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Abstract. Modern software must evolve in response to changing condi-
tions. In the most widely used programming environments, code is static
and cannot change at runtime. This poses problems for applications that
have limited down-time. More support is needed for dynamic evolution.
In this paper we present an approach for supporting dynamic evolution
of Java programs. In this approach, Java programs can evolve by chang-
ing their components, namely classes, during their execution. Changes
in a class lead to changes in its instances, thereby allowing evolution of
both code and state. The approach promotes compatibility with existing
Java applications, and maintains the security and type safety controls
imposed by Java’s dynamic linking mechanism. Experimental analyses
of our implementation indicate that the implementation imposes a mod-
erate performance penalty relative to the unmodified virtual machine.

1 Introduction

Software systems must change over time. Changing business practices, the re-
lentless advance of technology, and the demands of end users drive this evolu-
tion. The functionality required of applications inevitably changes in response to
these factors. Consequently, in order to remain viable, applications must evolve
to meet new requirements. Software component evolution is a major focus of
effort in software engineering [27, 38].

The vast majority of commercial software is written in a few imperative
languages, such as C++ or Java [3]. For these languages, software evolution
is generally a slow, static process. Most of us are familiar with the process of
waiting for the latest version of our favorite program to come out, stopping
work to install the new version over the old one, then cleaning up the resultant
mess of incompatible document formats and lost settings. The fact that a run-
ning program cannot be changed drives this cycle. Since any update requires
stopping a program and overwriting all or part of it, incremental updates are
often impractical, and major updates problematic. For a large class of critical
applications, such as business transaction systems, telephone switching systems



and emergency response systems, the interruption poses an unacceptable loss of
availability.

What is needed, then, is more support for applications that evolve during
ezecution. In addition to supporting true evolution of software systems, dynamic
evolution provides several other benefits:

— Software distribution and management: Dynamic evolution has applications
in software distribution and management. Consider a distributed system in
which changes in all active applications are either pulled or pushed from
software servers to the active applications. While several applications, for
instance NetscapeNavigator, MicrosoftInternet Explorer and RealAudioRe-
alPlayer, currently support such application-specific updates, most use static
updates for modifying applications.

— Runtime optimization: Often, specific properties of systems are best deter-
mined at runtime. For example, many applications can be highly optimized
if some information about the input is known during development. However,
these same optimizations result in specialized code restricted to a smaller
input domain. If code can be modified at runtime, a program can accept
a wider range of data, yet load and use methods optimized for the current
data set.

— Dynamic policy specification: Dynamic evolution can be very useful in any
application whose behavior is driven by a set of policies, for instance security
policies. For example, dynamic security policies can be implemented using
total mediation, without modifying code at runtime. This method requires
a security check at every access of every resource [36]; due to the high per-
formance cost, it is not widely used. Systems that employ total mediation
implement dynamic policies by using general, static code to interpret dy-
namic data structures — a computationally expensive process. Dynamic evo-
lution allows designers to move logic from interpreted data structures into
directly executed code. This provides the efficiency of code-driven security
enforcement [35] without sacrificing flexibility.

In this paper, we present an approach for dynamic evolution of Java programs.
While Java [3] provides several mechanisms, such as inheritance, interfaces and
dynamic linking, for program extensibility, it does not support true dynamic
evolution, in which both the code and state of a program can evolve gracefully. In
our approach, Java programs can evolve by changing their components, namely
classes, during execution.

Java classes can be considered to have a life cycle with three discrete states:
unloaded, or static, loaded, and active. A static class exists only in storage; it has
not been loaded into the Java virtual machine. A loaded class has been loaded
and possibly linked. Finally, an active class has live instances and/or methods
running. We are concerned with changing active classes; a dynamic class can
change while active.

We wished to preserve the syntax and semantics of the target language. Do-
ing so ensures compatibility with existing code, and provides greater ease of use



as developers do not need to learn new language constructs. This constraint re-
quires that we preserve the type safety characteristics of a program throughout
its execution. Type safety encourages the development of safer, more disciplined
code. In a dynamic system, type safety can restrict wild, unsound changes, alle-
viating the dangers inherent in changing code. Further, many of Java’s security
mechanisms, for instance separation of user and system name spaces and pro-
tection of private data, depend on the type-safe properties of Java programs.
Therefore, we impose the restriction that all changes in a program preserve the
type safety properties of the program. Section 2.1 presents our formal model,
and defines valid class change. Using the formal model, we show that a valid
class change preserves type safety. Further, in order to provide a convenient,
backward-compatible interface, and to support changes in any Java class, we ex-
tended the Java class loader [29]. The new dynamic class loader allows a program
to define a class multiple times. The dynamic class loader implements changes
in a class, and any resulting changes in its instances, in an executing program.
We describe the dynamic class loader in detail in Section 2.2.

Support for dynamic evolution, however, raises additional security issues, as
malicious applets may use the dynamic class mechanism to modify the classes
that enforce specific security policies of a host. Therefore, the dynamic class
loader implements a security model that ensures that Java programs can dy-
namically modify only those resources to which they are authorized. We enforce
this policy using name space separation and resource access control. We discuss
the security model in Section 2.3.

We have implemented support for dynamic classes by modifying Sun’s Java
virtual machine (JDK 1.2). Dynamic classes can be implemented in several ways:
by changing the language, through library-based support, or by modifying the
virtual machine. As stated above, we did not wish to change the language.
Library-based support proved to be too awkward and inefficient for our require-
ments. Thus, we chose to directly modify the virtual machine. Section 3 describes
our implementation in detail.

We performed several experiments to measure the performance character-
istics of our implementation. The experiments show that dynamic classes add
about 6-10% of overhead to Sun’s JVM. Further, the cost of updating classes
is moderate. Section 4 presents these results, as well as further analysis with
regard to alternative methods and related work.

2 Dynamic Classes

In this section, we formally describe the concept of dynamic classes. We be-
gin by presenting a formal model of classes, objects, and inheritance in Java.
We consider the potential effects of introducing dynamic classes into a running
application. We then use our model to define type-safe dynamic classes. We
discuss how best to support dynamic classes while addressing type safety and
security issues, and describe our design. In general, we have made conservative



design choices, emphasizing compatibility with existing Java code, minimizing
performance penalties, and maintaining type safety and overall system security.

2.1 Formal Model

We begin by formalizing the notion of classes, interfaces, inheritance, compo-
sition, and dependency among classes in Java. In doing so, we build upon the
formal Java type model developed in [9], which includes type widening [8, 39].

Types, classes and objects: A type T denotes a set of objects. T' is bound to
a definition that describes the contents of the objects and operations that act on
them. Specifically, this definition consists of T’s interface and its implementation.

Definition 1. (Type interface (i(T)). The interface of a type T, i(T), is a set
of public data fields and methods. O

Definition 2. (Type implementation (6(T)). The implementation, or body, of
a type T', b(T), is a set of private data fields and a set of method bodies. O

Definition 3. (Interface). The Java interface construct describes, but does not
implement, a type. An interface contains no data fields. O

Definition 4. (Class). A class describes and implements a type. Thus, a class
C is defined by the tuple <i(C), 6(C)>, where b(C) contains implementations
for all methods declared in i(C). Java supports abstract classes, which provide
only a partial implementation. O

Definition 5. (Implements (>;)). The relation C' >; I is true if C implements
the interface I: i(I) C i(C). O

Definition 6. (Program). A program is a set of classes. O

A Java class C depends on another class Cs if b(C1) contains references to Cs.
The references may include method invocations, field accesses and inheritance.
Any change to C; may mean that C; must change as well [6].

Definition 7. (Dependency (x)). The relation Cy o Cy is true if C; depends
on (. Transitivity applies, denoted by &. The dependency relationship applies
to specific methods or fields as well. For instance, C;.M o C5.N is true if C;.M
invokes C5.N. O

Definition 8. (Composition (®, ©)). C1 & Cy denotes the union of C; and
Cs, where (' and C5 are two sets of methods and data. Cy & Cs denotes their
difference; the methods and fields that are defined in C7, but not in C5. These
operators provide an abstraction for the Java inheritance mechanism. Thus,
the Java composition semantics of scoping and overloading are implicit in the
definitions of & and &. O

We do not define & and © precisely because our focus in this paper is more on
examining the effects of dynamic classes.



Definition 9. (Inheritance(C)). The relation C' C Cg is true if C' directly ex-
tends Cg. Inheritance affects the composition of a class. b(C) contains the im-
plementations of all of C’s superclasses, and i(I) contains their interfaces. Stated
formally:

VT:CLCT:b(T)Cb(C)
VT:CCT:iT)Ci(C)

Transitivity applies, denoted by C. Java does not permit recursive inheritance.

* *

Thus, Cy C Cy = — (C2 C C1). Finally, C; C Cy, = (C; xCs. Inheritance
can apply to both classes and interfaces. Let C specify class extension, and C;
specify interface extension. C can refer to either case. O

Definition 10. (Defines: class (>¢)). The relation Cyey >¢ C' is true if Cyey
is the class definition bound to the name C'; Cgcy defines C'. A > relationship
is not necessarily permanent, but it is singular; Cygey > C = V Ci: C; #
Cacf, = (C; >¢ C). This restriction preserves Java name semantics — a name
should only be bound to one value. O

Definition 11. (Instantiation (<)). The relation O < T is true if the object

O is an instance of the class or interface 7. O < C A C é D = O <D.
Likewise, O < CANC > 1 = O <. O

Definition 12. (Defines: object (>¢)). The relation Cycy >0 O is true iff Cyep
> C AN O <C. As with >¢, > is not necessarily permanent, and is singular.
O

Note that < is the transverse of >,.

Type safety issues: Changing a class C' can have a serious impact on type
safety. The interface and/or implementation may be affected. Methods can be
added, deleted, or modified, and data fields may be added or deleted. Further-
more, the type itself can change. Adding or removing superclasses or interfaces
effectively changes the set of types that an instance of C' can be cast or assigned
to, with potential effects on any variables bound to such an object. Type viola-
tions caused by dynamic changes in class definitions fall into two categories: static
type violations and dynamic type violations. The design and implementation of
Java contain mechanisms to prevent either from occuring in a static program.
Our system must also prevent them from occuring in a dynamic program, due
to class changes.

Here we define static and dynamic type violations, and describe how both the
standard JVM and our model prevent these violations and ensure type safety.
In doing so, we use the notion of the type set of a class C, which is the set of
all classes and interfaces to which an instance of C' can be cast. The type set
contains C' itself, all classes from which it inherits, and all interfaces that C or
one of its superclasses implements.



Definition 13. (Type set (1(C))). Let I be the set of all interfaces i such that
C > i. Let Cs be C’s superclass; C C Cg. Then, 7(C) = {C} U Iz U 7(Cs).
From the definition of instantiation, O < C = VT:T € 7(C): O < T. O

A static type violation is an invalid field or method reference. For example,
if a method in class C; references the field Cy.X, and C5 does not contain a field
called X, the reference to X is invalid. This type of violation can be detected
statically by examining the source program. The Java compiler and dynamic
linker detect static type violations in source code. This mechanism cannot pre-
vent static type violations caused by dynamic class changes. For instance, a class
D may invoke a method, say C.foo(), of a class C. Now, any dynamic changes
in C that removes foo will cause invalid references to foo.

A dynamic type violation occurs when some event results in a reference being
bound to an object of an incompatible type. For example, let O be an instance
of C. C does not implement the interface I. If O is bound to a variable i of
type I, a dynamic type violation results. This type violation cannot be detected
statically, since it depends on O. The JVM performs dynamic type checking
during operations such as assignment and type casting. If an operation might
result in a dynamic type violation, the JVM throws an exception. This type of
checking does not always catch dynamic type violations caused by class change,
since an assignment might have occurred prior to the class change. For instance,
assume that C implements interface I. Let O be an instance of C'. Some other
object has a reference to O, via i, of type I. If C' changes such that it no longer
implements I, i’s reference to O becomes invalid, since O’s type has changed. In
this example, i has already been assigned a value. If O’s type changes, then any
subsequent access to ¢ might cause an error. The only way to prevent such an
error would be to type check every object reference instruction, which the JVM
currently does not do.

We now show how dynamic type violations can occur when classes are changed
dynamically. Assume that class C' implements the interface I. Thus, 7(C) =
{C,1,0bject}. We first assign an object of type C to a variable of type I,
a legal action. We then modify C' such that it no longer implements I; 7(C)
= {C,Object}. The reference i.foo () causes an error, because the object bound
to i is no longer of type I.

We can now define type safety formally:

Definition 14. (Type safety). A class C is type-safe if it contains neither static
type violations nor dynamic type violations that cannot be detected by the
JVM’s runtime type checking. A program P is type-safe if all of its component
classes are type-safe. O

There are two approaches to ensuring type safety during class changes. We
could place no constraints on how classes can change, and type check every
object reference and method invocation instruction. Or, reduce the necessity for
extra runtime type checking by placing constraints on class changes. Various
definitions of a valid class change are possible, depending on the approach used.



We have defined a valid class change as one that cannot cause type violations,
either static or dynamic.

We chose this approach for two reasons. First, we wished to preserve the
type semantics of the Java language. A valid Java program, P, does not contain
these type violations. Second, efficiency — type checking all method and object
references requires significant CPU time. Our model requires only static checking
before a class is modified. No extra runtime type checking is necessary.

Formally, we define the semantics of class change to prevent static and dy-
namic type violations as follows:

Notation: Let C denote the definition bound to class C before a change.

Notation: Let C denote the definition bound to class C after a change.

Notation: Let AC denote the changes made between C and C; AC = (C © C)
» (C o 0).

Definition 15. (Dynamic class change (—)). The operation C —C describes
a change to C’s definition, and is valid if and only if the following two conditions
hold true:

1. No class defined in P, where P is the enclosing program, depends on fields
or methods being removed from C'.
VCOpeP:~(Cp&(Ce0))

2. An element of C’s type set cannot be removed if other classes depend on it.
VT:TET(Q@@) :=2(3Cp:Cp #CANCpeP:Cp xT).

Under these conditions, b(C) may be changed in any way. Methods and data
may be added to i(C), and removed if doing so does not cause type violations.
(s superclass may be changed, and abstract interfaces added or removed as
long as types with dependents are not removed from C’s type set. Further, C'
—C has the following effects on C subclasses and instances:

1. The change in C’s definition is reflected in all subclasses.
VCDth EC,@I—)E
By the definition of inheritance, ACp = AC.
2. All instances of C' change to match the new defintion.
YO:0<C,0~ O, where C >p O and C >p O. See Section 3.2 for more
information about this requirement.

O

Note that C'p & C does not mean that C'p must change if C' does. If Cp depends
on C' via method invocation, field access, or aggregation (Cp contains an instance
of C), then no change to Cp’s definition is implied. We discuss this, as well as
other details such as method table updates, further in Section 3.3.

The two conditions for — preserve type safety. The first condition prevents
static type violations, and the second prevents dynamic type violations. No other
constraints are needed. After any number of changes, a program is still type-safe.
Formally, we state this as a theorem:



Theorem 1. Given P v P, if P is type-safe, then P is type-safe.
We prove Theorem 1 using induction on the number of class changes enacted.

Base step: if no change has been made to P, then P is type-safe. True by the
definition of a valid Java program.

Inductive step: If P is type-safe, then P is type-safe. We prove this using con-
tradiction: we have some C —C == P —P, where P is type-safe and P
is not. Therefore, 3 some class X € P: C »C =— X —X A X is not
type-safe. There are two cases:

Case 1: X contains a static type violation: 3Y: C —»C = Y =Y A X
x(Y ©Y). Recall Condition 1, which requires that VX € P: =(3Y, X
(Y ©Y)). This condition contradicts the above.

Case 2: X contains a dynamic type violation: 3 Cp : Cp # C : Cp x T.
T(X) ¢ 7(X). However, X »X <= —(3Cp:Cp #C:Cp xT) by
Condition 2 of +—, and we have a contradiction.

Therefore, if P is type-safe, then P is type-safe. [

2.2 Support for Dynamic Classes

Dynamic classes can be implemented in several ways: (i) by changing the Java
language to support mutable classes, as done in [8], (ii) using library-based sup-
port, as done with C++ in [19], or (iii) by modifying the virtual machine. We did
not wish to modify the syntax or semantics of the Java language. The library-
based solution is inefficient and contains intractable implementation problems.
In this section, we describe our design, which uses a modifed virtual machine
to provide runtime system support for dynamic classes, and extends the class
loader to provide an interface.

Java class loader: The interface by which users manipulate dynamic classes is
an extended Java class loader. Thus, we begin our discussion with some pertinent
background on the Java class loading mechanism.

public abstract class ClassLoader {
public Class loadClass(String name);
protected Class findClass(String name);
protected Class defineClass(String name, byte[] b, int off, int len);
protected void resolveClass(Class c);

Fig. 1. Java VM class loader

The JVM resolves references to a class during runtime using a mechanism
called the class loader [28]. A class loader is responsible for locating the definition



of a class, which takes the form of a class file, and loading it into the JVM. A
class in Java is, thus, defined by both its name and the class loader that loaded
it. The JVM defines two kinds of class loaders: the system class loader and user-
defined class loaders. The system class loader is the default class loader used for
locating and loading system classes and user-defined classes. Users can override
the behavior of the default class loader by defining their own class loaders. To
build a specialized class loader, the user must extend the abstract base class
ClassLoader. Figure 1 depicts part of the interface of ClassLoader, as well as
the methods that can be overriden in user-defined subclasses.

The dynamic class loader: The programming interface for dynamic classes is
the dynamic class loader. This class, DynamicClassLoader, extends the JVM
class loader. In addition, it supports replacement of a class definition, and
update of objects and dependent classes. Any class loaded by an instance of
DynamicClassLoader is automatically a dynamic class.

We chose this approach for several reasons. Since the class loader loads, stores,
and examines class definitions, it is a logical choice for a module that modifies
class definitions. The design extends Java’s dynamic linking mechanism, instead
of replacing it. Thus, it supports existing code, with little or no modification.
Users can choose to use dynamic classes when and where they see fit. Most
importantly, our design preserves the security mechanisms inherent to the class
loader system, which include namespace separation and bytecode verification.

public class DynamicClassLoader extends ClassLoader {
public Class reloadClass(String newc);
public final int replaceClass(String oldc, Class newc);

// several overloaded versions of replaceClass are defined
// for convenience

Fig. 2. DynamicClassLoader interface

The dynamic class loader loads classes from disk in the same manner as the
system class loader. It complies fully with the specified semantics of a Java class
loader, as described above. However, the dynamic class loader provides additional
methods (reloadClass and replaceClass) that can reload an active class and
replace it with a new version. Using runtime system support, these methods
implement the semantics of class change () as stated in Definition 15. Method
reloadClass is similar to loadClass in that it reads a designated class file from
the disk, creates a class object, and returns it. However, loadClass does not load
classes that are already defined in the system, whereas reloadClass succeeds
whether the target class was previously defined or not. Given C, replaceClass
defines C to be the new definition of C, and initiates instance update. These rely



on several native methods that interface with the VM’s internal data structures.
We provide relevant implementation details in Section 3. Figure 2 summarizes
the interface to DynamicClassLoader.

Users can extend the dynamic class loader by redefining reloadClass or
findClass. Method replaceClassis a final method and cannot be overridden.
This ensures consistent class redefinition and security, as replaceClass performs
verification of C, and enforces namespace constraints.

2.3 Security

In Java 1.2, the JVM prevents classes from performing forbidden actions by
using bytecode verification, supporting namespace partitioning, and enforcing
user-defined access control policies. The bytecode verifier examines each class
before loading it into the JVM, checking for type violations and other ille-
gal operations. Figure 3 depicts a typical namespace configuration in a sys-
tem that hosts mobile, untrusted applets, such as a web browser. Applets are
each run in their own namespace, defined by separate class loaders. Resource
classes provided by the host are placed in another namespace Access between
namespaces is only permitted down the tree; applets are effectively isolated
from one another. Furthermore, the user can specify access control policies
for more fine-grained protection. In Sun’s JDK 1.2 security model, the class
AccessController acts as a security monitor [2,14,15]. All protected resources
must call AccessController.check(), which checks the access against the per-
missions specified in the security policy. Although the security policy, and thus
permissions, can change, the set of protected resources is static.

Appletl
(DCL)

Applet2
(DCL)

Resource
(DCL)

System

Fig. 3. Typical namespace configuration. DCL indicates a dynamic class loader.

Dynamic classes pose new security hazards. Malicious code could potentially
bypass many existing security mechanisms, by modifying either itself or the
protected classes it targets. Specifically, a malicious class could modify itself in
order to perform forbidden actions, or modify sensitive classes to either perform



or allow forbidden actions. Consider, for instance, Figure 4. A host provides a
resource, myResource, to which access is restricted via an access control policy. A
malicious applet, evilApplet, contains code that replaces the protected resource
with a new version that does not invoke the access controller. evilApplet can
then gain access to which it is not entitled.

public class myResource { // original version
public static void foo() { // protected resource method
// perform security check
accessController.check (new myResourcePermission());
// access sensitive resource

}
}

public class myResource { // weakened version
public static void foo() { // method now unprotected
// skip security check...
// access sensitive resource

}...
}

public class com.evilDomain.evilApplet extends Applet {

// malicious mobile applet

public void start() {
// get handle to dynamic class loader
DynamicClassLoader dcl = getClass().getClassLoader();
// get a URL class loader, linked to originating, evil host
URLClassLoader ucl = new URLClassLoader(‘‘evil.domain.com’’);
// use it to load a weakened version of the resource class
Class wr = ucl.loadClass(‘‘myResource’’);
// now use dcl to replace protected resource with weakened version
dcl.replaceClass(‘ ‘myResource’’, wr);
// invoke resource, which should be denied but won’t be
myResource.foo () ;

}
}

System security policy: only allow local namespace access to resource
grant codebase ‘‘localhost’’ {
permission myResourcePermission;

}

Fig. 4. Using dynamic classes to bypass access control.

We want to ensure that dynamic classes do not introduce any new security
risks. Therefore, Java’s security mechanisms must extend to dynamic classes.
This requires several measures.



grant codebase ‘‘localhost’’ {
permission ucd.pdclab.dynclass.modifyClassPermission;

Fig. 5. Grant class modification privileges only to classes in the local codebase.

The dynamic class loader subjects all modified classes to bytecode verifica-
tion before loading them into the JVM, so a malicious class cannot instrument
itself to include illegal bytecode operations. The dynamic class loader honors the
separation between namespaces by replacing only those classes defined within its
own namespace. Returning to Figure 3, let DCL denote a dynamic class loader.
Thus, applets and resources are dynamic classes. An applet running in namespace
Appletl cannot use its own class loader to replace a class defined in Applet2.
The scenario depicted in Figure 4 cannot happen.

These steps do not, however, prevent a malicious applet in Appletl from
invoking the resource namespace dynamic class loader and modifying resource
classes. Thus, dynamic class loaders should be protected by an access control
policy. Figure 5 contains a simple example of such a policy: only classes from
the local codebase, or namespace, can invoke the dynamic class loader. Applets
are excluded. DynamicClassLoader contains appropriate calls to the access con-
troller, as described in earlier. Under this policy, applets in Figure 3 cannot
modify system or resource classes, nor can they modify themselves. A similar
policy could provide full protection for myResource in Figure 4.

In practice, it is possible to violate Java’s type model and compromise secu-
rity [37]. This is due to problems in the semantics of dynamic linking and the
implementation of the virtual machine. The issue does not bear directly upon
dynamic classes, and we do not address it.

Another compelling question is that of the security behavior of the program
itself. Ideally, we could like to ensure that the security behavior of C is no
weaker than that of C; that is, no potential security holes are introduced into the
code. However, this problem is unsolvable in the most general case. Conceivably,
heuristics could be used, together with assumptions about or constraints on
program behavior to solve the problem for specific cases. Such heuristics are,
however, beyond the scope of this paper. It remains the responsibility of the
programmer to maintain security behavior across changes.

3 Implementation

DynamicClassLoader requires virtual machine support for reloading a class def-
inition, finding and updating dependent classes, and finding and updating in-
stances of modified classes. We have modified the Solaris version of Sun’s JVM
(JDK 1.2). Much of our discussion here pertains specifically to that VM. Our
implementation includes a shared library containing functions that support class
replacement and instance update. We have also made minor changes in some data



structures and functions internal to the JVM to support the library functions. In
the remainder of this paper, we refer to this modified, dynamic classes-enabled
virtual machine as DVM.

Adding support for dynamic classes requires understanding and manipulating
the JVM’s internal data structures and functions in several areas. The JVM uses
several optimizations to increase performance, and we take this into account in
our design. In this section, we first provide the necessary background on the
JVM. We then discuss our implementation.

3.1 Background: Java Virtual Machine

Here we describe the general architecture of the JVM. We focus only on those
aspects of the architecture that are relevant to to support for dynamic classes.
Specifically, we describe JVM’s runtime memory organization, the structure and
function of class definition objects, and the optimizations within the bytecode
interpreter.

Execution of Java programs: Java programs are composed of classes, each
of which is stored in a separate class file. A class file contains the types and
definitions of fields and methods defined in the class. All references to classes,
fields, or methods are symbolic and contain enough information to allow the
JVM to link classes in a type safe manner.

Java heap organization: All Java objects are allocated within a data structure
known as the Java heap. In many JVM implementations, including JDK 1.2, the
heap is divided into a handle pool and an object pool. Java objects are always
addressed indirectly through their handles. The use of handles facilitates garbage
collection. When an object is moved, only the pointer in its corresponding handle
needs to be updated; the handles never move.

This model is very useful when handling object update for dynamic classes,
as described in Section 3.2. The DVM can allocate new space for an object when
updating it, without changing the handle used to reference the object.

Class objects: A class object, an instance of Class, is created for each loaded
class. This object contains the entire class definition, including field types, method
signatures and bytecode, and inheritance information. Class objects are special
in that they are allocated on the Java heap, but some fields contain pointers
into the interpreter’s C++ heap. Thus, the code segment for an executing pro-
gram is distributed among several Java class objects. All names — or classes,
methods, fields, etc. — used by the class are stored in the constant pool. In the
bytecode, indices into this constant pool are used as symbolic references. Our im-
plementation uses the semantic information contained in class objects to assess
dependency relationships among classes and methods.

JVM optimizations: The JVM performs several optimizations that can ob-
fuscate internal data structures and cause problems during class changes. These
optimizations include the use of method tables, inlining, quick instructions, and
direct referencing. Below, we describe the problems that the optimizations raise
during dynamic class implementation and how we resolve them.



Each class data structure contains method and field tables used by virtual
method calls and other instructions. These tables contain the names of all meth-
ods or fields defined within a class C' and its superclasses; each entry has a
pointer to the method body or field visible in C’s scope. When changing C', the
DVM rebuilds the method tables in C' and all of its subclasses.

When a class is first loaded, its constant pool contains symbolic references,
and its bytecode contains indices into the constant pool for all method and data
access instructions. The first time the JVM encounters any such instruction, it
checks if the constant pool entry has been resolved, and resolves the entry if
needed. Then, the JVM changes the instruction to a special quick instruction
that does not perform the check. Any subsequent execution of that instruction is
relatively fast. Certain quick instructions contain offsets into objects or method
tables that may change when a class is modified. To make class updating cleaner,
the DVM only uses quick instructions that do not contain any offsets or direct
references. This avoids the need to update bytecode, but incurs a slight perfor-
mance penalty.

JDK 1.2 includes a Just-in-Time (JIT) compiler [22]. JIT compilers provide
a significant speed boost to a Java VM by generating native machine code from
Java bytecode on the fly. This optimization has an impact on dynamic classes
— if a method is modified, previously generated machine code becomes invalid.
Therefore, if the JIT compiler is enabled, the DVM must ensure that any modi-
fied methods are recompiled. We have not yet implemented this step. At present,
the JIT compiler is disabled within the DVM.

The JVM also performs inlining, where some method invocation instructions
are replaced by the actual bytecode of the method called. This technique also
affects dynamic classes, as inlined code may be invalidated by a class change. We
have, therefore, disabled method inlining for all classes loaded by a dynamic class
loader. System classes and non-dynamic classes are inlined as usual. We plan to
re-enable inlining for dynamic classes by forcing a recompile of any methods that
contain inlined code for methods that have changed.

3.2 Updating Instances

There are several alternatives for handling existing instances when a class changes:
none, some, or all of them can change to match the new definition. We discuss the
options, and justify our decision to enforce global update. Then, we address the
implementation details involved in finding, locking, and updating the objects.

Instance update models: Possible models for instance update include a ver-
sion barrier, passive partitioning, global update, and active partitioning. We de-
scribe and compare these models here. Our definitions of version barrier, passive
partitioning, and global update, as well as Figure 6, are based on [19].

First, the DVM could use a barrier on object versions. With this solution,
C ~C cannot occur until all objects defined by C have expired, as shown in
Figure 6(a). Note that, in this case, typdate is delayed until all old objects have
expired. This solution lacks the flexibility we desired. Effectively, active classes
cannot change.
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Fig. 6. Object update models: (a) version barrier, (b) global update, (c) passive par-
titioning, and (d) active partitioning. Black objects denote old version, and white are
new version.

Another possibility is passive partitioning, where objects created before C'
+C are unchanged, and any created afterwards reflect the new type. Figure 6(c)
depicts this model. In this case, as with the previous, multiple definitions of a
class can be active simultaneously. This breaks the Java name-binding semantics,
and introduces ambiguity that we wished to avoid.

Active partitioning allows the user to actively select which objects to update
and which to leave at the previous version, thus partitioning the objects into
type spaces. Such a model effectively implements fully dynamic typing, as one
could redefine classes at the granularity of individual objects, giving each object
its own dynamic type descriptor. Figure 6(d) illustrates this model. As discussed
in Section 2, we chose not to make such a drastic change in Java’s type system.

Therefore, our model uses the fourth method: global update of all objects
defined by C, shown in Figure 6(b). We defined > (see Definition 15) such that
the DVM must locate and update all instances of C' and its subclasses to reflect

the new definition, C.

Implementing incremental global update: Once the DVM has determined
that a modified class’s instances must be updated, the problem remains of ac-
tually locating and processing them. This problem is similar to that of garbage
collection. In both cases, there are three major steps: find relevant objects on
the heap, lock them, and process them.

Garbage collection algorithms generally fall into one of three categories: ba-
sic, incremental, and generational [43]. Basic algorithms use techniques such as
reference counting or mark and sweep to identify and process objects in a sin-
gle transaction. This transaction is atomic in that all other threads must block
while garbage is collected, and has the undesirable effect of temporarily halting
program execution. Incremental algorithms interleave garbage collection with
program execution, alleviating the pause effect. Generational algorithms exploit
temporal locality in memory usage to optimize garbage collection. We required
a more efficient method than a basic algorithm, and generational algorithms rely



on assumptions about program behavior that may not apply to instance update.
Therefore, we chose an incremental mark-and-sweep approach to updating. In
this method, there are two phases: the mark phase, during which objects are
identified, and the sweep phase, in which they are actually updated. The mark
phase is atomic, and the sweep phase proceeds incrementally.

In the mark phase, the DVM finds the objects by scanning the handle pool,
looking for instances of C. When it finds one, the DVM sets a bit in the ob-
ject header to indicate that the object needs to be updated. Finally, the DVM
modifies the class object pointer present in the corresponding handle structure
to point to the new definition, C'. The mark phase eliminates the need to check
all object references, thus increasing overall efficiency — the DVM only traps
references when updates are pending.

In the sweep phase, the DVM incrementally updates marked objects. To
maintain the heap in a consistent state, the DVM traps all accesses of marked
objects. If any objects need to be updated, the DVM checks the update bit
of the target object when interpreting an object reference instruction. It may
seem that this sweep technique implements version partitioning in that old and
new versions may actually be present on the heap at the same time. However,
the implementation guarantees that any old object will be updated before it is
referenced. The state of an inactive object does not matter. An advantage of
this technique is that the DVM does not update objects destined for garbage
collection. The disadvantage is a slight performance cost.

The DVM takes several steps to update an object O. Since other threads
may be active, it first locks O to prevent race conditions. Then, processing may
continue. The DVM allocates a new object O, where C > O, and copies O’s
data to O. It initializes any new fields within O to zero (null), then switches
the handles of O and O. Any references to O now point to O, and O is reclaimed
by the garbage collector. Finally, the DVM unlocks O, and the method that
triggered the update may continue.

3.3 Updating Dependent Classes

When redefining C', the DVM changes the state of all dependent classes to en-
able C’s new definition. This process requires several steps. First, the DVM
identifies all dependents and categorizes them by their relation to C' — subclass,
method usage, etc. It re-resolves all dependent classes, and updates additional
information within subclasses.

The DVM identifies dependent classes by scanning the constant pools of all
loaded classes for C. Then, it updates each one according to its relation to C.
When a class is first loaded, its constant pool contains symbolic references to
other class objects and their methods and fields. When the JVM resolves the
class, it replaces these references with actual pointers to the referenced object.
When the DVM redefines C, any pointers to C become invalid, and the DVM
replaces all resolved references with the original symbolic references. It then
resolves the class and replaces the references with pointers into C. To support



restoration of symbolic references, we added an additional field to the class object
structure that contains the original constant pool.

C’s subclasses require additional processing. If any data or methods are added
to C', the DVM updates the method and field tables of all subclasses. It rebuilds
these tables when it re-resolves a class. Classes that contain instances of C' as
data require no further action. Since Java objects contain references in their
component fields and not entire objects, classes are not affected by a change in
the class definition of one of their components.

3.4 Pitfalls in Dynamic Classes

The introduction of arbitrary new code into a running Java application has many
potentially negative consequences. Type safety may be affected, race conditions
may result, etc. In this section, we analyze several problems that we encountered
during the implementation and the present the solutions.

Type safety: Recall from Section 2 that the operation C —C is allowed if it
does not cause static or dynamic type violations. Therefore, before making any
change, the DVM verifies these conditions. This maintains program correctness
and type-dependent security mechanisms.

The DVM checks for static type violations by examining C, C, and any
dependents. Assume that C has a field X, and the switch to C removes X.
There are two possible cases for invalid references — within C, and in other
classes. Since we enforce the constraint that C' must be a valid class definition,
the first case is impossible. Before enacting the change, the DVM resolves C
and runs through the bytecode verifier. Therefore, whether C is a compiled class
or was generated on the fly, it cannot contain any references to X. However,
we may have another class Cp that is dependent on C' and references X. In
Section 3.3, we described how to identify dependent classes quickly by scanning
their constant pools. We extend this technique to locate references to deleted
fields or methods such as X — the name C.X must be present in C'p’s constant
pool. If any such references are found, the DVM invokes a user-supplied handler,
passing it a list of classes that depend on C. This handler may then throw an
exception, update dependent classes if possible, etc. This step ensures that all
classes defined, and thus the program itself, are valid after the change.

Likewise, the DVM checks the second condition by comparing C and C,

and recursively examining C’s superclasses. If C T Cg and C does not, the
DVM searches for any classes that depend on Cg. If any are found, the DVM

throws an exception. Similar steps are taken if ¢ >;T and C does not. It is a
straightforward matter to extract this information from the class object data
structures.

Race conditions in multithreaded applications:Multithreaded applications
raise the issue of race conditions on the definitions and instances of dynamic
classes. During redefinition, the data in C and C are in an inconsistent, transitory
state. If an active thread references C during this time, runtime system errors



will likely result. The DVM prevents this event by blocking all threads prior to
performing the replacement.

Ideally, the DVM could identify all threads that depend on C, and block
only those threads. Unfortunately, this requires a lengthy recursive search of all
loaded classes for every frame on every thread stack. This operation is actually
much more expensive than the class replacement, which is fairly brief. Thus, the
DVM blocks all threads except for the thread performing the change, and allows
the threads to continue after the change is complete.

Native methods:The JVM allows users to run native methods, and the po-
tential for race conditions during a class change exists here as well. Since native
methods do not use a Java stack, and their code cannot be easily examined for
dependencies, it is very difficult to determine if it is safe to make a change while
a native method is active. Further, native code does not consist of discrete byte-
code instruction sections. It is difficult to determine when it is safe to block a
native method without causing race conditions as described above.

One solution is to simply disallow class changes while native methods are
active. Unfortunately, many native methods are involved in I/O and include
polling loops; they are perpetually active. Therefore, the DVM does not block
native threads, nor does it wait for them to finish or reach any particular state
before continuing with a class change. There is a danger that a native thread
could access some internal data structure while the DVM is modifying a class.
However, since the JVM cannot control the execution of native methods, there
is always the danger that one will corrupt the runtime state in some manner.
We assume that all native methods are trusted to behave properly.

Race conditions during object update are easier to handle. Native methods
should “pin” Java objects before accessing them, a form of locking. Before chang-
ing a class, the DVM scans the heap and ensures that no instances of that class
are pinned.

Changing active methods: An interesting problem involves changing a method
that is currently running. Given a method C.M , we must first determine if C.M
has changed. Whenever the dynamic class loader loads a class, it calculates and
stores a hash value for each method. The DVM can then determine if M has
changed by comparing the old and new hash values.

This cannot be done by a simple string compare of C’s and C’s versions of M,
since the constant pools indices used as arguments in the bytecode may change,
even if the method code does not. Any deeper examination of the bytecode
becomes costly. So, whenever the dynamic class loader loads a class, it calculates
and stores a hash value for each method. This hash value includes all bytecode
instructions, and the full names of all classes, methods, and fields referenced,
rather than the symbolic references. Then, the DVM can determine if M has
changed by comparing the old and new hash values. There is a slight possibility
of collision, where two different methods give the same hash value, thus causing
a false negative. Therefore, in the event of a match, the DVM also checks other
information such as bytecode length and stack size.



Once it has determined that M has changed, the DVM must include C.M
in its search of the active thread stacks. Given that M is at an arbitrary point
in execution, that Java bytecode contains no semantic information about con-
trol flow, and that no particular relationship between M and M is required,
it is impossible, in the general case, to determine where and how to continue
execution in M. For instance, if M and M solve the same problem using dif-
ferent algorithms, there may not be a point in M corresponding to the current
location in M. Or, M may use local data that is not present in M, and that
must be initialized. This problem is similar to that posed by security behavior
across class changes, as discussed in Section 2.3. Again, heuristics might be used
to solve specific cases, but such heuristics are beyond the scope of this paper.
Therefore, active methods cannot be changed. If the user attempts to change
an active method, the DVM throws an exception, aborting the offending thread.
The user may handle this exception in another manner, by continuing the thread
but aborting the replacement, terminating and re-invoking the method, etc.

4 Discussion

In this section, we first analyze the performance of the DVM, as compared to
the standard JVM. We then compare our design and implementation with other
work related to dynamic evolution.

4.1 Performance Analysis

We are concerned with two performance factors: baseline performance of the
modified VM, and the cost of replacing a class and updating its instances. We
have performed a series of experiments to determine precisely where penalties are
incurred and their degree, and to suggest optimizations and improvements. These
results pertain to an unoptimized DVM; work on optimization is proceeding
apace.

Overhead of adding dynamic classes to JVM: It is straightforward to test
the baseline performance of the DVM, simply by running a series of benchmark
programs on both the DVM and unmodified JVM. We ran the SpecJVM ’98
benchmark suite [41], with a problem size of 100, on a 266 MHz Intel Pentium IT
running SunOS 5.6. Figure 7 summarizes the results. The performance penalty
varied between applications from around five percent to nearly ten, with the
average around six percent.

We ran another experiment to determine the penalty caused by each of our
modifications. For this experiment, we used a simpler set of benchmark pro-
grams [16], run with different versions of the DVM. Each successive DVM ver-
sion activates an additional instrumentation of the unmodified JVM. Instru-
mentations include the elimination of quick instructions, checking if an update
is needed in object reference instructions (see Section 3.2), and the class replace
lock check for object reference and method invocation instructions. Figure 8
summarizes the performance cost distribution. The costly modifications are the



|SpecJVM Progmms|JVM |DVM |JVM/DVM|DVM w/ repl.|no repl./repl.|

jess 1420.888 [1562.581 [90.9% 1738.559 90%
db 2675.772 [2932.931 [91.2% 3257.733 90%
javac 1692.285 [1840.9  [91.9% 2181.056 84%
mpegaudio 6383.705 [6743.099 [94.7% 6853.353 98%
mtrt 1709.399 [1883.119 [90.8% 2163.25 87%
jack 2083.441 [2306.306 [90.3% 2559.645 90%
| Total [15966.552[17269.977[92.5% |18753.596  [92%

Fig. 7. SpecJVM benchmark results. All time in seconds.

elimination of quick instructions and the class replace lock; each incurs an ap-
proximately 5% penalty. The penalty caused by the object update check is very
small. Current efforts focus on reducing these penalties by implementing a more
efficient locking mechanism, and possibly re-enabling quick instructions for non-
dynamic classes.

| VM version |time| JVM/DVM]|penalty| . These dfxta inform the
wide range in performance
JVM 54.6 |- - A
DVM % 557 cost reported in Figure 7.
v — - 55.897.8% il Applications that have a
No quick instructions |58.892.9% 4.9% higher proportion of ob-
Update object check  [58.9]92.7% 0.2%

ject reference and method
Class replace lock check|62.4 (87.5% 5.2% invocation bytecode in-

structions, as compared
to other instruction types,
suffer more from both the loss of quick instructions and the class replace lock
check.

Fig. 8. Performance cost distribution.

Cost of modifying classes: The acquisition of meaningful data about the
cost of replacing a class and updating instances is more complex. Many vari-
ables are involved, including the behavior of the application (object allocation
and usage, etc.) and the state of the runtime system (number of classes loaded,
thread state, etc.). Thus, different applications will generate widely varying data.
We have experimentally modeled this cost by running the Spec benchmarks, as
above, alongside a thread that periodically replaced a randomly selected user
class. We did not modify any Spec classes; any such class is replaced with itself,
causing no instance update. We included a “dummy” class that, when changed,
has a different implementation. Our extra thread allocates and periodically ac-
cesses many instances of this class. The number of objects used in this set of
experiments was 10000, and the interval between class changes was 5 seconds —
we consider this to be a fairly heavy replace/update load. We show the results in
Figure 7. The overall performance penalty ranged from ten to sixteen percent,
with average at eight percent.



4.2 Related Work

We survey related work in dynamic evolution in the context of programming
models. We loosely classify techniques according to the semantics of changing
code and the programming interface.

Dynamic classes: Under dynamic classes, the definition of a type may be
changed at runtime. However, the defining type of an individual object may not,
as is the case with dynamic typing. Any change is applied directly to the type
definition rather than its instances. Therefore, objects in memory must somehow
be partitioned between different versions of the class.

C++-style templates, at first glance, seem to provide some dynamic capabil-
ity — a template class or function can change based on what template parameter
is provided. However, this is static. Effectively, templates generate new classes
during compilation, but cannot generate or modify classes at runtime. The Java
interface construct suffers from similar limitations, as discussed under dynamic
linking. The Java interface construct is not sufficient either; one may load and use
a new implementation class for an existing interface, but any existing instances
of the original implementation are not affected.

Hjalmtysson and Gray [19] implement dynamic classes in C++. The system
uses a wrapper, or proxy class, method that essentially implements Java style
interfaces in C++, and further extends the mechanism to allow linking of a new
implementation class at runtime, and the presence of multiple active versions.
This does not require runtime system support or language extensions, and could
be applied to Java as well — we chose not to do so for performance reasons.

Shadows [12] is a system for projecting objects between type spaces, and has
been implemented in C++. Shadows also uses a form of proxy class, called a
shadow map. This map is used to map nodes from the original data structure or
type into an extended structure, or shadow. Shadows uses runtime type checking
to maintain type safety. As with dynamic C++ classes, Shadows does not re-
quire compiler or runtime support, but can only be used with specifically coded
programs and incurs overhead that might be prohibitive in a Java environment.

Delegation [30] provides a mechanism by which Kniesel [26] implements dy-
namic classes. Delegation permits object- rather than class-based inheritance. A
class can contains delegates, which are objects invoked to perform certain func-
tions. By changing the delegates bound to a function, one can easily change that
function’s implementation.

Dynamic linking: Dynamic linking [20, 24, 11] allows names to be bound when
the program begins execution. Once done, this binding cannot be changed with-
out restarting the program. The common point among all traditional stages
of binding is that any type or method name can only be bound once across all
phases. Further, dynamic linking contains no notion of state or correctness. Even
if it were possible to re-link a dynamic library, there is no semantic framework
dictating how and when it may be done.

Load-time transformation: Several projects exist that support modification
or generation of classes at load-time (before or during class loading). This tech-



nique can be used to optimize or reconfigure applications by generating and
loading specialized classes. However, the method is subject to the limitations
of dynamic linking. New classes can be generated and loaded, but classes and
objects previously present in the JVM are not affected. Classes can change in
the static or loaded state, but not while active. Linguistic reflection [25], Binary
Component Adaptation [23] and JOIE [7] implement load-time transformation.

Dynamic architectural frameworks: Architectural frameworks such as COM [5],
CORBA [1] and C2 [42] provide a mechanism by which a program can be de-
scribed in terms of high-level components such as modules and connectors. In
general these frameworks are static — once defined, a program is static and its
design cannot be changed at runtime. Dynamic frameworks allow the user to
change the high-level architectural specification of a program at runtime.

Archstudio [34] provides graphical and command-line tools used to modify
a C2-Java program specification at runtime. An attempt to change the specifi-
cation invokes an Architecture Evolution Manager, which checks the request for
validity, and modifies the program’s implementation accordingly.

The Argus language [31], which provides a client /server model for distributed
computing, supports dynamic update of servers, or guardians [4]. Similarly,
Conic [32] provides a module-based environment using message passing. Modules
communicate via ports, and may be dynamically updated by switching all links
from the present version of a module to a new one. However, the ports between
modules are static, thus connections cannot be created or broken dynamically.

Dynamic typing: CLOS [40] and Smalltalk [13] support dynamic typing, in
which the type descriptor of an object may be changed freely at runtime. Method
code may be modified, data fields and methods may be added or removed, etc.
For example, the Information Bus [33] distributed systems architecture uses a
CLOS-derived language to implement dynamic classes. Fabry [10] implements
a dynamic type system using capabilities. Widening [39] provides a mechanism
for constrained dynamic type changes, in which objects may be temporarily
“widened” to a subtype of their defining class. [8] implement a mechanism
similar to widening, for imperative languages, and present a formal type system
with proof of soundness.

Dynamic typing, in its unconstrained form, supports the greatest flexibility.
However, static type checking of any kind becomes infeasible, so the runtime
system must support complete runtime type checking, with all associated over-
head.

Parallel versions: One approach to replacing one version of a program (P) with
a new version (P) is to beginning running both versions in parallel, transferring
P’s state to P at an appropriate time. Both software and hardware-based solu-
tions exist. Gupta and Jalote [17] use processes as update vectors, and SCP [38]
uses redundant CPUs.

While efficient, redundant hardware is obviously expensive, and only practical
in certain situations such as the telecommunications environment towards which
SCP is targeted. Parallel processes are an efficient technique. However, transfer



of state, which may include open files, displays, and elements not affected directly
by the change, can be awkward.

5 Conclusion

We have described the design and implementation of dynamic classes in Java,
using runtime support. Our solution is novel in the combination of type safety
preservation, nearly unrestricted changes, support for any Java class, and effi-
ciency. These features balance efficiency, convenience, safety, and power of ex-
pression.

We have developed a dynamic security infrastructure using dynamic classes [18],
as well a mechanism that enhances the dynamism of JDK 1.2’s native security
model. We are also working on a dynamic architectural framework based on Java
Beans [21], and a code distribution mechanism. These applications, in conjunc-
tion with our performance analysis, show that dynamic Java classes are a useful
language extension that supports an exciting class of software systems. Further
optimization of the DVM is an ongoing process.

Currently, our primary focus for future work is the extension of the dynamic
classes model to distributed systems. The introduction of distributed applica-
tions running across multiple hosts, with objects migrating between them, has
many implications. For example, due to latency and packet dropping over the
network, our current synchronization model does not scale well to multiple hosts.
It is difficult to avoid race conditions while maintaining efficiency. One solution is
to simply accept race conditions and work around them. This approach implicitly
creates a multiple-version model of classes, which merits further examination.
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