MAGE: A Distributed Programming Model*

Earl Barr

Raju Pandey

Michael Haungs

Parallel and Distributed Computing Laboratory
Computer Science Department
University of California, Davis, CA 95616

{barr, pandey, haungs} @cs.ucdavis.edu

Abstract

Writing distributed programs is difficult. To ease this
task, we introduce a new programming abstraction, which
we call a mobility attribute. Mobility attributes provide
a syntax that describes the mobility semantics of program
components. Programmers attach mobility attributes to
program components to dynamically control the placement
of these components within the network. Mobility attributes
intercept component invocations and decide whether and
where to move a component before the component executes.
This allows the programmer to improve her program’s run-
time efficiency by colocating components and resources. We
present MAGE. an object oriented distributed system, that
supports mobility attributes and illustrates their utility.

1 Introduction

Today, a wide variety of services and data exist dispersed
on architectures that are heterogeneous and evolving. The
Web [6] exemplifies this.trend. Large scale scientific com-
putation is another such service: it is moving from its tra-
ditional super computer environment to a distributed one,
lured by the extensibility and cost savings that distributed
systems offer. Indeed, new companies have formed that
capitalize on this trend by renting out processor pools or
farms [1]. '

The distributed systems that support these services must
handle distributed, dynamic and moving processing and

*This work is supported by NSF grant no. CCR-0082677 and by the
Defense Advanced Research Project Agency (DARPA) and Rome Lab-
oratory, Air Force Materiel Command, USAF, under agreement number
F30602-97-1-0221. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copy-
right annotation thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily represent-
ing the official policies or endorsements, either expressed or implied, of the
Defense Advanced Research Project Agency (DARPA), Rome Laboratory,
or the U.S. Government.

1063-6927/01 $10.00 © 2001 IEEE

303

data resources: over time, a host whose CPU was pegged
may become idle and one data source may be exhausted
while another comes online. Since the network infras-
tructure on which these systems run is also dynamic, with
systems joining and crashing, these systems must also be
extensible. They must support host and resource discovery,
incorporate new hardware and robustly cope with changing
network conditions. To fully exploit this runtime environ-
ment, distributed programming models must provide me-
chanisms that allow programs to migrate their components,
support load balancing, respond to network congestion and
adapt to the appearance, disappearance and shifting of re-
sources.

Recognizing this, researchers have proposed distributed
programming models that support various forms of code
and data migration. We seek to extend and unify their work
with a new programming abstraction, called a mobility at-
tribute, that represents the distribution aspects of program
components as first class objects.

In this paper, we present a distributed programming
model and its implementation, called Mobility Attributes
Guide Execution (MAGE), based on mobility attributes.
MAGE uses mobility of program components (classes,
methods and objects) as a basis for managing the complex-
ity of the underlying execution environment. MAGE at-
taches mobility attributes to components and thereby con-
trols component migration. Thus, programs can create spe-
cific distribution patterns by binding specific mobility at-
tributes with their components. Programs can also dynami-
cally rebind mobility attributes to modify their distribution
characteristics, as their runtime environment evolves. The
MAGE runtime system transparently manages location of
code and data, and arranges for the execution of specific
program components.

The MAGE programming model differs from most ex-
isting distributed programming models. It

1. allows programmers to write distribution policies that
attach to components and define the actions taken
whenever their application invokes a component,

2. permits programmers to separate their application
logic from the exigencies of network programming,

. extends distributed programming models that make
static assumptions about component placement to mo-
bile components, and

4. encapsulates and expresses current distributed pro-
gramming models, thereby unifying them as well as
allowing the easy formulation of new ones.

The rest of the paper is organized as follows: In Sec-
tion 2, we review and analyze existing distributed program-
ming models, before introducing mobility attributes and the
MAGE programming model in Section 3. We then describe
our implementation of MAGE and some of the more inter-
esting issues that arose during the implementation in Sec-
tion 4. If applications constructed using mobility attributes
incur too great a performance penalty, mobility attributes
would have no practical utility. In Section 5, we measure
their overhead and present an illustrative example of their
use. In Section 6, we place MAGE into the context of its
related work and conclude, in Section 7, with some remarks
about MAGE's limitations and its future direction.

2 Distributed Programming Models

In this section, we review widely used distributed pro-
gramming models and compare them. One can classify
these models into four categories [9] (RPC, COD, REV, and
MA), which we review below. Figure 1 accompanies the
review, focusing on the mobility semantics that each model
imposes on a program’s invocation of its components. In
this figure, a namespace is an execution environment that
defines name to component bindings.

A local procedure call (LPC) occurs when a component
invokes another component in the same namespace. LPC is,
of course, as old as modular programming and usually as-
sumed in distributed settings. We explicitly include LPC be-
cause programmers employ it in distributed systems wher-
ever possible because of its inherent efficiency.

A remote procedure call' (RPC) [7] arises when a client
invokes a remote component. This component must already
reside on the computation target. If necessary, a stub that
handles parameter marshalling is sent to the invoking name-
space. Java’s RMI [2] is an instance of the RPC model.

Code on demand (COD) denotes a local computation
that requires a remote component, which is downloaded to
the local namespace. Java applets [4] are a popular imple-
mentation of this model.

Remote evaluation (REV) [24] occurs when a client de-
sires the remote execution of a local component. P moves

1[9] call this model Client-Server.

304

Namespace A

(a) Remote Procedure Call

Namespace A Namespace B

Migrate

(b) Code on Demand

(c) Remote Evaluation

Namespace X Namespace Y Namespace Z

(d) Mobile Agent

Figure 1. Distributed Programming Models: C
is a distinguished component of a program,
P represents the program’s remaining com-
ponents, and R is a resource. C requires re-
source R.

component C to the desired namespace B, where the com-
putation occurs, as shown in Figure 1(c).

Mobile Agent (MA) [10, 26] describes a component that
can move itself, while it is executing, from one namespace
to another. '

Alone, each of the models discussed above has draw-
backs. Each model tackles complexity by restricting its ap-
plication to certain network configurations. RPC, for in-
stance, requires static knowledge of its remote component’s
location and, as a result, forces the programmer to statically
distribute application code. Both COD and REV provide
mobility, but only of code whose location the programmer

must statically know. Further, they both support extensibil-
ity, but only in one direction. COD moves code into clients
and thereby extends their functionality, while REV extends
servers. MA, since it moves computation state, is heavy-
weight.

To surmount these drawbacks, most distributed systems
support more than one of these models, but even when they
do, they permit only static binding of a model to a given in-
vocation. Dynamically combining these models would al-
low programmers to handle a wider range of network con-
figurations. :

3 Mobility Attributes

In this section, we define mobility attributes. We then re-
examine the classical distributed programming models (see
Section 3.3) and unify them with mobility attributes. As an
example of the expressive power of mobility attributes, we
use them to define a new distributed programming model.
We then discuss what happens when the system state, by
which we mean the application, network and MAGE system
state, does not match the system state the mobility attribute
expects. We conclude with an illustrative example.

3.1 Overview

Mobility attributes are first class objects that bind to pro-
gram components. A mobility attribute intercepts invoca-
tion requests on the components to which it has been bound.
For a given network configuration, mobility attributes de-
scribe where their component should execute. If necessary,
the component moves before executing.

In our current implementation, mobility attributes define
a bind method that moves the component and returns a stub
to the programmer. So a programmer can define a migration
policy based on load, by defining a mobility attribute with
the following bind implementation:

public Remote bind() {
if (cloc.getLoad() > 100) {
target = selectNewHost();
cachedStub = send(target);
}
return cachedStub;
}

The programmer then instantiates this mobility attribute,
ma and employs it by calling its bind method prior to in-
voking a method on its component. We currently rely on
the programmer to manually enforce the binding seman-
tics of a mobility attribute by calling the mobility attribute’s
bind method prior to invoking a method on the bound class
(Please see Section 4 for more details.):

o = ma.bind();
o.f();

305

Current Moves

Location Target Component
MA remote remote yes
REV local remote yes
RPC remote remote no
CLE | not specified | not specified no
COD remote local yes
LPC local local no

Table 1. Distributed Programming Models Pa-
rameterized.

We believe that component invocation is a natural place
to decide where the component should execute, since the
application can apply its detailed knowledge of how best to
use and acquire the resources it needs, given its state and
the current state of the network.

3.2 Definition

All distributed programming models specify a network
configuration and a target. Divorced from their assumptions
about system state, each model essentially specifies a name-
space. Additionally, each classical model implicitly speci-
fies the component’s current location and mobility. Our no-
tion of mobility attributes arose from this insight: Like the
programming models they unify, mobility attributes specify
a current location, computation target and whether or not
the bound component should move.

Consider Table 1. This table captures the salient features
of the conventional distributed programming models men-
tioned in Section 22. These features define the design space.
The triple < Location,Target, Moves >, where Loca-
tion, Target € {remote, local, not specified} and Moves
€ {yes, no}, uniquely specifies all distributed program-
ming models discussed in this paper. For example, the
triple < remote, local,yes > concisely and uniquely de-
fines COD. Thus, mobility attributes are instances of these
triples.

3.3 Defining Programming Models

As defined above, mobility attributes also allow us to see
relationships between the models that perhaps weren’t ob-
vious before. For instance, when a component’s current lo-
cation is the same as the target; that is, if there is no need to
move the component because it’s already at the target, REV
becomes RPC. Mobility attributes allow us to make use of
these observations by giving us the means to generalize dis-
tributed programming models. Indeed, mobility attributes

2We ignore parameters to the component invocation here: we assume
that the necessary parameters can be sent to the target prior to invocation
using the traditional data marshalling mechanisms.

make it easier to think of, define and experiment with new
distributed programming models. Below, we illustrate this
point by generalizing REV and introducing a new model.

Figure 2. Generalized Remote Evaluation

In MAGE, we can define a mobility attribute, GREYV, that
generalizes REV and can be used in place of both REV and
COD: GREV moves its component to its target, regardless
of whether the component was initially local or remote and
whether the target is local or remote. While more expensive
than either REV or COD, GREV applies to a wider array
of component distributions than either REV or COD alone
and is well suited to distributed systems in which compon-
ents are constantly moving. Figure 2 illustrates the behav-
ior of GREV. P requests component C move from its current
namespace D to the computation target B, where the compu-
tation occurs. When the computation completes, P receives
the result. To realize GREYV, we define a mobility attribute
that accepts any namespace as its component’s initial loca-
tion and target.

All the entries in Table 1 we have discussed so far spec-
ify their computation target. What if the program does not
care where a component executes at some point in time? We
introduce a new distributed programming paradigm model,
Current location evaluation (CLE)3, that answers this ques-
tion. CLE does not specify a computation target; rather,
CLE evaluates its component in the namespace in which
the component currently resides. Thus, CLE does not ex-
press mobility, but at the same time only makes sense in the
context of mobile components, which must be found. To
realize CLE, we simply define a mobility attribute whose
target is the set of all namespaces on the network.

Namespace A Namespace ?

Figure 3. Current Location Evaluation

To elucidate CLE’s utility, consider a printer manage-
ment program consisting of clients, print servers and a job

3CLE is similar to the RCE model in StratOSphere [31]

controller. In the unlikely event that users did not care
which printer they used, clients could fruitfully use CLE
to invoke a print server component while the job controller
moved the print server components around the network in
response to printer availability. In Figure 3, P finds C to
make its invocation request. MAGE migrates computations,
while Java’s Jini[29] migrates code. Thus, CLE differs from
Jini in that it can refer to the same component across invoc-
ations and namespaces. Jini refers to the same functionality
or interface, but must destroy and create new objects when
moving that functionality from one namespace to another.

We can also use MAGE to define mobility attributes that
restrict the namespace on which a component can execute
by restricting current location and target to subsets of the
available hosts. Thus, mobility attributes not only unify the
existing models, they are capable of expressing all models
in the design space.

3.4 Mobility Coercion

A mobility attribute can specify component migration
that does not make sense, as when applying COD to a com-
ponent that is already local. These mismatches arise be-
cause of component mobility. Consider an invocation that
applies a mobility attribute that defines traditional REV to
a component that is already at the target. MAGE could ei-
ther simply invoke that component or notify the application.
To handle these mismatches, we propose mobility coercion.
Whenever a mismatch occurs, MAGE attempts to coerce

"the computation into a distributed programming paradigm

306

that matches the actual distribution of code and data. Ta-
ble 2 describes programming model behavior for different
scenarios.

3.5 Mobility Attribute Class Hierarchy

MAGE provides mobility attributes that implement the
most commonly used distributed programming models as
objects instantiated on the class hierarchy depicted in Fig-
ure 5. The root of this hierarchy is the following abstract
class:

In our current implementation, the bind method inter-
acts with the MAGE RTS (See subsection 4.1) to find its
component, select a computation target and move the com-
ponent to that target. The £ind method above is used to
find objects shared by several threads. Since the object is
shared, it may have been moved by another thread in be-
tween invocations by the current thread and must, therefore,
be found before the current thread invokes it (See Subsec-
tion 4.4 for more details). If the object is private, cloc
always accurately represents the bound object’s current lo-
cation in the network.

Component Location

Local Remote
At Computation Target | Not At Computation Target
MA Default Behavior RPC Default Behavior
REV | Default Behavior RPC Default Behavior
COD LPC n/a Default Behavior
RPC | Exception thrown Default Behavior Exception thrown
CLE | Default Behavior Default Behavior Default Behavior

Table 2. Component Location and Programming Model Behavior

public class MobilityAttribute {
Location target;
Location cloc;
String name;

public MobilityAttribute(String t, String n) {

target = t;

name = n;

cloc = find(name);
}
public Location find(String name) {...}
public boolean isShared(String name) {...}
public Remote bind(String n) {

name = n;
return bind();

}

public abstract Remote bind();

Figure 4. The Mobility Attribute Abstract
Class

We must always cast bind invocations because Java
does not currently support genericity. The bind method
also defines the mobility attribute’s behavior under mobil-
ity coercion. Mobility attributes differ mainly in their im-
plementations of this bind method. For example, COD
bind looks like

public Remote bind() {
if (isShared(name)) {
currentLocation = find(name) ;

}
return cloc.getObject (name) ;
}

There are two forms of migration in the MA paradigm —
weak and strong. Strong migration moves a thread’s stack
along with heap state, while weak migration just moves
heap state. Since the standard Java virtual machine does not
provide access to execution state, MAGE uses weak migra-
tion. Thus, REV and MA differ under MAGE in that REV

307

Abstract
Mobility
Altribute

CRCRC,

l

Figure 5. The Mobility Attribute Class Hierar-
chy

is single hop and synchronous, while MA is multi-hop and
asynchronous.

3.6 Example

Here we provide an example that illustrates how a pro-
gram might use mobility attributes to dynamically adapt and
react to the changing distribution of resources on a network.

Consider an oil company exploring for oil. This com-
pany has deployed sensors to gather geologic data that it
will use to determine where to drill. These sensors are gen-
erating an enormous amount of data, which we would like
to filter in place, at the sensor. We have an interface, fil-
ter, to an object, called geoData, which is an instance
of a GeoDataFilterImpl that implements the Geo-
DataFilter interface. The object geoData knows how
to gather and filter the data. We declare an REV mobility
attribute and call its bind to instantiate geoData on its tar-
get, sensorl, as follows:

REV rev = new REV("GeoDataFilterImpl", "geoData",
"sensorl") ;
filter = (GeoDataFilter)rev.bind();

filter.filterData();

When sensorl is exhausted, we move geoData to
sensor2 with

MAgent magent = new MAgent ("geoData", "sensor2");

filter = magent.bind{);
filter.filterData();

Finally, we’d return the data to our research lab by bind-
ing a COD mobility attribute to the geoData object where
we would process its results locally (Refer to Subsection 4.2
for a discussion of the semantics of binding COD to an
object):

COD cod = new COD("geoData"); //target is local
filter = cod.bind{);
filter.processData() ;

Because the MAGE RTS transparently handles compon-
ent discovery for the programmer, it allows programmers
to use mobility attributes that encode programming models
that assume static distribution of code and data, with mo-
bile components. In other words, programmers can reason
about their applications using the simpler semantics of the
static models, while still using mobile components. We see
this in the example above where we can bring geoData
back to the lab by applying COD without worrying about
which sensor is currently hosting geoData when we in-
voke processData. '

We could also simplify our example by defining our
own mobility attribute, CombinedMa, which combines the
above steps into one, fine-grained migration policy. This
mobility attribute would contain the three mobility attribute
declared above and its bind method would look something
like
public Remote bind() {

target = selectTarget {status);

if (target.equals("sensorl))

return rev.bind(name) ;

else if (target.equals("researchLab"))

return cod.bind(name) ;

else

return magent.bind(name);

With this mobility attribute, the above code could be
rewritten as

CombinedMA combinedMA = new
CombinedMA ("GeoDataFilterImpl®,

while (iterator.moreSensors()) {
filter = (GeoDataFilter)combinedMA.bind();
filter.filterDatal();

"geobata") ;

}
filter = (GeoDataFilter)combined.bind();
filter.processData();

As we can see, this fragment is more compact and gen-
eral than the code it replaces. It seamlessly handles the ad-
dition of new sensors. It loops through a list of sensors
and applies a single mobility attribute that controls where
geoData executes across all method invocations on geo-
Data. This code snippet illustrates how mobility attributes

308

encapsulate distribution logic in their bind method. Since
programmers can define their own mobility attributes, such
as combinedMA above, they can use mobility attributes to
control the placement of their components, while keeping
their application code clean, spare and focused on its prob-
lem domain. Thus, this example illustrates how mobility
attributes give programmers the benefit of location trans-
parency without loss of control over the placement of pro-
gram components.

4 Implementation

In this section, we discuss MAGE RTS library and how
we implemented mobility attributes. We then turn to the
REV protocol as an illustrative example of how MAGE
moves an object and conclude with the MAGE locking me-
chanism.

4.1 The MAGE RTS

Cooperating Java virtual machines (JVMs) comprise
MAGE; these JVMs layer a homogeneous and consistent
programming environment over the underlying heteroge-
nous network hardware. The MAGE services employ Java
RMI to communicate across the network. MAGE addresses
security issues by employing Java’s full panoply of security
measures.

The MAGE RTS overlays the JVM with a collection
of objects that the user’s application instantiates at startup.
These objects include a Mage registry and objects that
implement the MAGE system’s remote, or MageExter-
nalServer, and home, or MageServer interfaces. The
system is depicted in Figure 6. In the figure, the hexagons
denote mobility attributes while the circles denote objects.
The letters signify the names of the objects, shared by both
the objects and the mobility attributes bound to them.

The MageServerImpl class implements Mage-
Server and communicates with local mobility attributes.
The MageExternalServerImpl class implements
MageExternalServer. This class defines the methods
used to send and receive object and classes, as well as for-
ward registry requests. On the behalf of mobility attributes,
these classes query the registry, lock objects to their current
namespace and cooperate to move objects and classes.

The MAGE Registry wraps the RMI registry and tracks
object locations. It also caches classes. For mobile objects,
the registry maintains a list of all the objects that have ever
been moved into a namespace in the registry’s JVM and
their last known location. To find an object, the registry
simply follows the chain of forwarding addresses until its
reaches the MAGE server currently hosting the component.
As the result returns, each server updates its forwarding ad-
dress, thus collapsing the path. Thus, the MAGE Registry

Registry

Registry

Remote

Home

Mage Services Mage Scrvices Namespace

JVM

Figure 6. The MAGE System

defines a global, system-wide namespace for both mobile
objects and classes.

4.2 Mobility Attribute Implementation

In Java, objects cannot exist without classes, but classes
can exist without objects. Thus, a class and an object form
a pair, whose object can be null. MAGE maps its notion of
component to this pair. In other words, MAGE binds mo-
bility attributes to both classes and objects. Binding com-
ponents to a class becomes a convenient way to instantiate
and move objects with one construct.

The mapping of components to both objects and classes
alters the implementation semantics of REV and COD. Tra-
ditionally, REV and COD move a class to their target where
they instantiate an object. Thus, REV and COD are object
factories as traditionally defined. MAGE supports this def-
inition, but since MAGE allows mobility attributes to bind
to objects as well, MAGE allows the application of REV
and COD to objects. This allows another definition of REV
and COD where they move an existing object. A further
definition that MAGE also supports is REV and COD as a
single use factories. Under this definition, when REV and
COD are applied to a class they behave traditionally, but
then bind to the object that they instantiated. On subsequent
invocations, this form of REV and COD would then move
the object they first instantiated instead of instantiating new
objects: in other words, they behave according to the object
definition above.

Since REV coerces to RPC and objects are mobile in

MAGE (Section 3.4), it would seem that an RPC mobility
attribute is not necessary. We provided one anyway so that
a programmer could use it to denote an immobile object.
MAGE RPC throws an exception if it does not find its object
on its target.

MAGE currently clones classes, leaving behind a copy
of each object’s class that visited a particular node. This
means that MAGE implicitly defines mobile classes glob-
ally. Caching class definitions in this way is an optimization
that can speed up object migration. Obviously, this scheme
is not well-suited for classes with static fields, nor does it
scale well. Handling classes with static fields would require

309

extending MAGE to provide coherency for class data.

To keep our presentation focused on mobility attributes,
MAGE’s essential contribution, we choose to implement a
simple object model. In MAGE, objects exist in only one
namespace at a time. MAGE does not partition their state
across namespaces, nor does MAGE clone them. MAGE
objects can be public or private. If they are public, they can
be accessed by more than one thread of execution and re-
quire locking as discussed in Subsection 4.4. MAGE uses
RMI to support remote references to these objects using
handles, or Java interfaces, that point to stubs.

Since MAGE is built on top of RMI, mobility attributes
boil down to RMI calls. Their bind method is, in essence,
a complex wrapper for RMI's Naming . lookup method.
It uses RMI calls to find the object to which it is bound,
move that object and return a stub. Thus, the RPC mobility
attribute is a very thin wrapper of a standard RMI call, since
it simply returns a stub, while REV uses RMI to perform all
three operations.

Namespace Y

Java Virtual Machine

MAGE
Regisiry

Namespace Z

Figure 7. The GREV Protocol

4.3 GREYV Protocol

The RMI calls employed by a mobility attribute’s bind
method define its messaging protocol. Figure 7 depicts the
protocol used by an GREV mobility attribute to accomplish
its task, when its object C is remote but not yet at its com-
putation target. The mobility attribute, denoted GREV, finds
C by consulting the local MAGE registry, at 1 and 2. The
figure elides any messages sent by the registry in the course
of finding C. After GREV determines its computation target,
it sends message 3 to the remote virtual machine to move C
from namespace Y to Z. Y’s virtual machine sends C at 4,
then informs REV with the message 5. GREV then invokes
the operation on C by sending message 6 and receives its
result in 7.

Since mobility attributes can direct the MAGE RTS to
send messages to find, move and invoke components, mo-

bility attributes implicitly define protocols, just as the dis-
tributed programming models they encompass. These pro-
tocols must recover from message loss and account for con-
tention over shared components. Thus, mobility attributes
allow programmers to define their own invocation proto-
cols.

4.4 Locking Shared Objects

In MAGE, two distinct, nearly simultaneous invocations
can apply different mobility attributes to an object. These
different mobility attributes may choose different target
namespaces to which to move the object. Object movement,
as Subsection 4.3 makes clear, is not atomic. If we allowed
the two mobility attributes to interleave their movement op-
erations, the result would be unpredictable: the object could
be cloned or moved before an invocation completes.

Namespace A

Lock Queue

T=A |T=B [T=A

Figure 8. Mobile Object Locking

Thus, if A. f and B. g both invoke C.g, MAGE must
ensure their mutual noninterference. To this end, MAGE
employs locks, as shown in Figure 8. Each mobile object
has a lock queue. Each lock request in the queue carries
its mobility attribute’s computation target, T. If the mobile
object already resides in the namespace named by the lock
request, MAGE returns a stay lock to the requesting mo-
bility attribute, otherwise it returns a move lock®. Because
object migration is so expensive, MAGE’s current locking
implementation unfairly favors invocations that stay lock
their object.

The following fragment continues our oil exploration ex-
ample begun in Subsection 3.6 and illustrates how MAGE
brackets an invocation with locking. The lock method
takes the name of the object and the mobility attribute’s tar-
get, which it uses to determine whether to acquire a stay
or move lock.

lock("geoData", cod.getTarget());
i = (GeoDataFilter) cod.bind();

x = 1i.f(a);

unlock("geobata”) ;

4stay and move locks are simply read and write locks under another
guise. Also, MAGE locks layer Java synchronization mechanisms, if they
are present. So access to a synchronized method of a mobile object would
still be synchronized among those readers who shared that object’s MAGE
lock.

310

Single Amortized (10)
Distributed Invocation Invocation
Programming Model Time (ms) Time(ms)
Java’s RMI 33 20
Mage’s RMI 34 23
Traditional COD (TCOD) 66 22
Traditional REV (TREV) 130 82
MA 110 63

Table 3. MAGE Overhead Measurements

5 Experiments

For mobility attributes to be at all practical, they must not
impose too much overhead upon their user. In this section,
we report the overhead of using MAGE and discuss whether
or not this overhead is prohibitive.

Our experimental testbed consists of two dual-processor
450 mhz pentium III machines connected via standard 10
Mb/s Ethernet. Each machine has 256mb of RAM and runs
Linux 2.2.16. We use Sun’s JDK 1.2.2.

We measure four popular distributed models imple-
mented with mobility attributes in the MAGE distributed
system. The four models are: RMI, traditional COD, tra-
ditional REV, and MA. These models are described in Sec-
tion 2. To provide a frame of reference, we also measure the
overhead of Java’s RMI. For TCOD, the test object’s class
file (a minimal extension of UnicastRemote) is migrated to
the local host, the local host instantiates a test object and
invokes the appropriate method. This class has a single in-
teger attribute, which it increments, so its marshalling over-
head is minimal. Finally, the results are returned (local).
For TREV, we do the reverse. The class file is local and
migrated to the remote host where it is instantiated and in-
voked. The result is sent back to the local host. MA is
similar to TREV except that the result stays at the remote
host.

The measurements are contained in Table 3. We give
single invocation times and amortized (the average of 10
invocations) in the second and third columns, respectively.
The single invocation times show the one-time startup cost
of priming the MAGE engine (warming the caches) while
the amortized times give a more accurate representation that
realistic MAGE applications will experience. Thus, we will
now only discuss the amortized times.

We can see from Table 3 that the time reported for
MAGE’s implementation of the well-known distributed mo-
dels are multiples of the time for Java’s RMI. This is ex-
pected, as (1) MAGE is implemented on top of Java’s
RMI and (2) MAGE’s implementation of TCOD, TREY,
and MA involve multiple calls to Java’s RMI. For exam-
ple, MAGE’s RMI is a thin wrapper for Java’s RMI and
therefore experiences only a slightly longer execution time.

Also, REV involves four Java RMI calls in our implement-
ation of MAGE. Java’s RMI is obviously the dominant cost
in our MAGE implementation. MAGE would directly ben-
efit from having a more optimized Java RMI implement-
.ation [20] and condensing the number of RMI calls in the
MAGE implementation. This condensing can be acheived
by better utilizing the in and out variables of a single Java
RMI call. Being even more ambitious, we could bypass
this overhead by implementing our own migration proto-
col directly with TCP/IP. This would allow us to directly
and efficiently exploit the migration semantics of the vari-
ous models without retrofitting them onto RML

6 Related Work

The idea of supporting program mobility is not new and
has appeared in various forms in distributed operating sys-
tem [5, 11, 19] and programming language [15, 14] re-
search. Broadly, this research has explored systems that
offer ever greater degrees of mobility, progressing from the
date migration inherent to RPC [7] to explosion of interest
in MA [26]. In this section, we survey both the earlier work
and recent advances in program mobility.

6.1 Data and Code Migration

Historically, RPC-based systems have assumed static
distribution of components and their definitions. Java’s
RMI [2], CORBA [23], and COM/DCOM [12] exemplify
such RPC-based distributed system infrastructures. Re-
cently, systems, such as Jini [29] and the Ninja project’s
Multispace [13], have augmented RPC with mechanisms
for distributing code, using some form of REV. In these
systems, applications can discover resources, push code for
these resources to other hosts, and perform remote compu-
tation. For instance, Jini allows an application to discover
the interface of a resource through a directory service, trans-
parently download a stub, and remotely compute with that
resource.

All of these systems provide users some control over
how code and computation should be distributed. However,
unlike MAGE, the support here is primarily for distributing
code. MAGE, on the other hand, integrates the notion of
computation and distribution through the notion of mobil-
ity attribute, thereby providing a more general and unified
framework.

6.2 Mobile agent based approaches

Examples of early work on mobility of programs (and
objects) through a language’s runtime system are Emer-
ald [15], Hermes [8], and COOL [14]. The Emerald run-
time provides an abstraction of a single address space over

311

multiple hosts connected through a local area network. One
of the novel components of the Emerald system is its abil-
ity to directly map objects into a local address space, un-
map it, and then re-map it at a remote node. Emerald also
provides language support for explicitly migrating objects.
Hermes is a runtime system that is independent of appli-
cations, operating systems, or programming language. Mo-
bility in both Emerald and DOWL [3] is achieved by asso-
ciating location properties with objects. We, on the other
hand, focus on associating mobility properties with compu-
tations. :

Recently, several programming languages such as Tele-
script [30], AgentTCL [17], Aglet [18], Mole [25],
Ara[21], Ajanta[27] and Sumatra [22] have been designed
to support mobility of programs over the wide area network.
We can classify [16] these systems into two: In the first, mi-
gration of both program and execution states is supported.
Examples of systems that support this are Sumatra and Tele-
script. In the second, the notion of mobility is achieved by
imposing constraints on how and when programs can mi-
grate. These restrictions arise because the JVM does not ex-
port an application’s execution memory segments. For this
reason, the mobile agent model in MAGE also uses weak
mobility for migrating active objects.

Our work differs from MA-based approaches in how we
look at mobility. In our model, the basis for migration is
not only a program, but any of its components. Further, the
mobility properties of the components can be changed on
the fly to suit the underlying conditions.

Several programming languages allow a combination
of the different mobility models. For instance, Active
Names [28] allow one to associate a resource name with
specific programs in different name spaces. Further, these
programs can be downloaded and composed to provide ex-
tensibility and flexibility. Similarly, Stratosphere allows
one to use the different mobility models for writing dis-
tributed programs. The Stratosphere programming model
is the closest to our model. Our approach differs from the
Stratosphere [31] programming model in the treatment of
mobility. In our approach, mobility is defined as a prop-
erty of a computation and can be modeled and manipulated
directly through mobility attributes.

7 Conclusion

Currently, MAGE trusts its constituent servers. We are
exploring a version of MAGE that runs on and scales to
WANSs consisting of large, heterogenous networks, frag-
mented into competing and disjoint administrative domains,
each with different services, resources and security needs —
in short, the Internet. We also are working on adding access
control and resource allocation models to MAGE.

MAGE has inherited RMI’s reliance on static informa-

tion shared between clients and servers. This is not sur-
prising, since RMI is MAGE’s foundational substructure.
Specifically, MAGE requires that mobile objects and their
clients share the name of the mobile object’s origin server,
" an interface to the mobile object and the mobile object’s
name as bound in the MAGE registry. Re-implementation
using Jini would directly and simply solve this problem.

MAGE’s raison d’etre is that computation and resources
must be dynamically collocated as resources appear and dis-
appear and move around on a network. To realize this ambi-
tion, MAGE defines a programming model whose bedrock
is the mobility attribute abstraction. This model supports
mobile objects, the namespaces in which they execute, me-
chanisms by which objects can move and various services
that support these tasks.

Objects move when the application of which they are
a part decides to move either the computation or the data
that they represent from one namespace to another, usu-
ally for performance and efficiency reasons. In MAGE, an
application makes its distribution wishes known via mobil-
ity attributes. Since, as we have shown, mobility attributes
can encompass any distributed programming model and dy-
namically bind to program components, they allow the pro-
grammer who uses them to build flexible and adaptable dis-
tributed programs well-suited to today’s dynamic and in-
creasingly huge networks.

References

Blackstone Technology Group. www . computefarm.com.
Java Remote Method Interface (RMI).

java.sun.com/products/jdk/rmi/index.

B. Achauer. The DOWL Distributed Object-Oriented Lan-

guage. CACM, 36(9):48-55, September 1993.
K. Armold and J. Gosling. The Java Programming Language

Third Edition. Addison Wesley, 2000.
Y. Artsy and R. Finkel. Designing a Process Migration Facil-

ity: The Charlotte Experience. IEEE Computer, pages 47-56,

Sept. 1989.
T. Berners-Lee, R. Cailliau, A. Luotonen, H. F. Nielsen, and

A. Secret. The World-Wide Web. CACM, 37(8):76-82, Au-

gust 1994,
A. Birrell and B. Nelson. Implementing Remote Procedure

Calls. ACM Trans. on Computer Systems, February 1984.
,%\(.]l)élack and Y. Artsy. Implementing Location Independent
Invocation. IEEE Transactions on Parallel and Distributed
Systems, 1(1):107-119, 1990.

A. Carzaniga, P. Pietro, and G. Vigna. Designing Distributed
Applications with Mobile Code Paradigms. In Int’l Confer-
ence on Software Engineering, pages 22-32, Boston, MA,

May 1997.
D. Chess, C. Harrison, and A. Kershenbaum. Mobile agents:

Are they a good idea? Technical report, IBM T.J. Watson

Research Center, 1995.))
F. Douglis and J. Ousterhout. Transparent Process migration:

Design alternatives and the Sprite Implementation. Software
Practice and Experience, 21(8):757-785, 1991.

(6]

7

[8]

[9]

[10]

(1]

312

[12] G.Eddon and H. Eddon. Inside Distributed COM. Microsoft
Press, 1998.

[13] S. D. Gribble, M. Welsh, E. A. Brewer, and D. Culler. The
MultiSpace: an Evolutionary Platform for Infrastructural Ser-
vices. In Proc. of the 1999 Usenix ATC.

[14] S. Habert and L. Mosseri. COOL: Kernel Support for
Object-Oriented Environments. In Proceedings of the
ECOOP/OOPSLA, pages 269-277, 1990.

[15] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-Grained
Mobility in the Emerald System. ACM Transactions on Com-
puter Systems, 6(1):109-133, February 1988.

[16] J. Kiniry and D. Zimmerman. A Hands-On Look at Java
Mobile Agents. [EEE Internet, pages 21-30, July-August
1997.

[17] D. Kotz, R. Gray, S. Nog, D. Rus, S. Chawla, and G. Cy-
benko. Agent TCL: Targeting the Needs of Mobile Comput-
ers. IEEE Internet Computing, 1(4), July/August 1997.

[18] D. Lange, M. Oshima, G. Karjoth, and K. Kosaka. Aglets:
Programming Mobile Agents in Java. In Proc. of the World-
wide Computing and Its Applications, pages 253-266, 1997.

[19] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor — a
hunter of idle workstations. In Proc. of the 8th Int’l Confer-
ence on Distributed Computing Systems, June 1988.

[20] C. Nester, M. Philippsen, and B. Haumacher. A More Effi-
cient RMI for Java. In Proc. of the ACM 1999 conference on
Java Grande, 1999.

[21] H. Peine and T. Stoplmann. The Architecture of the Ara
Platform for Mobile Agents. In Proceedings of the First In-
ternational Workshop on Mobile Agents’97, 1997.

[22] M. Ranganathan, A. Acharya, S. Sharma, and J. Saltz.
Network-aware Mobile Programs. In Proceedings of the An-
nual Usenix’97 Conference, 1997.

[23] 1. Siegel. CORBA: Fundamental and Programming. Wiley,
1996.

[24] J. Stamos and D. Gifford. Remote Evaluation. ACM Trans-
actions on Programming Languages and Systems, 12(4):537—

565, October 1990.
[25] M. Straber, J. Baumann, and F. Hohl. Mole: A Java based

Mobile Agent System. In Proceedings of the 2nd ECOOP

Workshop on Mobile Object System, 1997.
[26] T. Thorn. Programming languages for mobile code. ACM

Computing Surveys, 29(3):213-239, September 1997.
[27] A. Tripathi, N. Karnik, M. Vora, T. Ahmed, and R. Singh.

Mobile Agent Programming in Ajanta. In Proceedings of
the 19th International Confernce on Distributed Computing

Systems (ICDCS), 1999.
[28] A. Vahdat, M. Dahlin, T. Anderson, and A. Aggarwal. Ac-

tive Names: Flexible Location and Transport of Wide-Area
Resources. In Proc. of the 2nd USENIX Symposium on Inter-

net Technologies and Systems, pages 151-164, 1999. }
[29] J. Waldo. The Jini Architecture for Network-centric Com-

puting. Communications of the ACM,, 42(7):76-82, 1999.
[30] J. White. Telescript Technology: The Foundation for the

Electronic Marketplace. General Magic Inc. White Paper,

1994. http://www.magic.com.
[31] D. Wu, D. Agrawal, and A. E. Abbadi. StratOSphere: Mo-

bile Processing of Distributed Objects in Java. The fourth
annual ACM/IEEE international conference on Mobile com-

puting and networking, pages 121-132, 1998.

