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Abstract

Most implementations of HTTP servers do not distinguish
among requests to di�erent pages. This has the implica-
tion that requests for popular pages have the tendency to
overwhelm the requests for other pages. In addition, HTTP
servers do not allow a site to specify policies for server re-
source allocation. This paper presents a notion of quality
of service that enables a site to customize how an HTTP
server should respond to external requests by setting prior-
ities among page requests and allocating server resources.
It also describes a design and an implementation of a dis-
tributed HTTP server, QoS Web Server, that enforces the
quality of service constraints. The performance analysis of
the prototype server indicates that the server provides the
desired quality of service with minimal overhead.

1 Introduction

With the advent of the WWW [13], there has been a fun-
damental shift in the way information is exchanged among
systems connected to the Internet. Three elements [26] of
the WWW make this possible: a uniform naming mecha-
nism (URL) for identifying resources, a protocol (HTTP) [2]
for transferring information, and the client-server based ar-
chitecture [17]. A client such as a browser uses the URL
of a resource to locate an HTTP server that provides the
resource. It then requests for services associated with the
resource. The HTTP server performs the requested services
(such as fetching a �le or executing a program) and returns
the results back to the client.

The architecture of HTTP servers has been studied in
great detail and di�erent variations of HTTP servers have
been proposed. Much of the work has focussed on addressing
the performance limiting behaviors [22] of HTTP servers.
The research has, thus, focussed on developing techniques
(such as information caching [7, 20, 9, 23] and distribution,
partitioning [16] of server load across clients and servers, and
parallelization [15, 4, 14, 18] of HTTP servers over SMPs
and workstations) for eliminating performance bottlenecks
arising due to the lack of su�cient CPU, disk, and network
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bandwidths as well as inherent limitations in the implemen-
tation techniques of HTTP servers.

While this has led to a deeper understanding of how
HTTP servers operate when there are su�cient resources
for various requests, not much work has been done in cases
when HTTP servers are overwhelmed by the sheer volume
of requests. The behavior of HTTP servers is quite unpre-
dictable in such cases: they either completely bog down with
pending requests resulting in unacceptable response times or
start to drop requests indiscriminately. In addition, requests
for popular pages have the tendency to overwhelm the re-
quests for other, possibly more important, pages. Addition
of new resources (such as new machines) may not solve the
problem as requests for the popular page may continue to
overwhelm other requests. Further, most implementations
of HTTP servers treat all requests uniformly. A site, thus,
cannot assign priorities to di�erent pages or control how its
server resources should be used. For instance, a site may
wish to state that a set of speci�c pages (such as its main
page or product page) be always available irrespective of the
demands for other pages or that only 20% of its resources
be allocated to anonymous ftp requests.

One possible mechanism for ensuring that requests for
a collection of pages are guaranteed some server resources
is to physically separate pages from each other by hosting
them on separate servers. The problem with this approach is
that it is di�cult to map allocation of resources to various
requests statically. First, such allocation may not be pre-
cise. Second, it may lead to ine�cient utilization of server
resources. Third, the granularity of such partitioning can
be applied only to large groups of pages.

What is needed is a notion of quality of service (QoS)
that characterizes the behavior of an HTTP server given a
set of requests. This paper presents such a notion for HTTP
servers and describes a design and an implementation of an
HTTP server, QoS Web Server, that enforces the proposed
quality of service model. Speci�cally, this paper addresses
the following:

� What is an appropriate quality of service model for

HTTP servers? The quality of service model presented
in this paper is aimed at enabling a site to customize
how an HTTP server should respond to external re-
quests. This includes setting priorities among page
requests, allocating di�erent kinds (absolute and rel-
ative) server resources to di�erent requests, and speci-
fying constraints such as \always" which indicate that
a speci�c page (or groups of pages) should always be
available.
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� How can such HTTP servers be implemented? An im-
plementation requires creation of a resource model for
determining various resources that exist at any given
moment. The paper describes an algorithm for schedul-
ing various requests given a resource model such that
the QoS constraints are satis�ed.

� What is the performance behavior of such servers? We
are interested in characterizing the execution behavior
and responsiveness of HTTP servers. The results from
the prototype server indicate that the implementation
provides the desired quality of service with little over-
head.

This paper is organized as follows: Section 2 presents a qual-
ity of service model for HTTP servers. Section 3 describes
an abstract model of an HTTP server that implements this
QoS model. It also includes the description of a distributed
HTTP server that we have implemented. Section 4 presents
an analysis of the performance behavior of the server. Sec-
tion 5 contains a comparison of our work with related work.
Finally, Section 6 summarizes the results and discusses fu-
ture work.

2 A Quality of Service Model for HTTP Servers

The notion of quality of service has been addressed in
great detail in the network and multi-media community [24].
Within a client-server framework, we can think of quality of
service as a quanti�cation of level of services that a server
can guarantee its clients. Examples of typical parameters
that servers have used to guarantee services are transmis-
sion delay, network transfer rate, image resolution, video
frame rate, and audio or video sequence skew, among oth-
ers. Clearly, the quality of service parameters depend on the
kind of services that a server provides. In this section, we
develop a model of quality of service for HTTP servers.

In traditional quality of service models, the emphasis
has been on developing notions of service guarantees that
a server can provide to its clients. For HTTP servers, we
develop two views of the quality of service: client-based and
server-based. In the client-based view, the HTTP server
guarantees speci�c services to its clients. Examples of such
quality of service are a server's guarantees on lower bounds
on its throughput (for instance, number of bytes/second)
or upper bounds on response times for speci�c requests. In
the server-based view, the quality of service pertains to im-
plementing a site's view of how it should provide certain
services. This includes setting priorities among various re-
quests and limits on server resource usages by various re-
quests. We develop the QoS model by �rst constructing a
model of client requests.

We model web pages as objects and requests to access
pages as method invocations on pages. For instance, an
invocation <page>.read(p1; p2; : : : pn) denotes a request to
read <page>. p1; p2; : : : and pn denotes parameters of the
request. An HTTP server, therefore, can be thought of as a
runtime system that manages executions of various method
invocations. Traditional HTTP servers do not distinguish
among di�erent method invocations. Each method invoca-
tion is serviced in the order it is received (unless it is dropped
due to resource contentions [6]). The QoS model here allows
one to specify priority relationships among method invoca-
tions. Further, a site may specify a set of resource usage

constraints for controlling the amount of server resources
allocated to requests.

Note that the constraints over di�erent requests can be
classi�ed into two types: server-centric and client-centric.
Server-centric constraints depend on the attributes of servers
only. Such constraints do not distinguish among di�er-
ent requests to the same page. Hence, priority is estab-
lished among requests for di�erent pages. Client-centric
constraints depend on the attributes of clients as well. Here,
requests for the same page are distinguished and may be pro-
vided di�erent quality of service. Our focus in this paper is
on server-centric constraints only.

As part of the QoS model, we have devised a notation,
which we call WebQoSL. WebQoSL supports speci�cations
of the following:

� Allocation of speci�c and relative amount of server re-
sources to speci�c page requests

� Availability of groups of pages at all time

� Time-based and link-relation-based allocation of re-
sources

� Scalable allocation of resources

� Speci�cation of guarantees about byte transfer and
page request rates

Below, we provide a brief overview of the notation infor-
mally. We emphasize that WebQoSL is still evolving as we
are still experimenting with the notation by implementing
di�erent kinds of quality of service models.

2.1 Speci�cation of server resources

WebQoSL allows one to model server resources explicitly:

� Percentage of server resources

Notation: Let the term <page>.server resource de-
note percent of total server resources associated with
requests to <page>.

� Requests/second

Notation: Let the term <page>.num requests denote
number of requests per second associated with <page>.

� Number of bytes/second

Notation: Let the term <page>.num bytes denote num-
ber of kilobytes of <page> transmitted per second.

2.2 Speci�cation of QoS constraints

A site speci�es how its server resources should be allocated
by de�ning a number of resource constraints of the form:

<condition> => <QoSConstraint>

The constraint speci�es that if <condition> is true,
the <QoSConstraint> must hold. Boolean expression
<condition> can include speci�c attributes (such as time,
size, owner, client, time of last access and time of last mod-
i�cation) of pages in constraint speci�cations.

QoS constraints for various requests can be de�ned as
absolute, relative, scalable and time-bound. Absolute con-
straint are used to specify speci�c resources that are allo-
cated to various requests. Relative constraints, on the other

3



hand, allow one to assign various priorities among di�erent
requests. Scalable constraints allow QoS speci�cations to
scale as new server resources (such as new machines) are
added. Time-bound constraints allow one to specify con-
straints that have temporal characteristics (e.g., if page p

is accessed at time t, page q should be available until time
t+�t.) Due to lack of space, we will only describe absolute
QoS constraints here.

The absolute constraints are speci�ed by allocating a spe-
ci�c amount of resources to various requests or putting a
lower or upper bound on resources. For instance, the con-
straint

<page>.server_resource = r

speci�es that <page> be allocated r units of resources. The
constraint

<page>.server_resource < r

speci�es that <page> be allocated at most r units of re-
sources. The constraint

<page>.server_resource > r

speci�es that <page> be allocated at least r units of re-
sources. Another way of specifying a lower bound on re-
source allocations is to assert that a page should be available
at all times.

<page>.available = always

The language also supports speci�cation of allocation of de-
fault, equal and other scalable allocation of server resources.

Example 2.1. (QoS Speci�cation). The following con-
straints

<www.commerce.com/free>.server resource < 0.1

<www.commerce.com/paid/full>.server resource > 0.5

are used to divide the server resources at www.commerce.com
into two: free that can be given up to 10% of the server
resources, and full that should be given at least 50% of the
resources.

The next example speci�es that a particular group of
pages should always be available:

<www.commerce.com/index>.available = always

�

3 QoS Web Server

In this section, we describe an abstract model for the QoS
Web Server. A distributed QoS Web Server is implemented
in terms of a set of HTTP servers, each executing on a dif-
ferent host.

In �gure 1, we show the architecture of a distributed QoS
Web Server which is implemented in terms of �ve HTTP
servers (s1; � � � ; s5) executing on di�erent hosts. Each server
responds to user's requests by accessing �les from either the
local disk or remote disk through the network �le system
and transmitting them to the client. We assume that a client
can send a request to any of the HTTP servers directly by
using one of the routing mechanisms (such as the Domain
Name Server's redirection [8], ONE-IP mechanism [10] and
router-based redirection [11]).
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Figure 1: Architecture of a QoS Web Server

The primary goal of a QoS Web Server is to serve a
�le request only if servicing the requests does not violate
the quality of service constraint that a site imposes. Each
server, upon start, reads a �le containing the quality of ser-
vice speci�cations. It then constructs a priority model and
a resource requirement model. The priority model de�nes a
partial order among various requests to di�erent pages and
speci�es the order in which requests should be handled. The
resource requirements model, on the other hand, speci�es
the amount of resources that must be allocated to speci�c
groups of requests. The servers then start to run and accept
requests from clients.

Unlike the traditional HTTP servers where servers do not
discriminate between various requests, a QoS Web Server
must ensure that QoS constraints are met when requests are
accepted. This is achieved by constructing a global model of
resource availability and a global queue of all outstanding re-
quests. The global resource model predicts the total amount
of resources available at the hosts. The global request queue
contains the pending requests. The priority model, global
resource model, and global request queue are used to de-
termine (i) the requests that will be granted service at this
moment and (ii) the location of the server where a request
will be executed.

We have implemented a version of a distributed HTTP
server in which the global request queue and the resource
model are centralized. Further, the algorithm for allocating
resources is centralized as well. We describe the resource
model and the HTTP server algorithm in Sections 3.1 and
3.2.

3.1 Resource model

This section brie
y describes how we construct a resource
model of the underlying system. The resource model spec-
i�es the capacity (in terms of bytes/second) of each HTTP
server at a given moment. This provides an abstraction
of resources (CPU, memory, network bandwidth) that the
HTTP server can provide.

The resource model is evaluated by requiring that
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Figure 2: Architecture of the QoS Web Server

each HTTP server periodically determine the number of
bytes/second it can deliver. Note that a machine's ability to
serve a speci�c bandwidth depends on a number of factors:
CPU speed, local CPU load factor, �le server's capacity, �le
server's load factor, and local area network characteristics.
In [19], an analytical model is created for evaluating the cost
associated with accessing remote �les, whereas in [25], the
experimental technique used in the NFS benchmark (LAD-
DIS) for evaluating the performance behavior of NSF servers
is described. Both of these techniques can be extended to
construct a resource model for the QoS Web Server.

Currently, we are using a simple experimental technique
for constructing the resource model. We measure the length
of time to send a request and use it to extrapolate the
amount of bytes the HTTP servers can handle. This is
performed as follows: Each HTTP server keeps a table of
various local load factors and its capacity to access its local
and remote �les. In addition, the servers keep track of the
average number of concurrent HTTP requests being served.
Every time a job �nishes, the table is updated and revised
by calculating the transmission time. The total bandwidth
is then calculated (approximately) by utilizing the average
number of concurrent HTTP requests made during the in-
terval. The average of the total bandwidth calculated by the
recent jobs is then used to determine the total bandwidth
for the server at a given CPU load.

3.2 An HTTP server

In this section, we describe the implementation of the QoS
Web Server.

3.2.1 Architecture

We have implemented the QoS Web Server by modifying
the NCSA's httpd web server. In �gure 2, we show the ar-
chitecture of the QoS Web Server. The QoS Web Server
is implemented in terms of a set of components: a WWW
server, a communications server and a centralized quality of
service daemon (qosd). The WWW server is a modi�ed ver-
sion of the stand alone NCSA httpd WWW server [1]. It is
used to handle individual HTTP requests. The modi�cation
in the NCSA server involves adding a check to ensure that a
request is served only if the quality of service constraints are
not violated. The modi�ed server, therefore, sends a query
to the qosd if the HTTP request should be handled. The
qosd returns one of three values: handle the HTTP request,

deny the HTTP request (because of QoS constraints), or
redirect the HTTP request to a WWW server at a di�erent
host.

The communication server at a host performs two tasks:
forwarding messages between the WWW Server at the host
and the qosd, and implementing the resource model (Sec-
tion 3.1). The communication server periodically transmits
the WWW capacity to the qosd so that the qosd can update
the global resource model. We have separated the commu-
nication server from the WWW server in order to avoid the
overhead of initiating a new connection to the qosd every
time an HTTP request is made. Also, the separation allows
us to add new functionalities to the NCSA server without
requiring extensive modi�cations in the NCSA server source
code.

The quality of service daemon maintains global infor-
mation for the distributed server and schedules HTTP
requests. It maintains a quality of service model for various
pages indicating priorities and resources associated with
di�erent requests, a global queue of outstanding HTTP
requests, and a global resource model indicating the
capacities of the WWW servers. We now describe how we
use this set of information for implementing the qosd.

3.2.2 Implementation of the QoS daemon

The qosd �rst reads the QoS speci�cation and constructs a
QoS model. The QoS model de�nes categories or subsets
of the document space and is used to associate an absolute
or relative resource allocation with documents within the
subset.

The qosd models each WWW server as a pipe capable of
supporting a dynamic byte stream. It determines the capac-
ity of the pipe in terms of number of bytes transmitted per
second. Each WWW server periodically sends its projected
capacity over the next allocation time unit to the qosd. Each
pipe is further subdivided into smaller units, called channels

(�gure 3). A channel forms a connection between a server
and a single HTTP client. It is the unit of allocation and
resource control in the QoS Web Server.
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Figure 3: Pipes and channels

The size of each channel (in terms of bandwidth) is de-
pendent on how many times we subdivide a pipe. For exam-
ple, if a server indicates that it can serve 20 MB/second, the
pipe size is 20 MB/second. Further, this pipe can be sub-
divided into 10 2 MB/second channels or 40 .5 MB/second
channels. A channel with 2 Mb/second capacity is di�erent
from a channel with 0.5 MB/second capacity in that it can
serve a request 4 times faster than the latter channel. The
channel capacity has, thus, implications on response time.
Our implementation allows a site administrator to specify
the server response time for a given �le of certain size1.
The administrator can specify that a WWW page of size x

1The response time does not consider the latency and transmission

costs across a wide area network.
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should be served in time t. This can be handled by de�ning
the channel size to be x=t.

The scheduling of HTTP requests is achieved by keep-
ing track of two sets of requests: requests waiting to be
serviced and currently being serviced. We �rst schedule all
jobs in categories which should always be served. We then
determine the number of remaining channels that can be
allocated to requests with bounds on resource usage.

For each such category, we determine the number of
channels available. We subtract from the number of avail-
able channels for this category the number of channels cur-
rently in use by requests in this category. This tells us how
many channels we can allocate for new jobs in this category.
We start jobs if we can start them on the server at which
they arrived. After applying the algorithm, some categories
may not have used all of their slots because the server at
which the request arrived does not have any open channels.
At this time the qosd redirects the request to a server with
a free channel.

We assign all requests in the bounded quality of service
category a lifetime. When a request surpasses a set age, QoS
Web Server send a message to the HTTP client denying
their HTTP request. Such a denial allows the QoS Web
Server to put a limit on the implicit resources it allocates to
various requests. For instance, each request occupies a space
on request queue, holds a socket connection, and may even
have a process assigned to it. By dropping connections, the
server indicates that the request is not going to be assigned
any resources in the near future as it is still trying to serve
more important jobs.

4 Performance analysis

In this section, we present an evaluation of the QoS Web
Server. The objectives of the evaluation are to address the
following:

� How does the QoS Web Server perform for di�erent
kinds of resource constraints?

� What is the overhead of adding the notion of quality
of service to HTTP servers?

4.1 Performance analysis environment

Our test environment consists of ten Sun workstations, con-
sisting of a combination of Sparc 2, Sparc 5, Sparc 10, and
Sparc 20 workstations. These workstations are connected
on a local area network.

For the purpose of comparing results, we created a bench-
mark program based on ptester, a HTTP retrieval bench-
mark program included in the phttpd package [12]. The
benchmark program takes as input a trace of requests and
times, and uses the trace to send requests to the QoS Web
Server. We generate traces that re
ect speci�c or random
mixes of various requests for di�erent pages. All of our ex-
periments, thus, were conducted on synthetic page requests.

The benchmark program is also responsible for calculat-
ing response times and storing the results for each request as
to whether the request was accepted, was denied or failed.
It allows reply of a trace of requests so that we can com-
pare the behavior of the QoS Web Server under di�erent
con�gurations. The benchmark program is multi-threaded
and distributed across multiple processes. This distribution

is utilized in order to avoid limits due to the number of open
sockets per process.

The tests were conducted on a local area network. As
a result, the measurements obtained by these experiments
provide a look at how to optimize the sending of pages from
the Web Server's standpoint. They do not address issues
related to the bandwidth of the network between the server
and the clients.

4.2 Resource usage constraints

In this section, we present the set of experiments that char-
acterize the behavior of the QoS Web Server with respect to
di�erent resource usage constraints. Speci�cally, our con-
cern here is addressing the following issue: Does the QoS
Web Server implement speci�ed constraints on resource al-
location to various requests? The experiments show that
achieving the desired service speci�cation depends on sev-
eral facts:

� Our scheduling algorithm tries to satisfy resource con-
straints and, at the same time, utilize server resources
e�ectively. Hence, if the QoS Web Server in not in
contention, allocation of resources to various requests
re
ect the mix of the input requests. However, when
the QoS Web Server is in contention, resources are al-
located according to the constraints.

� In a given request mix, the QoS Web Server allocates a
categories entire portion of resources only if there are
enough requests in that category. For instance, the QoS
Web Server can allocate 60% of its resources to requests
for page A only if the requests are greater than 60% of
the total QoS Web Server bandwidth.

� Channel size and request queue lifetime both a�ect how
precisely the QoS Web Server can allocate various re-
sources. Increasing channel size and lengthening the
request queue lifetime increase accuracy but decrease
response time.

In the resource usage constraint experiments, we specify
�xed percentages for jobs in a given category. We then ran-
domly requests jobs from the di�erent categories. Also, we
utilize two to �ve categories of pages. We carried out the
the various experiments by changing the following param-
eters: page size, resource usage constraints, queue lifetime
and channel size.

4.2.1 Percentage requests handled

This experiment measures the number of pages served in
each of the �ve categories over a ten second interval. We
then calculate the percentage of pages served from each of
the �ve categories.

In the �rst set of experiments, the benchmark program
sends 18 requests per second for 16K �les and 8 requests
per second for 128K �les. The life time for each request on
the request queue was set to be 1/2 second. Figure 4(a)
displays the results for �les of size 16K; �gure 4(b) displays
the results for �les of size 128K.

The graph shows the experiment time and plots the per-
centage of the server responses for the �ve di�erent cate-
gories. The legend shows the resource constraints for various
pages. As we can see, the server enforces the constraints on
amount of resources that can be allocated to various pages.
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Figure 4: Percentages of requests served for pages with di�erent resource usage constraints

Note that there are some 
uctuations in the percentage
of pages served. The 
uctuations arise primarily due to the
randomness in the number of various category requests that
arrive at the server.

4.2.2 Guaranteed service

In this experiment, we determine if the QoS Web Server
can enforce resource constraints that specify that a set of
pages should always be available. We request pages in �ve
categories (A, B, C, D and E). We specify the constraint
that A should always be available and that B, C, D and
E receive 30%, 30%, 20% and 20% of the remaining server
resources respectively.

We ran two sets of experiments: one for 16K pages and
another for 128K pages. The results of the two experiments
show that the QoS Web Server accepts 100% of A requests.
In table 1, we show the percentages and numbers of requests
accepted by the server for the two experiments.

Pages Experiment 1 Experiment 2
(constraints) (16K �les) (128k �les)

% served # served % served # served
A (always) 100.0 704 100.0 298
B (30%) 90.0 538 59.7 172
C (30%) 84.1 530 62.2 173
D (20%) 52.6 339 42.4 123
E (20%) 54.5 354 45.5 122

Table 1: Performance behavior of server with always con-
straint

Note that the server accepts all requests for the guar-
anteed category. It denies about 750 requests in the 16K
experiment and 500 requests in the 128K experiment for
the remaining categories.

4.2.3 Di�erent �le sizes

We ran another set of experiments in order to analyze the
behavior of the server when clients request �les of di�erent
sizes. In this experiments, requests for �les of sizes 16K,
32K, and 64K are respectively allocated 10%, 35%, and 55%
of server resources.

The results of the percentages of requests handled in each
of these categories are shown in �gure 5(a). Instead, if we
scale the results to measure the number of bytes served in
each of these categories, the results appear as shown in �g-
ure 5(b).

Note that the percentage of bytes seems to match the
QoS speci�cation best. This matches our resource model
that considers the resources of the server to be the band-
width. Although, this �ts better we also note that the
larger �le receives a disproportionate amount of the server
resources. This is due to the diminishing e�ect of the con-
stant overhead of making a connection to the server.

4.2.4 Flash crowds

In this experiment, we observe the behavior of the server
when there is a drastic change in the number of requests for
a speci�c page. This experiment aims to simulate the situ-
ation when there is high demand for a temporarily popular
page. All �le sizes are 15K and we create �ve categories
each of which has a resource usage constraint of 20%. In
this experiment, an equal number of requests arrive at the
server at �rst. However, after 50 seconds, a large number
of requests for page A arrives for the next 20 seconds. In
�gure 6(a), we show the request pattern for various requests.

In �gure 6(b), we show the percentages of requests ac-
cepted by the server. Note that the percentages of requests
served for A do not change.

4.2.5 Contention and non-contention behavior

As we stated earlier, the scheduling algorithm in the QoS
Web Server operates in two modes: if there is no contention,
the server tries to optimally utilize resources by serving all
requests. However, if there is contention, it enforces the
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Figure 5: Behavior of server for requests of di�erent sizes
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Figure 7: Behavior of server with di�ering number of con-
current requests

resource constraints. This set of experiments shows how the
behavior of the server changes when contention arises in the
server.

In this experiment, clients request two �les, denoted A

and B. The size of each �le is 128K. The incoming requests
are a mix of 65% page A and 35% page B. The QoS speci�-
cation assigns equal resources to both A and B. The request
lifetime for each �le is 1 second. In �gure 7, we show the
behavior of the server.

In �gure 7(a), we show the percentages of requests of A
and B accepted. Note that contention begins to occur at
about 8 requests/second. At about 12 requests/second, the
server is in full contention. Note that as long as there is
no contention, the percentages of server's acceptances of A
and B match those of the requests. However, as we reach
contention, the percentages of server's acceptances start to
match those of the resource speci�cations.

In �gure 7(b), we show the number of requests denied
to meet the resource constraints. As long as we are not
under contention, no requests are dropped. However, when

in contention the server begins to deny requests in a manner
that attempts to satisfy the resource constraints.

4.3 Performance comparisons

In this set of experiments, we compare the performance be-
havior of the QoS Web Server with respect to the NCSA
HTTP server which we modi�ed. We have compared two
characteristics of the servers: throughput and average re-
sponse time. In the experiments here, the tester program
requests 8 �les every second. The size of the �les is 128K.

In �gure 8, we show the throughput of the two servers.
For the NCSA server, it is about 0.78 M bytes/second. The
throughput for the QoS Web Server ranges from 0.42 M
bytes/second to about 0.7 M bytes/second. The graph il-
lustrates two points: First, the throughput of the QoS Web
Server is only marginally less than that of the NCSA server.
Hence, the overhead of adding the notion of quality of ser-
vice to an HTTP server does not cause the performance
of the HTTP server to degrade signi�cantly. Second, in-
creasing the life time of requests on the request queue in-
creases the throughput of the QoS Web Server up to some
point. When the request life time is low, QoS Web Server
rejects many requests which would have been granted re-
sources. However, by rejecting these requests, the QoS Web
Server wastes all resources (such as queue space, socket over-
head, process creation and deletion overhead) it devoted to
the requests. However, as the requests stay on the queue
longer and longer, the probability that they will be served
increases more, thereby leading to better utilization of server
resources.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

B
an

dw
id

th
 (

M
B

/s
ec

)

Queue Life Time (s)

QoS Web Server
NCSA httpd

Figure 8: Comparison of throughput of NCSA and QoS Web
servers

In �gure 9, we show the average response times for the
two servers. The lifetime for requests on the request queue
is about 4 seconds. The graph highlights the fact that the
average response time for the QoS Web Server remains fairly
constant, whereas the response time for NCSA server is in-
creasing. This is because the QoS Web Server drops all
requests that it cannot serve after they stayed in the queue,
whereas the NCSA server continues to accept requests even
if it cannot handle them promptly.
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5 Related Work

There are two bodies of research with which our work over-
laps: research on HTTP servers and research on quality of
service in distributed systems. The focus in the �rst is on
the design of HTTP servers, whereas the focus in the sec-
ond is on developing various quality of service models and
scheduling algorithms for supporting speci�c quality of ser-
vice guarantees.

5.1 HTTP servers

As we described earlier, the primary goal of an HTTP server
is to service requests for web pages. Much of the HTTP
server work has focussed on developing variations of HTTP
server architectures that reduce the CPU, network, and disk
bottleneck. We will focus only on the distributed HTTP
server work [15, 14, 4] because of the similarity in the issues
addressed by these approaches and our approach. The fo-
cus in the distributed server research has been on using the
resources of distributed hosts to increase the throughput of
HTTP servers. Most of the research here has been aimed
at addressing the notion of load balancing and scalability:
given a request, how should the server schedule this request
so that resources on the distributed hosts are optimally uti-
lized. Our work, on the other hand, addresses additional
issues in the design of HTTP servers:

� Should the server accept a request?

� If so, how much resources should be allocated to the
request?

There has been some work that looks at the notion of quality
of service for HTTP servers. [3] proposes a notion of quality
of service by associating priorities with requests from di�er-
ent sites. The HTTP server schedules requests according to
priorities, thereby ensuring that preferred sites (with higher
priority) are allocated resources before other sites. Our work
di�ers in many ways: �rst, the focus in [3] is on proposing
techniques for structuring single host HTTP servers in order
to improve the response times of high priority requests. Our
work primarily involves distributed HTTP servers. Second,
our notion of quality of service is more general in that we

not only allow a site to specify priorities but also allow it to
specify resource usage constraints on a group of requests. In
[5], a notion of quality of service is proposed with respect to
the content. However, there is not support for any notion of
quality of service with respect to resource usage, throughput
or response time.

5.2 Quality of service in Distributed Systems

The notion of quality of service [21] has been studied in
great detail within the context of networking [21] and multi-
media [24]. The focus of work here has been on developing
varying level of services (including low-level notions such
as number of bytes/second to high-level notions such as
jitter-free play of images etc.) and on developing algorithms
for scheduling CPU, memory and networking resources such
that the quality of service guarantees are met. In [27] mecha-
nisms for specifying service guarantees with method invoca-
tions of CORBA objects is presented. Our work is similar to
these works in that we also associate quality of service with
resources in order to schedule resources. However, our work
di�ers from them in the nature of resources (web pages),
in terms of constraints on usage of resource and how they
should be scheduled.

6 Summary

We have presented the design and implementation of a dis-
tributed HTTP server that implements a quality of service
model. In this model, a site can determine how requests for
various pages should be served. This includes setting priori-
ties among the requests as well as associating constraints on
resource usages. Resource usage constraints provide a useful
tool for providing services on the WWW. They support the
ability to guarantee documents and set desired performance
characteristics by denying requests rather than serving all
requests at the same time.

We have also analyzed the performance characteristics
of the QoS Web Server. The analysis shows that the server
enforces user speci�able constraints on resource usages. Fur-
ther, the performance behavior of the server is comparable
to that of the standard NCSA HTTP server.

Our future work involves formalizing WebQoSL, re�ning
the resource model, and implementing a distributed version
of the qosd.
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