
Support for Implementation of Evolutionary

Concurrent Systems in Concurrent

Programming Languages

Raju Pandey1 and J. C. Browne2

1 Computer Science Department, University of California, Davis, CA 95616
2 Department of Computer Sciences, The University of Texas, Austin, TX 78712

Abstract. In many concurrent programming languages, concurrent pro-

grams are di�cult to extend and modify: small changes in a concurrent

program may require re-implementations of a large number of its compo-

nents. In this paper a novel concurrent program composition mechanism

is presented in which implementations of computations and synchroniza-

tions are completely separated. Separation of implementations facilitates

extensions and modi�cations of programs by allowing one to change im-

plementations of both computations and synchronizations. The paper

also describes a concurrent programming model and a programming lan-

guage that support the proposed approach.

1 Introduction

Complex software systems are evolutionary in general. They change during

the initial development stage, and often after they have been deployed. These

changes may occur due to changes in the requirements, in the hardware con�gu-

ration, and/or in the execution environment. Programming languages must sup-

port methodologies that allow implementations of evolutionary systems. Specif-

ically, small changes in the implementations of such systems should be localized,

and should require modi�cations of a small number of components.

In this paper we show that many concurrent programming languages do not

adequately support implementation of evolutionary concurrent systems: changes

in the implementations of a small number of components may a�ect the imple-

mentations of a disproportionately large number of components. More impor-

tantly, concurrent program abstractions cannot be composed easily with existing

program abstractions. This has implications on the re-usability of program ab-

stractions and on concurrent programming language design. Speci�cally, the in-

ability to compose concurrent program abstractions causes breakdowns in many

of the programming language composition mechanisms.

A novel structuring scheme for concurrent programs is presented in this pa-

per. In this scheme, implementations of computations and synchronizations are

completely separated. A concurrent program is, thus, composed from separate

implementations of computations and synchronizations. This is unlike most ex-

isting approaches where implementations of computations and synchronizations

are embedded within the implementations of components.

Separation of implementations of computations and synchronizations has di-

rect implications on the extensibility and modi�ability of programs. Concurrent

programs can be easily extended and modi�ed by adding and modifying im-

plementations of either computations, synchronizations, or both. Further, the

approach advocates a programming design methodology where concurrent pro-

grams can be quickly constructed from existing implementations of computations

and synchronizations. We briey describe a concurrent programming model and

a concurrent programming language that supports this programming methodol-

ogy. The model de�nes general mechanisms for representing computations, inter-

actions, and program compositions. The object-oriented programming language,

CYES-C++, supports extensibility and modi�ability of concurrent programs as

well as re-usability of speci�cations of computations and interactions.

This paper is organized as follows: In Section 2, we show that there is poor

support for implementation of evolutionary concurrent systems in many existing

approaches. In Section 3, we analyze the reasons for the problems, and show

how some of these problems can be resolved. In Section 4, the details of a

concurrent programming model and a language that support the programming

methodology are presented. A brief survey of the related work is presented in

Section 5. Section 6 contains concluding remarks and the status of the research.

2 Modi�cations of Concurrent Programs

In this section we show that it is di�cult to change the implementation of a

concurrent system implemented using traditional approaches to concurrent pro-

gramming. In a majority of concurrent programming languages, the approach

to implementing a concurrent program involves partitioning a problem into a

set of components, each implemented as a process, task, or thread. An imple-

mentation of a component contains operations that implement its computations,

synchronization with other components, data decomposition and distributions

and task scheduling algorithms. We show that concurrent programs speci�ed

in this manner are di�cult to change and modify: extensions and modi�cations

in a concurrent program may require that a large number of its components

be modi�ed. We illustrate this by showing that extensions and modi�cations

of a simple concurrent program require re-implementation of some or all of its

components. Note that the conclusions of this exercise are independent of the

example.

Example 2.1. (Extensibility and Modi�ability of Concurrent Programs). Below

we show a concurrent program, examprog1, that is composed from two compo-

nents: producer and consumer. The producer component repeatedly produces

data, which are consumed by the consumer component. The components in-

teract through the send and receive primitives over a mailbox [1] in which

programs can deposit and retrieve information in a FIFO manner. Primitives

send and receive respectively are non-blocking and blocking.

examprog1() f
channel buf;

producer(buf) || consumer(buf);

g

producer(channel buf)f
while (TRUE) f

info = produce();

send(buf, info);

gg

consumer(channel buf)f
while (TRUE) f

info = receive(buf);

consume(info);

gg

A simple extension of examprog1 involves adding another consumer compo-

nent, for instance because consumer is slow relative to producer, such that data

are now shared between the two consumer components alternately. There are

many possible implementations of the extended program. However, in all imple-

mentations, producer, consumer, or both must be re-implemented in order to

implement the altered interaction among the producer and the two consumer

components.

Similarly, a modi�cation of examprog1 may involve de�ning additional syn-

chronization constraints| for instance, producermust wait after N un-consumed

data | between producer and consumer. Again, as in the case of the extension,

either or both components must be re-implemented in order to implement the

altered interaction. �

Even though the above program contains two simple components, implications

of simple changes in the program are widespread. Simple extensions and modi�-

cations in a concurrent program may therefore a�ect implementations of a large

number of its components. Implementations of component are not encapsulated

from each other. Changes in a concurrent program may be visible in some or

possibly all components.

Also, speci�cations of components cannot be reused easily. For instance, in

three versions of the example program, much of the behavior of producer and

consumer remains unchanged. However, di�erent versions of the components

are created by duplicating much of the code from one version to another. In

addition, synchronization, task scheduling, data mapping, and data distribu-

tion algorithms cannot be reused easily because they are embedded procedurally

inside the implementations of components.

Further, modi�cations in components often involve making modi�cations in

existing source code. Such modi�cations in source programs are error prone.

Indeed, they are one of the major sources of errors in concurrent programs.

More importantly, the example underlines the problem associated with con-

structing new concurrent program abstractions in terms of existing program

abstractions.

De�nition 2.1. (Program Composition Anomaly). The program composition

anomaly denotes the phenomenon in which the concurrent program composition

of program abstractions requires changes and modi�cations in some of all of the

program abstractions. �

Example 2.1 shows an occurrence of the program composition anomaly. The

program composition anomaly highlights the inability to compose concurrent

program abstractions from existing program abstractions. Since programming

languages use many composition mechanisms for de�ning abstractions in terms

of other abstractions, the presence of the program composition anomaly causes

breakdowns in many of these composition mechanisms. We enumerate two such

cases below.

Object-oriented programming languages support two fundamental composi-

tion mechanisms: aggregation and inheritance. Aggregation is used to de�ne

the structure of an object in terms of its component objects. Inheritance, on

the other hand, is used to extend the structure of an object. In a concurrent

object-oriented programming languages, we can think of a concurrent object as

a concurrent program, whose composition is de�ned in terms of its methods

and interactions among the methods. Both aggregation and inheritance can be

viewed as implicit concurrent program composition mechanisms: aggregation as

de�ning the concurrent program associated with an object as a composition of

programs associated with its component objects, and inheritance as a means

for extending the program composition of concurrent objects. We show that

instances of the program composition anomaly occur when de�ning the two

composition mechanisms.

Aggregation anomaly: The aggregation anomaly occurs when an object de�nes

additional interaction behavior for methods of its component objects.

Example 2.2. (Aggregation anomaly). Assume that an object of class TwoBufs

contains two objects: LarBuf and SmBuf of a concurrent class AtBuf. Class AtBuf

de�nes two methods: Read and Write. The two methods synchronize with each

other while accessing common data structures of AtBuf. Let Class TwoBufs

de�ne addition constraints on invocations of Read and Write over LarBuf and

SmBuf objects: Write invocations on LarBuf have higher priority than Write

invocations on SmBuf. Since the synchronization operations of Write are em-

bedded inside the implementation of Write, the new synchronization behavior

can be speci�ed only by re-implementing the methods in AtBuf, thereby requir-

ing rede�nition of AtBuf. �

In this example, class TwoBufs is used to compose two instances of abstrac-

tion AtBuf along with additional synchronization constraint. However, such a

composition requires changes in the abstraction (AtBuf).

Inheritance anomaly: The second problem, termed the inheritance anomaly [16],

arises due to the diverse synchronization requirements of a class and its sub-

classes.

Example 2.3. (Inheritance anomaly). Let class NBuf extend class AtBuf by

de�ning a new method GetLst. Method GetLst interacts with Read and Write of

AtBuf. This implies that synchronization properties of Read and Write change.

Since the implementations of Read and Write include synchronization opera-

tions, the interaction behaviors of the methods can be implemented only by

re-implementing the methods. This can be achieved either by re-implementing

AtBuf or by re-implementing Read and Write in NBuf. In the latter case, imple-

mentations of Read and Write cannot be inherited in NBuf. �

The inheritance anomaly is another instance of the program composition anomaly.

Here, a subclass extends the program composition associated with a concurrent

object either by adding new methods or by modifying inherited methods. Such

extensions require changes in the composition, which, in this case, means redef-

inition of methods.

3 Support for Extensibility and Modi�ability

We �rst examine the reason for occurrence of the program composition anomaly.

There are two distinct behaviors of a component: computational behavior and

interaction behavior. The computational behavior of a component speci�es the

operations performed during an execution of the component. For instance, com-

putational behavior of the producer component is to produce data. The inter-

action behavior of a component determines the manner in which the component

a�ects or is a�ected by other components. It represents a semantic relationship

among components. For instance, the interaction behavior of consumer (ex-

ample 2.1) speci�es that every invocation of consume depends on a preceding

invocation of produce, representing a data dependency relationship among the

operations.

The program composition anomaly arises because implementations of both

| computational and interaction | behaviors of a component are embedded

within an implementation of the component. Any changes (either through ex-

tension or modi�cation) in a concurrent program tend to change the existing

interaction relationships among the components. Since implementations of the

relationships are distributed in the implementation of the components, changes

in an interaction relationship can be e�ected only by re-implementing all com-

ponents that implement the relationship.

3.1 Concurrent Program Composition

Our approach, which we call evolution through separation, is based on a novel

structuring technique for concurrent programs. It advocates a programming

methodology in which implementations of computational and interaction behav-

iors are completely separated. A concurrent program is, thus, composed from

separate implementations of computational and interaction behaviors.

De�nition 3.1. (Constrained concurrent program composition). The expression

C = (C1 k C2 k : : : k Cn) where �

speci�es a concurrent program C. Program C is composed from components

C1; C2; : : : ; and Cn and expression � that represents relationship among the

operations of the components. �

The semantics of the composition is that during an execution of C, operations of

components C1; C2; : : : ; and Cn occur in parallel by default. However, there are

invocations of operations that interact. Executions of these invocations must sat-

isfy all interaction relationships speci�ed by �. Concurrent program examprog1

is thus de�ned as:

examprog1 = (producer k consumer) where consexp1

In this de�nition, components producer and consumer de�ne only their compu-

tational behavior. Expression consexp1 de�nes interaction among operations of

producer and consumer.

3.2 Implications of separation

Separation of implementations of computational and interaction behaviors have

direct implications on extensibility and modi�ability of concurrent programs, as

well as re-usability of components.

Concurrent programs can be extended easily. Additions of components may

require de�nition of new interaction behaviors, and possible modi�cations of

existing ones. For instance, examprog1 can be extended easily:

examprog2 = (producer k consumer k consumer) where consexp2

Expression consexp2 represents the new interaction relationship among the

three components. Implementations of either producer or consumer do not

change.

A concurrent program can be modi�ed easily either by modifying computa-

tional behavior of its components or their interaction behaviors. For instance,

the following program

examprog3 = (producer k consumer) where consexp3

is composed from the same components as examprog1 except that consexp3

implements a di�erent interaction behavior among the components. The ap-

proach supports encapsulation of implementations of both computational and

interaction behaviors. For instance, producer can be re-implemented, in isola-

tion, from the implementations of consumer and the interaction behavior. Even

if this implementation implies changes in concurrent program, only the imple-

mentations of interaction behaviors needs to be changed. The computational

behavior of consumer remains una�ected. Separation of implementations there-

fore localizes the e�ects of changes in a concurrent program. Further, it supports

re-usability of implementations of both computational and interaction behaviors.

For instance, di�erent versions of examprog1 can be constructed by combining

producer and consumer in many di�erent ways. Indeed, it advocates a pro-

gramming design methodology in which concurrent programs can be quickly

constructed from existing implementations of computational and interaction be-

haviors.

Veri�cation of concurrent programs is also facilitated by the separation of the

implementations. The approach allows one to verify properties of the system by

looking at the implementations of computational and interaction behaviors in

isolation.

Separation also forms the basis for the resolution of the aggregation and

inheritance anomalies. In the case of inheritance anomaly, interaction behavior

of inherited methods can be extended and/or modi�ed by de�ning interaction

behaviors in a subclass [21]. The inheritance anomaly has been studied in great

detail and many solutions [14, 26, 23, 25] have been proposed. Most of these

solutions are based on the separation of synchronization constraints from the

method speci�cations as well.

Separation of implementations facilitates programming language design as

well. By supporting mechanisms for de�ning abstractions for computational and

interaction behaviors, a concurrent programming language can provide support

for constructing powerful concurrent program abstractions by simply extending

the existing composition mechanisms. The design of CYES-C++(Section 4.3)

clearly bene�ted from this approach.

4 Support for Concurrent Programming

We now describe a concurrent programming model and a programming language

that support the proposed programming methodology. We �rst present a model

of concurrent computation, called the C-YES model [20]. The C-YES model

de�nes representation mechanisms for computational and interaction behaviors.

It has been used to de�ne a compositional model for concurrent object-oriented

languages [21], and a concurrent object-oriented programming language, CYES-

C++ [22]. Due to the lack of space, we outline only the fundamental aspects of

the model and the language. The details can be found in [19].

4.1 Representation of computational behavior

Given that implementations of components do not include implementations of in-

teraction behaviors, the question is: how are component programs implemented

so that their interaction behaviors can be speci�ed in a concurrent program?

The execution behavior of a component is to repeatedly execute operations,

and occasionally interact with its environment (other components) during the

execution of certain operations. For instance, producer interacts with its en-

vironment during executions of produce operations. We call such operations

interaction points. An interaction point denotes a set of possible invocations of

operations where interaction may occur. A component in the C-YES model is

therefore represented by its computations and interaction points. We call each

invocation of an operation an event. An interaction point therefore denotes a

set of possible events.

We represent an event by Operation[Selector]. Here, the term Selector is

used to uniquely identify an occurrence of Operation. We use the notion of event

occurrence number as a selector. An event occurrence number, i, of an event

speci�es that the event is the ith invocation of an operation in a computation.

For instance, term produce[0] denotes the �rst invocation of produce.

Components are represented by extending the interfaces of procedures to in-

corporate the notion of interaction points. In CYES-C++, interaction points of

a component are derived from the parameter variables: all methods on objects

denoted by the variables are the interaction points of the component. (We as-

sume that the parameters represent objects). For instance, the implementations

of producer and consumer are shown below:

producer(buffer info)f
while (TRUE) f

info.produce();

g
g

consumer(buffer info) f
while (TRUE) f

info.consume();

g
g

Interaction points of producer are represented by the term info.produce(),

which denotes the set of all possible invocations of produce during an execution

of producer. Interaction behaviors of components are de�ned in terms of their

interaction points.

4.2 Interaction speci�cation

Interaction among programs is speci�ed by an expression, called the event or-

dering constraint expression. An event ordering constraint expression is used

to represent semantic dependencies among events of component programs by

specifying execution orderings | deterministic or nondeterministic | among

the events. An event ordering constraint expression is constructed from a set

of primitive ordering constraint expressions and a set of interaction composition

operators.

Primitive event ordering constraint expression: A primitive event ordering con-

straint expression (e1 < e2) speci�es the constraint that event e1 must occur

before event e2

Interaction composition operators: There are four operators for composing event

ordering constraint expressions:

i) And constraint operator (&&): An execution of a program satis�es event or-

dering constraint expression (E1 && E2) containing && if it satis�es both E1 and

E2.

ii) Or constraint operator(||): An execution of a program satis�es event ordering

constraint expression (E1 || E2) if it satis�es at least one of event ordering

constraint expressions E1 or E2.

iii) forall operator: The forall operator extends && in order to specify ordering

constraints over sets of events. There are two ways in which the forall operator

can be speci�ed. The �rst

forall var v in S f E(v) g

speci�es that event ordering constraint expression E(v) holds true for all events

v in event set S. In this expression, variable v iterates over the events of S. The

second

forall occ i in S f E(S[exp(i)]) g

speci�es that event ordering constraint expression E(S[exp(i)]) holds true for

all events S[exp(i)] of S. In this expression, variable i ranges over the occurrence

numbers of events of S. Expression exp(i) determines the occurrence number

of the event for which E must hold.

iv) Exists operator: The exists operator is similar to forall in that it extends

the || constraint operator over a set of events.

The interaction speci�cation mechanism is declarative in nature. Its power

stems from the ability to decompose global interactions among programs into a

set of local interactions, each represented by event ordering constraint expres-

sions, and combined with suitable interaction composition operators. One of the

implications of the modularity property of event ordering constraint expressions

is that interaction behaviors of programs can be changed by modifying only the

relevant and local interaction speci�cations. Further, the interaction speci�ca-

tion mechanism is is not based on the semantic properties of any synchronization

primitive. It can be used to specify any interaction behavior for any invocation

of any operation.

Example 4.1. (Interaction speci�cation). We now present an example that il-

lustrates the manner in which event ordering constraint expressions can be used

for specifying interaction relationships. In this example, we show di�erent in-

stances of event ordering constraint expressions for the producer/consumer ex-

ample.

Simple data dependency: In example 2.1, the synchronization constraint speci�es

that the ith invocation of consume cannot execute until the ith invocation of

produce has occurred. Let the terms produce and consume respectively denote

the interaction points of producer and consumer. The following expression

implements the data dependency relationship between producer and consumer:

ConsExp1 = forall occ i in produce f (produce[i] < consume[i]) g

Extended concurrent program: In this example, we consider interaction between

a single producer and two consumers. Assume that the data produced by

producer are shared between the two consumer components alternately. Also,

assume that consume1 and consume2 denote the interaction points of the two

consumer components. The interaction relationship between the components is

derived by implementing two relationships: one between odd events of produce

and events of one consumer, and the other between even events of produce and

events of the other consumer. The two relationships are implemented by the

following expression:

TwoRel = (produce[2*i-1] < consume1[i])&&(produce[2*i] < consume2[i])

The above relationship is true for all events of produce, which represents the

interaction relationship among the components:

ConsExp2 = forall occ i in produce f TwoRel g

Modi�cation of concurrent program: In this example, the interaction relationship

between producer and consumer of example 2.1 is modi�ed by de�ning an addi-

tional constraint: there are at most N unconsumed values. Component producer

therefore must wait for consumer if there are N unconsumed values. The modi-

�ed interaction relationship among the events of producer and consumer can be

implemented by simply extending the existing interaction relationship (as im-

plemented by ConsExp1) with suitable event ordering constraint expression that

represents the additional constraint:

ConsExp3 = ConsExp1 &&

forall occ i in consume f (consume[i] < produce[i+N]) g

�

4.3 Design of a Programming Language

The C-YES model is a general model of concurrent computation in that it can be

applied to de�ne many concurrent programming languages. In our research, we

combined it with the object-oriented model [27] in order to design a concurrent

extension of C++ [24], called CYES-C++ [22]. The design of CYES-C++ is fa-

cilitated, and in parts driven, by the notion of separation. In CYES-C++, both

computations and interactions are de�ned as abstractions. CYES-C++ supports

powerful concurrent programming abstractions by extending existing C++ ab-

stractions that combine computational and interaction behavior abstractions in

di�erent ways. We briey enumerate them below (See [22] for detail):

Concurrent class: CYES-C++extends the notion of a C++ class in order to

de�ne concurrent objects. In CYES-C++, a concurrent object is represented

as a composition of a set of methods and a set of event ordering constraint

expressions. The event ordering constraint expressions represent interaction re-

lationships such as semantic dependencies, data consistency, and priority among

the methods. Concurrent classes allow one to model concurrent objects that

permit multiple concurrent activities to occur at the same time.

Inheritance: In CYES-C++, inheritance is a mechanism for extending the pro-

gram composition of concurrent objects. Separation of implementations of com-

putational and interaction behaviors allows one to extend and modify either

components of a concurrent class. CYES-C++ supports inheritance of imple-

mentations of both computational and interaction behaviors.

Genericity: C++ provides the template mechanism for implementing generic

data structures. CYES-C++ extends the notion of template classes in order

de�ne generic concurrent classes. Generic concurrent classes capture common

computational and interaction behavior speci�cations of methods of concurrent

classes. They can be instantiated with user classes to associate computational

and interaction behaviors with user de�ned abstractions. Separation of imple-

mentations of computational and interaction behaviors allows either or both

behaviors to be instantiated with a class.

Coordination Structure: Open software systems are often characterized by sets

of autonomous and distributed objects whose execution behaviors must be co-

ordinated. We have developed a coordination structure, called object space. An

object space is a composition of a set of objects and a set of event ordering

constraint expressions that de�ne coordinate constraints among invocations of

methods on the objects of an object space.

5 Related Work

In most approaches to concurrent programming, implementations of computa-

tions and synchronization are embedded within the implementation of compo-

nents. Separation of implementation of computational and interaction behaviors

has been proposed for the resolution of the inheritance anomaly [16]. However,

focus here has mostly been on resolving a speci�c instance of the program compo-

sition anomaly. It has not been studied within the general context of concurrent

program composition. Svend and Agha [10] also use the notion of separation

of implementations of object and coordination constraints in order to de�ne a

distributed coordination structure. However, the focus here is on re-usability of

object and coordination constraints, and not on the modi�ability and extensi-

bility of concurrent programs in general. Foster [8] also introduces the notion

of separation of implementations of architectural elements from task implemen-

tations in order to support re-usability of implementations of the architectural

speci�cations, and portability of concurrent programs. However, in the proposed

approach, speci�cations of synchronization is not separated from computations.

There has been extensive work done in the area of concurrent programming.

Most of this work has focussed on developing methodologies, languages, and

tools for implementing concurrent programs. Most languages have added con-

structs for specifying concurrency and synchronization in a base languages. An

extensive survey of these constructs is given in [19]. Examples of synchro-

nization mechanisms are: semaphores [5, 3], write-once-read-many variables

[6], data ow based data dependencies [13], signal variables, enable-based ap-

proaches [11, 18, 25, 17, 7, 12], disable based approaches [9], and behavior ab-

straction based approaches [14, 15].

Our proposed interaction speci�cation mechanism di�ers frommost approaches

in that it is declarative, and compositional. It supports abstractions for de�n-

ing interaction behaviors. The abstractions can be modi�ed and extended in

isolation from other abstractions. Further, they can composed with other com-

putational abstractions in many di�erent ways to construct powerful program

abstractions. An example of a declarative mechanism is Path Expression [4].

Event ordering constraint expressions di�er from Path Expressions in that they

are used to specify the ordering constraints that must be satis�ed. Path Expres-

sions, on the other hand, are used to specify the valid sequences of operations

through a regular expression. Further, Bloom [2] shows that path expressions

do not adequately support modular development of interaction speci�cations

because path expressions do not contain general mechanisms for directly rep-

resenting states of objects, and for specifying interactions that depend on the

states. States in event ordering constraints expressions can be easily captured

through event sets [22].

6 Conclusion and Status

Concurrent programs can be easily modi�ed and extended if implementations

of both computational and interaction behaviors are separated. Separation sup-

ports encapsulation of implementations of both computational and interaction

behaviors. It localizes the e�ects of changes in a concurrent program to speci�c

implementations of computational and interaction behaviors. Further, imple-

mentations of both computational and interaction behaviors can be reused. In

addition, implementations of computational and interaction behaviors can each

be represented as separate abstractions. These abstractions can be combined

with other programming language composition mechanisms such as aggregation,

inheritance, and genericity to construct new and powerful concurrent program-

ming abstractions.

A prototype implementation for CYES-C++ currently runs on a network of

RS/6000 workstations.

References

1. Gregory R. Andrews. Concurrent Programming. The Benjamin/Cummings Pub-

lishing Company, Redwood City, CA, 1991.

2. Toby Bloom. Evaluating Synchronization Schemes. In Proc. 7th Symposium on

Operating Systems Principles, pages 24{32. ACM, 1979.

3. Peter A. Buhr and Richard A. Strossbosscher. �C++ Annotated Reference Man-

ual. Technical Report Version 3.7, University of Waterloo, Waterloo, Ontario,

Canada, N2L 3G1, June 1993.

4. R. H. Campbell and A. N. Habermann. The Speci�cation of Process Synchroniza-

tion by Path Expressions. In Lecture Notes on Computer Sciences, volume 16,

pages 89{102. Springer Verlag, 1974.

5. R. Chandra, A. Gupta, and J. L. Hennessy. COOL: A Language for Parallel

Programming. In Languages and Compilers for Parallel Computing Conference,

pages 126{147. Springer Verlag, 1992.

6. K. Mani Chandy and Carl Kesselman. Compositional C++: Compositional Par-

allel Programming. Technical Report Caltech-CS-TR-92-13, Cal Tech, 1992.

7. D. Dechouchant, S. Krakowiak, M. Meyesmbourg, M. Riveill, and X. Rousset

de Pina. A Synchronization Mechanism for Typed Objects in a Distributed

Systems. In Workshop on Object-based Concurrent Programming, pages 105{107.

ACM SIGPLAN, ACM, Sept. 1989.

8. Ian T. Foster. Information Hiding in Parallel Programs. Technical Report MCS-

P290-0292, Argonne National laboratory, 1992.

9. Svend Frolund. Inheritance of Synchronization Constraints in Concurrent Object{

Oriented Programming Languages. In ECOOP '92, LNCS 615, pages 185{196.

Springer Verlag, 1992.
10. Svend Frolund and Gul Agha. A Language Framework for Multi-Object Coordi-

nation. In Proceedings of the ECOOP'93, pages 346{360, 1993.
11. Narain H. Gehani. Capsules: A Shared Memory Access Mechanism for Concurrent

C/C++. IEEE Transactions on Parallel and Distributed Systems, 4(7):795{810,

July 1993.
12. J. E. Grass and R. H. Campbell. Mediators: A Synchronization Mechanism. In

Sixth International Conference on Distributed Computing Systems, pages 468{477,

1986.
13. Andrew S. Grimshaw. Easy-to-Use Object-Oriented Parallel Processing with Men-

tat. IEEE Computer, 26(6):39{51, 1993.
14. Dennis Kafura and Keung Lee. Inheritance in Actor based Concurrent Object-

Oriented Languages. In Proceedings ECOOP'89, pages 131{145. Cambridge Uni-

versity Press, 1989.
15. Satoshi Matsuoka. Language Features for Re-use and Extensibility in Concurrent

Object-Oriented Programming. PhD thesis, The University of Tokyo, Japan, June

1993.
16. Satoshi Matsuoka, Keniro Taura, and Akinori Yonezawa. Highly E�cient and En-

capsulated Re-use of Synchronization Code in Concurrent Object-Oriented Lan-

guages. In OOPSLA'93, pages 109{126. ACM SIGPLAN, ACM Press, 1993.
17. Ciaran McHale, Bridget Walsh, Se�an Baker, and Alexis Donnelly. Scheduling

Predicates. In Object-Based Concurrent Computing Workshop, ECOOP'91, LNCS

612, pages 177{193. Springer Verlag, 1991.
18. Christian Neusius. Synchronizing Actions. In ECOOP '91, pages 118{132. Springer

Verlag, 1991.
19. Raju Pandey. A Compositional Approach to Concurrent Programming. PhD thesis,

The University of Texas at Austin, August 1995.
20. Raju Pandey and James C. Browne. Event-based Composition of Concurrent

Programs. In Workshop on Languages and Compilers for Parallel Computation,

Lecture Notes in Computer Science 768. Springer Verlag, 1993.
21. Raju Pandey and James C. Browne. A Compositional Approach to Concurrent

Object-Oriented Programming. In IEEE International Conference on Computer

Languages. IEEE Press, May 1994.
22. Raju Pandey and James C. Browne. Support for Extensibility and Reusability

in Concurrent Object-Oriented Programming Languages. In Proceedings of the

International Parallel Processing Symposium, pages 241{248. IEEE, 1996.
23. S. Crespi Reghizzi and G. Galli de Paratesi. De�nition of Reusable Concurrent

Software Components. In ECOOP '91, pages 148{165. Springer{Verlag, 1991.
24. Bjarne Stroustrup. The C++ Programming Language. Addison Wesley, Second

Edition edition, 1991.
25. Laurent Thomas. Extensibility and Reuse of Object-Oriented Synchronization

Components. In Parallel Architecture and Languages Europe, LNCS 605, pages

261{275. Springer Verlag, 1992.
26. Chris Tomlinson and Vineet Singh. Inheritance and Synchronization with Enabled

Sets. In OOPSLA '89 Conference on Object-Oriented Programming, pages 103{

112. ACM Press, 1989.
27. Peter Wegner. Dimensions of Object{Based Language Design. In OOPSLA'87,

page 168. ACM Press, 1987.

