model of computation in which concurrent programs

are composed from separate specifications of computations and interactions. The model in-

cludes a concurrent program composition mechanism, a representation of component pro-
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grams, and an interaction specification mechanism. We applied the C-YES model to de-

fine an object-oriented concurrent programming language, CYES-C++. The benefits of the

compositional approach become evident during the design of the programming language

and application program development. Some of them are listed below:

� Concurrent programs can be easily extended by adding new component programs.

Only the interaction behavior of the components may need to be changed. Note that

in certain cases the redefinition of interaction may only involve adding new event or-

dering constraint expressions or modifying only a small subset of the event ordering

constraint expressions. For instance, in example 5.5.1 the interaction behavior of the

methods of the concurrent class queue is modified by extending only the event sets

of the superclass. No changes were made in the event ordering constraint expressions

of the queue class.

� A concurrent program can be easily modified by modifying interaction behavior spec-

ifications of the components. This supports a concurrent program design methodol-

ogy where concurrent programs can be constructed quickly from existing core com-

ponents and interaction behavior specifications.

� Specifications of component programs are encapsulated. It is therefore possible to

change the implementation of a component without making any changes in other

components, or their interaction behavior specification as long as the nature of com-

putation, interaction behavior, and the interaction points do not change. For instance,

in figure 3.22 we show an alternate implementation of the pivot program. The def-

initions of the ForwardElimination concurrent program and the PivotInt

event ordering constraint expression do not change, since there are no changes in ei-

ther the interaction points or the orderings among interacting events.

� Specifications of both computation and interaction can be reused.

� Another important aspect of “separation of concern” is that specifications of both

interaction and computations are abstractions, which can be composed with other
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programming language abstractions in order to define further concurrent program

abstractions. One example is the notion of generic concurrent classes developed in

Chapter 5. A generic concurrent class is a composition of computations, interactions,

and the template mechanism of the C++ programming language. It is used to capture

common computational and interaction behaviors. It can be instantiated in various

ways to associate different computational and interaction behaviors with methods of

user defined classes. This supports reusability of both computational and interaction

behaviors. Also, it raises the level of abstraction at which concurrent programs can

be defined.

We extended the support for compositionality to the specifications of interactions as well.

The interaction specification mechanism is declarative. It supports a modular approach to

interaction specification. Global and complex interactions are specified by decomposing

them into a set of local and simpler interactions. The local interactions can then be rep-

resented by event ordering constraint expressions, and combined with the suitable interac-

tion composition operators to capture the global interactions. This approach allows one to

change interaction behavior of programs by changing only the relevant event ordering con-

straint expression. Also, representations of local interactions can be reused in specifications

of other interactions. We showed a number of examples in chapters 3 and 4 that highlight

this property.

The interaction specification mechanism captures fundamental abstractions of in-

teraction. It represents interactions by ordering relations among interacting events of pro-

grams. It is not based on the semantic properties of a specific synchronization primitive.

Also, it does not depend on the semantic properties of the events. This can therefore be

used to specify any interaction behavior for any invocation of any action. We showed the

generality of the event ordering constraint expressions in two ways: one by representing

many commonly used synchronization primitives as event ordering constraint expressions,

and the other by modeling the composition of interaction specifications in a class as an ̂

composition of superclass and class interaction specifications. This model is general in that
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it represents models of inheritance of many concurrent object-oriented programming lan-

guages.

Most programming language abstractions that are general in their scopes are harder

to implement and, often, their implementations are inefficient. The reason is that a compiler

or a translator must generate code that implements the most general case. This is evident

in our current implementation of CYES-C++ as well. The current implementation is inef-

ficient from both the resource and the computational efficiency point of view. However, it

is possible to apply advanced compiler techniques to construct an efficient implementation

for CYES-C++. It can be done by identifying common patterns of interaction relation-

ships and by optimizing their implementations. Similarly, the need for extra resources can

be avoided by dynamically allocating and reusing existing resources. We believe that a

finely tuned implementation of CYES-C++ will be as efficient as a comparable concurrent

programming language. Indeed, it may be more efficient in certain cases because event

ordering constraint expression capture more semantic information, which can be used to

optimize the execution behavior of a program.

8.1 Future Work

The research work in this dissertation forms a beginning point for extensive research in

the areas of parallel software development, programming languages design, analysis, and

implementation, and formal verification. We briefly describe open questions in each of

these areas:

Parallel software development

There are a number of areas in parallel software development that require further work:

Extension of the composition mechanism: Much of our effort has gone into deriving the

concurrent program composition mechanism from specifications of computation and in-

teractions. However, there are many other factors, — such as object distribution, program
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scheduling, and machine configuration — that affect the manner in which concurrent pro-

grams are designed and represented. Some of these elements represent aspects of the un-

derlying machine architecture, and are crucial for the optimal execution behavior of con-

current programs. Other elements represent semantic relationships among components of a

program.

The questions that we have not addressed in this dissertation relate to the role these

elements play in the composition of a concurrent program: how do the elements affect the

composition of a concurrent program? Are some of the factors orthogonal? How can they

be represented? What is the nature of the concurrent program composition mechanism that

includes these factors? Can the notion of “separation of concerns” be extended to these

factors as well? How do these factors relate to our concerns regarding extensibility and

modifiability?

Methodology: In this dissertation, we developed only the rudimentary aspects of a method-

ology for the design and implementation of concurrent programs for which computations

and interactions are separated. Further work needs to be done in this regard. It includes

development of mechanisms for identifications of components, their computational behav-

iors, semantic relationships among the components, separation of the two elements, and

their representations.

Concurrent program and data structure libraries: The CYES-C++ concurrent programming

supports mechanisms for defining generic and abstract concurrent classes. Definitions of

such classes allow one to capture representations of common computational and interaction

behaviors. Further work needs to be done in the representation of commonly used abstrac-

tions. Examples of these abstractions are i) concurrent container data structures such as

queues, lists, trees, sets, and maps, ii) models of concurrency, and iii) and commonly used

interaction patterns. The work not only involves representations of these abstractions but

also the manner in which they should be organized in a concurrent class library.
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Programming language abstractions

CYES-C++ supports two separate mechanisms for representing concurrent program struc-

tures: the concurrent class abstraction mechanism and the method invocation mechanism.

During the development of applications, we observed that concurrent programs for certain

applications contain specific structures. These structures determine how components of the

concurrent programs are created and how they interact with each other. The structures ei-

ther represent aspects of the machine architecture or capture certain application-specific se-

mantic relationships. We noted that representations of such structures in terms of the con-

current program composition mechanisms of CYES-C++ were quite cumbersome. Also,

their representations in terms of CYES-C++ abstractions lose certain semantic information

that can be used for load balancing and object distribution. Further work is needed to de-

termine how concurrent program abstraction mechanisms of CYES-C++ can be augmented

in order to allow representations of the concurrent program structures easily.

In addition, certain features of CYES-C++ need to be reexamined, redefined, and/or

extended: i) addition of a synchronous parformethod invocation mechanism, ii) support

for global concurrent objects, iii) definition of scope rules for event ordering constraint ex-

pressions and their definitions, and iv) incorporation of execution space placement infor-

mation with concurrent objects.

Implementation

Much work on the implementation of CYES-C++ remains to be done. Some of them are

enumerated below:

� Implementation of the _ constraint operator.

� Implementation of event ordering constraint expressions that contain interaction points

of methods.

� Implementation of inheritance.
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� Efficient implementation of concurrent objects while supporting the notion of true

concurrency.

� Compiler-based analysis of event ordering constraint expressions.

� Support for object co-location and object migration.

� Optimization of method invocations.

� Porting of the runtime system across different architectures.

� Investigation of the load balancing and object distribution mechanisms and their in-

tegration in the runtime system.

� Support for debugging and instrumentation.

Theory

In this dissertation, we developed only the preliminary aspects of semantics of the com-

position mechanism and the event ordering constraint expressions. We have not explored

the possibilities of formally verifying certain properties of concurrent programs from their

specifications. It is our belief that the C-YES model-based approach to concurrent pro-

gramming is especially suitable for formal reasoning about concurrent systems. The reason

is that the primitives and the operators of event ordering constraint expressions are well de-

fined. It is therefore possible to verify certain safety and progress properties of the system

from interaction behavior specifications in a rigorous manner. In addition, since specifi-

cations of computational and interaction behaviors of programs are completely separated,

many properties of the programs can be verified — in isolation from component programs

— solely from the event ordering constraint expressions.

The future work here includes development of the logic and proof structures for de-

termining safety and progress properties of concurrent programs, as well as mechanisms for

combining properties that are derived from computational and interaction behavior specifi-
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cations. Further, relationships between the event ordering constraint expressions and tem-

poral logic need to be explored.

Applications

In our research, we have experimented mostly with small examples. More complex and

large examples from different domains such as computational sciences, simulation, VLSI,

and visualization need to be implemented in order to fully evaluate the advantages and lim-

itations of the C-YES model.
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