
Support for Evolution of Systems Through Software Composition

R. Pandey
CS Department,

University of California, Davis

V. Akella
ECE Department

University of California, Davis

P. Devanbu
CS Department,

University of California, Davis

pandey@cs, akella@ece, devanbu@cs .ucdavis.edu

1 Introduction

A typical difficulty in maintaining large systems is non-
localization. Changes that appear to be prima facie local and
simple can cascade unexpectedly through the system, greatly
multiplying the effort required to effect the change. The goal
of evolvable systems design is to seek design methodologies,
architectures, and implementation techniques that can reduce
this cascading effect. We seek to ensure that small changes
in a system’s functionality require only small changes in the
implementation–we want changes to be proportional. Con-
sider changes to a system assembled from components which
are interconnected with some connection medium. There may
be direct changes, which directly modify a component that di-
rectly implements some functionality. Such changes are usu-
ally proportional. However, indirect changes, on components
that are not directly involved in the functionality, but affected
due to a direct change, may also be required. For example,
consider the task of adding a new, more efficient type of in-
dexing to a database to improve performance. This will surely
require a direct change to the data management subsystem.
If this also requires changes to security and integrity mecha-
nisms, or to the concurrency control and locking mechanisms,
these are considered indirect changes. The target components
for direct changes may usually be learned from design docu-
ments or even from models represented in design formalisms.
However, targets of indirect changes are not usually directly
inferable, and are often only identified from faults uncovered
during unit or integration testing. Thus, indirect changes can
increase costs, cause delays, and reduce quality.

We are concerned with techniques which support all stages
of the process of developing evolutionary systems. Specifi-
cally, we are interested in addressing the following:

Software design phase: How should a software sys-
tem be structured so that the system can be easily
changed?

Evolution phases: How can the elements of a soft-
ware system that have changed be identified automati-
cally given some direct changes?

Maintenance phase: How can support for predefined
actions (such as system replacement, compilation, verifi-
cation, and testing) be integrated so that many of the im-
plied changes can be effected automatically in response
to changes in the system?

This paper briefly describes our approach for supporting evo-
lutionary software design. We show that designs of soft-
ware systems are more amenable to changes if specifications
of components and interactions among components are com-
pletely separated. The separation allows one to limit the scope
of indirect changes. Further, we model interactions among
components in terms of relationships which not only capture
interactions but also form the basis for detecting the scope of
changes and for applying corrective changes.

The goals of our research are identification of various
kinds of interactions and their representations within a rela-
tional or constraint based framework, development of compo-
sition techniques that allow specification of both static and dy-
namic evolution of software systems, and development of tools
that allow automatic analysis of components and relationships
for implied changes and that allow corrective actions to be
taken depending on the changes. In this position paper we
only describe our general approach and an abstract model for
specifying software design. The detailed design of the model
is currently under development. We will present a preliminary
version of the model in the complete paper.

2 Support for evolutionary software development and
management

A complex system is composed of two kinds of entities: com-
ponents and interactions. Although our primary focus is on
interactions, we begin with a discussion of components.

2.1 Components

Components implement specific parts of a complex system. A
component is defined in terms of an interface and an imple-
mentation. The interface includes two parts: a set of input
interfaces, defining the services that the component provides,
and a set of output interfaces, enumerating the services that the
component uses. Note that each interface description contains
a set of names and the semantics associated with the name. An
implementation of the interface uses the various names within
the context of the semantics associated with the names.

Example 2.1. (Procedure signature). Assume the following
interface denotes the signa-
ture of a function . Note that the signature defines both the
names (or position) of the parameters as well as their seman-
tics (types). The semantics specify how the names are used
inside an implementation of f.



Example 2.2. (Port). In many software architecture descrip-
tion languages, the interface of a component defines the set of
input and output ports through which an instance of the com-
ponent may communicate with other components. The speci-
fication of a port typically includes its name and its semantics.
The semantics of the port may specify valid operations (such
as send and receive), synchronization behavior of the opera-
tions and other attributes (such as buffer size).

The semantics of an interface entity can be quite complex. We
ignore the actual details of the semantics of names as it allows
us to reason about the evolvability of software systems without
worrying about the details. We will represent each interface as
a set of (name, semantics) pairs in this paper. We show later in
the paper that the nature of bindings of both name and seman-
tics has implications on evolvability of software systems.

2.2 Interaction

Interactions define how components are semantically related
to each other. They determine how components affect each
other. Examples of interactions are synchronization relation-
ships among concurrent programs, data connections among
distributed programs, coordination among various requests to
a file server, security constraints among two components, and
real time constraints.

2.2.1 Role of interaction on evolution

Much of the complexity in software evolution arises due to the
inability to determine easily the overall impact of a change on
the system. Direct changes that affect only a single component
or a small set of components are easier to handle, precisely be-
cause the scope of the change is local. Indirect changes that
cause a chain reaction are difficult because of the subtle and
complex dependencies between components of a system. This
is because changes in a component may change the way it
interacts with other components, thus forcing changes in its
interactions; this may lead to changes in other components.
An important step in reducing the complexity associated with
detecting and applying changes is to understand the role of
interactions in software system design. Specifically, the fol-
lowing questions need to understood and addressed: i) What
is the general nature of interactions? What role does it play
in evolvability of software systems? ii) How can interactions
be represented? iii) How can their representation be used to
identify changes in software systems? iv) How can their rep-
resentation be used to make changes in software systems? We
address these questions by presenting a model of interactions
in the next section.

2.2.2 Relationships

We model interactions among components as relationships.
The notion of relationship extends the notion of connectors
[7, 1] of architecture description languages in order to include
evolutionary characteristics of software systems. The primary
goal of a relationship is to define how components can be com-
posed together. A relationship is, thus, specified by defining
the following:
i) Interface binding: The first part of the composition in-
volves binding the input and output interfaces of different
components. It includes matching (implicitly or explicitly)
names in the interfaces and specifying (implicitly or explic-
itly) semantics for the names in the interfaces.

Example 2.3. (Interface). Assume that a procedure compo-
nent, , has an output interface ( , ), where is the name
of an entity it accesses and is semantics associated with .
Assume that a procedure component, , has an input interface
( , ). Procedures and are composed by binding names

and and associating semantics for and . These
bindings can be defined explicitly or implicitly. In the case
of implicit bindings (used in many programming languages),

and denote identical names, whereas and together
may denote a procedure call semantics.

We will see that the ability to change or depends on the
ability to change the bindings of names as well as their seman-
tics.
ii) Attributes: Attributes define additional properties of a re-
lationship. For instance, a data connection relationship may
specify the size of the buffer used for communicating between
two processes.
iii) Polarity of changes: The polarity of changes of a rela-
tionship specify how changes in components or relation-
ships that R combines affects the components or the relation-
ships. For instance, if a relation is used to compose compo-
nents and , its polarity specifies the components and/or
relationships that need to be changed if , , or changes.
Polarity of changes can be used to determine the scope of
changes in a system automatically. The notion of polarity of
changes is similar to the dependency relationship specified be-
tween a source and a target of the make program. Also, it oc-
curs in many programming language abstractions implicitly.
An example is the relationship between the interface and im-
plementations of an ADT and how the semantics of the rela-
tionship between the interface and the implementation is used
for supporting separate and automatic compilation.
iv) Semantics of changes: The semantics of changes speci-
fies the set of syntactic and semantic operations that need to be
carried out if components or relationships change. It provides
the basis for carrying out some of the changes automatically.
For instance, a relationship can specify that changes in the
size of a shared buffer may require that a different algorithm
be used for communicating between interacting components.

2.2.3 Interface binding and evolution

The ability to make modifications in a system depends on the
ability to specify relationships clearly and precisely. Further,
it depends on how different aspects of relationships are imple-
mented. In this section, we argue that the ability to reduce the
impact of changes depends on the ability to separate specifica-
tion of relationships from specifications of components.

A relationship can be realized in many ways: it can be
implemented within components, separately from components
or through a combination of the two. Let us examine what it
means to implement interface bindings in different ways and
the corresponding implications on evolvability.

The first approach involves defining names and semantics
of input and output interfaces inside components. An example
of this is the case when a procedure, , calls another procedure,
. The body of binds the name of the procedure ( ) and se-

mantics of (a synchronous procedure call). The implications
of this binding are that changes in involves changing body
of . Further, semantics of in is fixed as well. The sec-
ond approach involves binding the names externally but the se-
mantics internally. This means that procedure can call many
procedures by binding it with different procedures. Hence,

2



changes in the names of the procedure will not require any
changes in . However, the semantics of procedure call is still
fixed. The third approach involves binding both names and
semantics externally. This gives the added advantage that the
semantics of calls to can be changed easily without requiring
any changes in ; calls to can become concurrent by associ-
ating a different semantics with . Interaction between and

can, thus, be changed without requiring any changes in or
.

We therefore see that as we reduce the amount of informa-
tion that is bound inside components, changes can be incorpo-
rated relatively easily without requiring modifications in com-
ponents. The complexity in modifying or extending a complex
software system can be reduced if components and relation-
ships are specified separately [4]. Separation of implemen-
tations of components and relationships allows one to evolve
implementations of complex software systems relatively eas-
ily. Separating the components and their interactions relation-
ships localizes the possible changes that may need to be made
when system evolves.

In addition to localizing changes, change polarity and
change semantics information can be used to automatically de-
termine the relationships and components that may need to be
changed. Further, the associated corrective actions can be used
to effect changes. We are currently looking at mechanisms
for different kinds of relationships, how they can be specified
separately from components, and how we can introduce the
notion of change polarity and change semantics in their speci-
fications.

3 Related work

The problems and costs involved in evolving a software system
to meet new requirements are well-understood in the software
engineering community. In the past the focus was primarily at
the level of programs (code) and has been subject to substantial
research in the software reuse world. Recently, it has been
recognized that more substantial savings in effort and costs can
be realized by focusing on a more abstract view of the software
system, i.e. at the level of the structure and composition of the
basic modules.

There are two prominent approaches to dealing with evo-
lution of software systems in the current literature: (i) Soft-
ware Architectures or Architecture Description Languages
(ADLs) [5, 7, 3, 1] and (ii) Design Patterns [2, 6]. The work
proposed in this paper builds on the key ideas embodied in
both the these approaches. The software architecture research
emphasizes the role of ”connectors” in the development of
software systems. Most modern ADLs have constructs to
model connectors. Evolution is supported in some of the ADL
frameworks by way of subtyping and refinement of connec-
tors. Our goal is to support evolution by more detailed model-
ing of the syntactic and semantic bindings implicit in connec-
tors; by “lifting” these binding mechanisms into the connector,
we hope to reduce the impact of changes on components, and
more carefully track and report indirect changes.

Design patterns [2] are used in OO systems as design prim-
itives. By using patterns to solve known design problems, de-
signers can increase understandability, evolvability, and mod-
ularity of the design. However, if maintainers make changes
that fail to honor the conventions of a design pattern in a spe-
cific instance of the pattern in an OO system, these advantages
evaporate. Consider, for example a Template Method instance

([2], page 325) instance: let’s say that we have a ”database-
independent” base class dibClasswhich performs some op-
eration doResult on a database: this method operation calls
several virtual functions such as evalQuery and findTu-
ple, which are not defined in the base class. To implement
this base class, we define a database-specific derived class ds-
dClass derived from dibClass, and define the bodies of
the virtual functions to perform the evalQuery or find-
Tuple operations on a specific database (such as Oracle ).
In this manner, the doResult operation in dibClass can
remain platform-independent and ignorant of the details of the
specific database. However, after the system is written and
shipped, there may be documentation that indicates that
dibClass, dsdClass, and the above mentioned member
function constitute a Template Method instance.

Now suppose a programmer, unaware of this design in-
tention, changes dibClass::doResult to call some (non-
virtual) member function of dsdClass, that may be imple-
mentation specific to some particular database. This breaks the
database independence of dibClass, and introduces a po-
tential source of bugs when dibClass needs to be targeted
to another database. Our goal in modeling inter-component
relationships is to allow designers to explicitly model mainte-
nance rules; tools would then be able to detect the dangers of
such modifications and alert maintainers so that other alterna-
tives could be considered.

In summary, the key contribution of our work would be to
identify the key ingredients of a relationship between the com-
ponents which would facilitate the evolutionary design of soft-
ware system, independent of the architecture description lan-
guage. However, some the ingredients in a relationship could
be domain-specific i.e. security, real-time, finance, network-
ing, etc.

References

[1] CLEMENTS, P. A Survey of Architecture Description
Languages. In Proceedings of the Eighth International
Workshop on Software Specification and Design (1996).

[2] GAMMA, E., HELM, R., JOHNSON, R., AND VLIS-
SIDES, J. Design Patterns: Elements of Reusable Object-
Oriented Sofware. Addison-Wesley, 1995.

[3] MEDVIDOVIC, N. A Classification and Comparison
Framework for Sofware Architecture Description Lan-
guages. Tech. Rep. UCI-ICS-97-02, University of Cali-
fornia, Irvine, 1997.

[4] PANDEY, R. A Compositional Approach to Concurrent
Programming. PhD thesis, The University of Texas at
Austin, August 1995.

[5] PERRY, D. E., AND WOLF, A. L. Foundations for the
Study of Software Architectures. In ACM SIGSOFT Soft-
ware Engineering Notes (Oct. 1992), pp. 4–52.

[6] SCHMIDT, D. A Family of Design Patterns for
Application-Level Gateways. Theory and Practice of Ob-
ject Systems, Special Issue on Patterns and Pattern Lan-
guages 2, 1 (1996).

[7] SHAW, M., AND GARLAN, D. Software Architecture:
Perspectives on An Emerging Discipline. Prentice Hall,
1996.

3


