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Abstract

There is considerable interest in developing runtime infrastructures for programs that can migrate from

one host to another. Mobile programs are appealing because they support efficient utilization of network

resources and extensibility of information servers. In this report, we present a scheduling scheme for

allocating resources to a mix of real-time and non real-time mobile programs. Within this framework, both

mobile programs and hosts can specify constraints on how CPU should be allocated. On the basis of the

constraints, the scheme constructs a scheduling graph on which it applies several scheduling algorithms.

In case of conflicts between mobile program and host specified constraints, the schemes implements a

policy that resolves the conflicts in favor of the host. The resulting scheduling scheme is adaptive, flexible,

and enforces both program and host specified constraints.
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1 Introduction

There is increasing interest in computing models that support migration of programs. In these models, a

program migrates to a remote host, executes there, and accesses the site’s resources. For instance, Java [1]

programs are increasingly being used to add dynamic content to a web page. When a user accesses the

web page through a browser, the browser migrates Java programs associated with the page and executes

them at the user’s site. There are many other computing models that support mobility of programs. For

instance, the remote evaluation [24] and the servlet [18] models support migration of programs by allowing

one to upload a program to a remote site. The mobile programming model [6, 25] supports a more general

purpose mobility model that also allows programs to migrate to other sites during their executions. The

common element in all of these models is the ability of a runtime system to load externally defined user

programs and execute them within the local name space of the runtime system.

The mobile programming model is appealing [6, 16] for several reasons: It allows optimization of re-

sources. For example, if the mobile program encodes an application that must filter huge amounts of data,

the application can migrate to the host with the data, execute there and then return with its results to the

originating host. The mobile programming model also supports extensibility of information servers. In

the traditional remote procedure call (RPC) model, an information server provides access to data through a

fixed number of programs. By allowing the user to download arbitrary programs, the behavior of the server

can be molded in infinite possible ways. Finally, the model is ideally suited for an extensible and dynamic

distributed system structure like the internet. Within this structure, programs search for solutions on the

basis of information that they contain. They are location independent, and hence scale well.

Although appealing from both system design and extensibility points of view, mobile programs have

serious security implications[19, 12] 1 since they are created at remote sites and they access resources of

the host by executing within the local name space of the host runtime system. Security problems occur when

the mobile program tries to access and consume resources in a manner that violates the host defined policies

(assuming such a policy exists). Mobile programs have the ability to maliciously disrupt the execution of

programs at a site by reading and writing into their name spaces, by using unauthorized resources, by over-

using resources, and by denying resources to other programs. For instance, a mobile program may try to

read files that it is not allowed to read or consume more CPU resources than the host is willing to provide.

Uncontrolled access to resources can be dangerous for the host if the mobile program is malignant or buggy.

As a result, runtime systems are extremely vulnerable to misbehaving mobile programs. It is important for

the runtime system at the host to protect the resources of the host from such mobile programs so that all

mobile programs can execute in a safe and secure fashion.

One can think of a runtime system as a service provider that exports two kinds of resources to mo-

bile programs: system resources and conceptual resources. System resources denote those resources that

are implicitly allocated to mobile programs. Typical examples of system resources are memory and CPU.

Conceptual resources are like objects and are explicitly defined and managed by a host. They have well-

defined interfaces that external programs use to access the resources. For example, a host might provide

an interface to a database repository and the incoming mobile program interacts with the database through

this interface. In order to protect the host runtime system from mobile programs, the host must have

the ability to control allocation of both system and conceptual resources. In this report, we focus on the

problem of CPU allocation for mobile programs. CPU resource control protects against mobile programs

that try to consume resources more than they are allowed. Mobile programs can stage a denial of service
1An example, “Ghost of Zealand” attack. For full details see http://www.sevenlocks.com/SecurityDigest/SecurityDigestv2n01.htm

or http://www.finjan.com/applet_alert.cfm
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attack by over-using resources, thereby denying resources to other programs and the runtime system. A

mobile program can do this by spawning a number of programs and using more CPU resources through

these additional programs.

CPU resource allocation has been studied extensively and several techniques have been proposed for

solving the CPU resource allocation problem. The techniques have been primarily proposed in the form

of a scheduling algorithm or a scheduling scheme. A scheduling algorithm is used to construct a schedule

for a set of applications that have similar constraints on how CPU resources should be used. For instance,

the Earliest Deadline First (EDF) [17] scheduling algorithm is used to schedule real-time applications with

deadline based constraints.

A scheduling scheme is a way of composing different scheduling algorithms. A scheduling scheme

constructs schedules for a set of applications with different kinds of CPU constraints. For instance, in CPU

inheritance scheduling [9], real-time scheduling based on EDF is combined with multi-priority based round

robin algorithm [27] for scheduling a mix of real-time and interactive applications.

While several scheduling algorithms and schemes have been proposed, most approaches have focussed

on developing schedules that attempt to allocate resources to applications on the basis of constraints

(such as lower bound and real-time deadline) that the applications specify. Further they are aimed at

achieving general objective functions such as fairness, responsiveness and CPU utilization. However, in

mobile systems, a host’s objectives have additional components that can be described in terms of host-

specific constraints.

The host-specific constraints are driven by two objectives: security and quality of service.

• Security: The security goals of a host are to protect the runtime system and mobile programs from

a malicious or buggy mobile program. The host must stop the misbehaving program from getting

unlimited or unauthorized access to CPU resources, otherwise such a program can cause denial of

CPU to other programs by overusing CPU.

• QoS: The quality of service goals of a host are to provide differentiated services to different mobile

programs. This is because the host may have preferences as to how it wants to allocate CPU. Further,

it might want to control CPU usage by different mobile programs in order to optimize its own perfor-

mance or in order to provide specific services. For instance, a host may get overwhelmed by mobile

programs that access a popular (and free) service and thus, may not be able to provide resources to

other mobile programs. This problem [21] is commonly observed in HTTP servers where requests for

popular pages tend to overwhelm requests for less popular and possibly more important pages.

This report presents a CPU scheduling scheme that controls the allocation of CPU resources to a mix of

real-time and non-real time mobile programs. The scheme includes the following:

• Specification of program and host-based constraints: Both mobile programs and hosts can specify how

CPU resources should be allocated to programs. For instance, real-time mobile programs can request

that the host allocate CPU based on specific real-time deadline constraints and hosts can set relative

or precise limits on CPU resource usage. In addition, hosts can associate resource usage constraints

on the basis of network domains, resources, or other host-specific groupings. Hosts can also specify

allocation of resources that vary dynamically as the host state changes.

• Scheduling algorithms: The scheduling scheme consists of three scheduling algorithms: (1) an algo-

rithm for enforcing shares and priority constraints on non-real time mobile programs, (2) an algorithm

for enforcing deadline constraints on real-time mobile programs, and (3) an algorithm for enforcing

security and limit constraints for both real-time and non real-time mobile programs.
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• Algorithm composition policy: The algorithm composition policy defines how the different scheduling

algorithms are integrated into a coherent scheme. Our composition policy is aimed at meeting a host’s

security needs and preferences first, followed by other requirements of mobile programs.

The scheme is general: it can be integrated within the HTTP servers, operating systems such as Solaris or

Linux, and mobile programming runtime systems such as the Java Virtual Machine (JVM). For instance, we

can include the scheme in HTTP servers to set priority or limit usage over HTTP requests. We can also include

it as part of the Java runtime system or browser applications for controlling allocation of CPU resources to

non-real time and real-time Java applets.

We developed a detailed simulation model for the scheduling scheme. We have also implemented the

scheduling scheme within the Java Virtual Machine (JVM, JDK 1.1). The scheme provides an interface through

which a host can specify resource access constraints on CPU usage by a set of mobile programs. At the same

time, mobile programs can request different kinds of quality of service in the form of shares, deadlines and

priorities. The results from the performance analysis show the following:

• The scheme protects the host by efficiently enforcing the security constraints.

• The host is able to provide different levels of services to different mobile programs.

• The scheme effectively integrates different algorithms for real-time and non-real time mobile programs

in a coherent way.

• The scheme is modular and dynamic.

The report is organized as follows. In Section 2 we analyze the problem of CPU resource allocation for

mobile programs in detail and define the problem in terms of a set of parameters. We discuss the problems

with the existing schemes and examine what is desired from a CPU control scheme for mobile programs.

In Section 3, we present the scheduling scheme along with the different algorithms for satisfying con-

straints. We review the overall scheme in a piecewise as well as an integrated fashion. We describe the

individual algorithms used to construct the scheme in detail.

Section 4 discusses the simulation model and the experiments conducted on the model. We analyze the

performance behavior of the scheduling scheme. On the basis of the experiments we discuss the properties

of the scheme. In Section 5 we discuss our results and experiences with integrating the scheme with JRTS.

Section 6 reviews existing mechanisms for CPU scheduling and CPU resource control. Section 7 gives the

concluding remarks and discusses future work.

2 Resource allocation problem

In this section, we look at the problem of CPU resource allocation for mobile programs in more detail.

We discuss the different constraints that mobile programs and hosts can specify. We also examine the

properties expected of a scheme to control CPU allocation for mobile programs.

2.1 Resource usage constraints

The primary goal of a scheduling scheme is to construct a schedule that satisfies a set of resource usage

constraints. A resource usage constraint specifies how resources should be allocated. We classify resource

usage constraints both according to how mobile programs want to consume resources and how a host wants
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to facilitate, as well as protect usage of these resources. This results in two different, possibly conflicting

views of resource allocation – client (mobile program) view and server (host system) view. We consider both

views of resource allocation and the problems that arise when composing them. We use the term σt(P) to

denote the resources associated with a program P in a schedulable period 2 t.

2.2 Client view

From the client’s perspective, requests for resources are driven by how applications demand and use re-

sources. Programs want to use as much CPU as possible so that they can perform their job quickly. These

sentiments are expressed in terms of several quality of service (QoS) parameters on CPU.

• Lower bound: A lower bound constraint, l, associated with a program P specifies that, in case of con-

tention, P must be allocated at least l% of CPU in each schedulable period. That is,

〈∀ t : σt(P) ≥ (l/100)× t〉.

• Weight: A weight constraint, w, associated with a program P specifies that P must get w% of CPU in

each schedulable period. That is,

〈∀ t : σt(P) = (w/100)× t〉.
Note that if there are several programs, the total of weight constraints specified by the programs must

be less than 100, since the total CPU usage by the whole system cannot go beyond 100%.

• Share: Shares are closely related to weights in that the relative amount of shares owned by a program

define the program’s weight constraint. Thus, if program P has s shares and the total number of

shares in the system is S, P has a weight of s
S%. That is,

〈∀ t : σt(P) = ( sS /100)× t〉.
The difference between shares and weights is that shares are relative while weights are absolute. For

example, if a program P has 20 shares while total number of shares in the system is 50, then P has

40% weight. Now if a new program P ′ joins the system and it is assigned 50 shares, the total shares

in the system is 100. As a result, P has 20% weight now.

• Deadline: Real time constraints in the form of <S,E,T> for a program P specify that between times S
and E, P must get T amount of CPU. That is,

〈
t≤E∑

t≥S
σt(P) = T 〉.

Such constraints are specified by programs requesting real time processing such as multimedia ap-

plications, or programs that are going to control a unique piece of external equipment, for example a

machine tool. A common requirement of real-time programs is that the latency and delay is bounded

and if the program is not able to meet its deadline then it is not worth scheduling the program at all.

2.3 Server view

From the server’s perspective, two concerns govern the allocation of resources – allocating CPU to mobile

programs according to their demands and tightly controlling allocation of resources. Two factors unique to

mobile environments accentuate the latter concern. First, a level of distrust exists between hosts and mobile

programs since the mobile programs and the hosts typically belong to different administrative domains.
2We divide the time line into schedulable periods and specify resource usage constraints in terms of these schedulable units.
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Mobile programs can maliciously disrupt a host by using unauthorized resources, by over-using resources,

and by denying resources to other programs. Second, in distributed systems such as the web, hosts may

provide varying degree of services to clients. A host may differentiate requests from different clients and

allocate resources to these requests in accordance with the kinds of services the host wants to provide. For

instance, a host may reserve 85% of its resources to mobile programs that originate from paying customer

sites and allocate the rest for other programs.

Within the server view, resource control thus involves differentiating and categorizing mobile program

requests, and allocating specific amounts of resources to these categories of mobile programs on the basis

of the host preferences.

In the mobile programming models [6, 25], the resource allocation problem has an additional dimension:

A mobile program can circumvent resource control by migrating to another host and then returning to its

previous host for more resources. Resource usage constraints, thus, apply not only to specific executions

but to all executions of a program. We refer to such constraints as lifetime constraints. An issue closely

related to lifetime constraints is that of uniquely identifying and authenticating a mobile program when

it re-migrates to the host system. We do not address this issue in this report though we recognize that

without sound authentication, a mobile program can easily change its identity and carry out a denial of

service attack.

Another important issue in CPU control is that of enforcing constraints that vary dynamically with the

state of the host. This is because Web-based systems are inherently dynamic; the level of trust placed by the

host on a particular external site can change depending on the state of the runtime system. For example,

if a remote site sends several mobile programs to the host, it is possible that the remote site is trying to

stage a denial of service attack. In such a case, the trust level of the remote site must be reduced and CPU

allocation done accordingly. Further, the ability to change resource allocations dynamically allows a host to

utilize its resources more effectively. For instance, a host site may change its allocation policy depending

on the demand for different kinds of services by mobile programs. Such a scheme will also be useful in

HTTP servers where the system can dynamically decide to allocate more resources to service requests for

popular pages.

To summarize, the resource allocation problem for mobile programs includes additional resource usage

constraints arising out of the server view:

• Enforcing client constraints: Such as lower bounds, deadlines, shares and weights.

• Upper bounds: To prevent denial of service attacks, hosts specify and enforce upper bounds on re-

source consumption. An upper bounds constraint, u, associated with a program P specifies that,

within each schedulable period, P will be allocated at most u% of CPU. That is,

〈∀ t : σt(P) ≤ (u/100)× t〉.
A host can also specify upper bounds in absolute form, meaning that P is allocated at most u seconds

of CPU time.

• Lifetime constraints: Hosts enforce lifetime constraints in order to control resource consumption over

the whole lifetime of mobile programs. A lifetime constraint, l associated with a program P specifies

that P can get at most l seconds of CPU time over all executions of P .

• Priority: Given a set of programs to schedule, select the program with the highest priority. Priorities

are used to classify programs and to set importance to different classes of programs. For example, in

UNIX SVR4 [10] real-time programs occupy higher priority levels, system management programs are

at the next level of priority and finally time sharing programs occupy the lowest priority levels.
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• Shares and weights: Hosts may also want to define share based constraints for mobile programs.

Upperbound and lifetime constraints form the basis for enforcing protection of CPU resources. Priorities

and Shares provide differential levels of QoS to different categories of clients.

2.4 The scheduling problem

The CPU resource control problem for mobile programs is, therefore, one of developing a scheduling scheme

that, given a set of client and server resource usage constraints, schedules the programs so that the con-

straints are enforced. In order to enforce the client and server constraints, a scheduling scheme should

have the following properties:

• Flexible: The scheme should allow for policies to be varied from host to host. Different hosts might

want to enforce different constraints. For instance, a particular host may want to allocate 60% of

CPU resources for mobile programs accessing a particular knowledge base database. Another host

may want to assign a lower priority to such mobile programs as compared to another set of mobile

programs which gather information on the current stock situation.

• Modular: The scheme should allow for setting constraints for a set of mobile programs relative to the

rest of the system. For instance, if a host allocates 40% of CPU to mobile programs originating from

site A and remaining 60% to mobile programs from site B, any changes in CPU allocation for programs

in B should not affect allocation for programs in A.

• Dynamic: The scheme should be able to dynamically adapt to the state of the host system in order to

enforce dynamic constraints.

• Security: The scheduling scheme must make sure that the security policy of the host is never

breached. The scheme must, therefore, strictly enforce the upper bound and lifetime constraints

even if it means that the quality of service constraints are not satisfied.

• Conflict resolution: It is quite possible that a client requests resources more than the host is

willing to provide. A scheme must, therefore, include a set of policies, called algorithm composition

policies, that specify how conflicts among different resource usage constraints are resolved.

• Efficiency: The scheduling scheme should have a low overhead in making scheduling decisions.

3 Resource allocation scheme

In this section we describe our scheduling scheme in detail. We first describe the overall approach for

scheduling resources to mobile programs.

• Construction of scheduling graph: The scheme partitions mobile programs into real-time (deadline)

and non real-time programs. It captures group-subgroup relationships among mobile programs along

with various constraints to construct a scheduling graph.

• Application of algorithms: The scheme applies three algorithms to the scheduling graph: (i) an algo-

rithm that enforces upper bound and lifetime constraints; (ii) an algorithm that enforces share and

priority constraints; and (iii) an algorithm to enforce real-time deadline based constraints.
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• Monitoring of system state: Since the host can specify constraints as a function of state variables,

the scheduling scheme monitors the state of the system and adapts to the changes in the resource

constraints by modifying the scheduling graph.

In the following sections, we describe the individual algorithms and how they are composed to build the

scheduling scheme.

3.1 Framework for specifying constraints

We first describe how hosts and clients can specify resource usage constraints. For the purpose of this study

we have considered the following kinds of resource usage constraints: share, priority, real-time deadline,

lifetime and upperbound constraints. Also, we consider upper bounds that are specified in absolute form

only and not relative upper bounds. We believe that other constraints, such as weights and relative upper

bounds can be easily added to our model. We have developed a runtime interface and a specification

language that programs and hosts can use to specify resource usage constraints.

3.2 Group definition

We use the notion of groups [19] as the basis for associating resource constraints with a single or a set

of mobile programs. A group is an individual mobile program or a collection of groups. For instance, a

group ucdavis.edu denotes all mobile programs that originate from this domain. This group may contain

subdomains such as cs.ucdavis.edu and ece.ucdavis.edu. The notion of groups and subgroups results

in a hierarchical partitioning of mobile programs. The definition of a group need not necessarily be based on

network domains. A group can be defined on the basis of the kinds of services a host provides. For instance,

mobile programs accessing a particular database can be made part of a database group irrespective of the

network domains the programs originate from.

Clients can define their own groups and determine constraints for individual jobs within the group.

When a new mobile program becomes part of a group, the group owner decides the constraints for the

mobile program.

3.3 Constraint specification

The specification language provides for specifying the following kinds of constraints: real-time constraints

based on deadlines, non real-time constraints, and upper bounds. We describe them below.

3.3.1 Non real-time constraints

Resource allocation for non real-time mobile programs is done on the basis of share or priority con-

straints. Each rule specifies the type of constraint it is enforcing (share or priority) and also a set of

<condition,value> tuples. A condition is specified as a <type,type range> tuple, where type specifies

a runtime system variable, and the range specifies the range of values of the type for which the condition

will be true. For example, conditions can be of the following form:

Condition1: <number of mobile programs, 10-20>

Condition2: <number of mobile programs, default>
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This specifies Condition1 to correspond with the number of mobile programs being within the range 10

and 20. Condition2 corresponds to number of mobile programs not being within the range 10 and 20. A

parent group can now specify a priority or share based rule for a child group as follows:

Rule1: <group.shares, <Condition1, 30>, <Condition2, 70»

Rule1 specifies that if Condition1 holds, then the group has 30 shares, while if Condition2 holds then it

has 70 shares. Hosts can thus specify constraints as functions of state variables, and the scheduling scheme

monitors the state of the system and adapts to the changes.

3.3.2 Real-time constraints

Resource allocation for real-time mobile programs is done on the basis of deadline based constraints. The

host defines a real-time guarantee group (RTG) which contains all mobile programs whose deadline based

constraints can be specified. Each program has a non real-time scheduling constraint (in the form of priority

or share) that is applied within the program’s scheduling group. If the program makes a real-time request,

and if that request can be satisfied by the scheduler, then the program is scheduled as part of the RTG
group. Resource allocation for real-time programs is done on the basis of the following rules:

RTG.upperbound = val1 (specified by the host)

group.RTGbandwidth = val2 (requested by the group)

mobileprogram.deadline = <S,E,T> (requested by the mobile program)

The first rule specifies that the upper bound on the time reserved for RTG is val1. The second rule specifies

that group has reserved val2 bandwidth within RTG for allocating to group’s mobile programs. The final

rule specifies the deadline based constraint as requested by a mobile program. The rules are described in

more detail later.

3.3.3 Upperbound constraints

A host can specify upper bound and lifetime constraints through the following rules:

UpperboundRule.members = < group1, group2, ... >
Rule2: <UpperboundRule.value, <Condition1, val1>, <Condition2, val2»

LifetimeRule.members = < group1, group2, ... >
Rule3: <LifetimeRule.value, <Condition1, val1>, <Condition2, val2»

The first rule specifies the groups on which the upperbound constraint is applied. The second rule specifies

that the upperbound has val1 value if <condition> is true else it has val2 value. The same holds for

lifetime constraints.

3.4 Construction of scheduling graph

The scheduling scheme first builds a scheduling graph from resource usage constraints. We show an exam-

ple of a scheduling graph in Figure 1. The scheduling graph contains three subgraphs:

• Real-time,

• Non real-time, and
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• Upper-bound.

The real-time subgraph is a single node (a real-time guarantee group, RTG) containing all mobile programs

that specify deadline based constraints. The RTG graph consists of all real-time mobile programs as children

of the root node of the real-time guarantee graph (RTGRoot). The construction of RTG is different from

the non real-time subgraph (NRTG in Figure 1). The difference arises due to the nature of constraints for

real-time and non real-time programs. Constraints specified for non real-time programs are relative to

each other (priorities, shares). This is not the case with real-time programs where constraints are in terms

of absolute time. Scheduling real-time programs requires that every program be allocated so that their

deadlines are satisfied. Therefore, all real-time programs are at the same level of the hierarchy.

S S′

S1 S2 P1 P2

Ap

Root

NRTGRoot
non real-time

real-time

RTG

A′A

A1 A2 A′1 A′2
NRTG

A′1, A′2 ∈ A′child

UB1 LC1

A1, A2 ∈ Achild = childnodes of A

Figure 1: The scheduling graph

NRTG is a hierarchical graph where each node denotes a group and each edge denotes a group-subgroup

relationship. Mobile programs are at the leaves ofNRTG. The edges ofNRTG are annotated to denote shares

or priority constraints associated with groups. For instance, in Figure 1, the label on edge (Ap,A) specifies

that group A has S shares within group Ap. Similarly, the label on (A′, A′1) specifies that mobile program

A′1 has priority P1 within group A′. The share or priority constraints for each node/group is relative to

its parent group. For instance, group A’s share S of CPU resources are with respect to the CPU resources

allocated to its parent group, Ap . This results in a modular allocation of CPU: Any allocation of CPU to a

child group depends only on the allocation to the parent group. In this way, changes in CPU allocation to a

child group affect only the siblings. Programs within the child group do not affect resource allocations to

other non-overlapping groups.

The upper bound subgraph represents the security constraints. Nodes in this subgraph denote specific

upper bound and lifetime constraints. Edges link these constraints to the relevant groups and mobile

programs. Upper bound and lifetime constraints are general in a sense that they can encapsulate more

than one node in the scheduling graph. Moreover, the nodes encapsulated by a particular constraint need

not be at the same level. For instance, as shown in Figure 1 the upper bound constraint UB1 applies to

group A and mobile program A′1. There is a need for such constraints so that the host can control mobile

programs belonging to different levels in the hierarchy. For example, suppose a site wants to impose an

upper bound constraint that mobile programs accessing a particular database be allocated at most 10% of

CPU. Such mobile programs may exist in different groups and may span multiple subtree domains.

As the runtime system starts, it initializes the scheduling graph – it creates a graph consisting of empty

RTG and possibly non-empty NRTG. When a new client program arrives, the host creates a new group
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node (C) for the client, specifies constraints for C, and adds C at an appropriate place in the scheduling

graph. The client program can create subgroups under C and define resource usage constraints for the

subgraph under C. The host can specify upperbound and lifetime constraints for the subgraph. It can and

also override constraints specified by C and specify its own constraints for the subgraph under C. In this

manner the scheduling scheme maps client and server constraints to the graph.

3.5 Application of algorithms

An important aspect of the scheduling scheme is the algorithm composition policy that resolves conflicts

among host and mobile program resource usage constraints. Our scheduling scheme implements an al-

gorithm composition policy that always resolves conflicts in favor of server constraints. The policy is

summarized as follows:

1. It first ensures that the security related constraints are always enforced. It always applies the upper

bounds algorithm first in order to enforce the upper bound and lifetime constraints even if it means

that the mobile programs do not get their requested CPU allocation or that some deadlines are missed.

2. Next, it enforces host-specified priority and share constraints in order to implement host’s preferences.

3. non real-time jobs are then allocated according to their relative shares, whereas real-time jobs are

scheduled so that their deadlines constraints are met.

We now describe the scheme in more detail. The scheme partitions the continuous time line into small

quantum time chunks (see Figure 2). Within each quantum time chunk, mobile programs from the real-time

group are scheduled according to their reservations. The reservations fix the times when CPU is allocated

to real-time programs. This is shown as shaded parts in a quantum time chunk. The remaining time is

allocated to non real-time programs. The scheduling of non real-time mobile programs starts from the root

node of NRTG graph (NRTGRoot). The scheme traverses from NRTGRoot to one of the leaves of the graph.

In Figure 3, we describe the overall working of the schedule function for one single quantum time chunk.

In the next sections we describe the individual algorithms.

Reserved for Real time programs Free CPU for non real-time programs

Figure 2: List of quantum time chunks with reservations for real-time programs

3.6 Scheduling of non real-time programs

The crux of the algorithm for non real-time programs is the decision making at each non-leaf node. At each

non-leaf node, the algorithm considers the constraints associated with the children nodes of the node. If

the children nodes have priority based constraints, the algorithm selects the child node with the highest
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for (;;) {
t = next_time_quantum();
while (in current quantum time chunk) {

if (time to schedule a real-time mobile program) {
Check for upper bound and lifetime constraints;
schedule the mobile program;
update lifetime and upper bound constraints;

}
else {

//schedule from the remaining (non real-time) hierarchy
currentnode=Root of the non real-time programs;
while (currentnode is not a leaf node) {

Check for upper bound and lifetime constraints;
if (constraints of children nodes based on priority) {

currentnode = select childnode with earliest priority;
}
else if (constraints of children nodes based on shares) {

currentnode = select childnode on the basis of shares;
}

}
schedule the leaf node;
update lifetime and upper bound constraints;

}
}

}

Figure 3: The scheduling scheme

priority. If the children nodes have share based constraints, the algorithm selects a child node on the basis

of the share allocations or the children nodes.

The algorithm to allocate CPU on the basis of share based constraints extends the ideas in the SMART

scheduling algorithm [20] to a hierarchy. SMART defines two numbers for each application – a virtual time

(VT) and a virtual finish time (VFT). The notion of VT and VFT was developed in fair queuing algorithms

for congestion control in network protocols [15] and has been used in CPU scheduling in SMART and Stride

scheduling[29].

We extend the notion of virtual time to define three entities – an upper virtual time (UVT ), a virtual finish

time (VFT ), and a lower virtual time (LVT ). First, we present the intuition behind virtual time and virtual

finish time and give their formal definitions as they are used in the SMART system. We then define UVT ,

VFT and LVT .

In the SMART system applications are partitioned into different priority queues. Applications within

each priority queue have shares. The system associates a VT with with each application and priority queue.

• VT of priority queue P : Initially:

VTP(t) = 0 (1)

At a later time, if an application within P was initiated for execution at time (τ) and is currently (t)
executing:

VTP(t) = VTP(τ)+ t − τ
∑

A∈Pmember
SA

(2)

where A is an application in P and SA represent A’s shares.
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• VT of application: When an application A joins the priority queue P for the first time at time t:

VTA(t) = VTP(t) (3)

At a later time, if A was initiated for execution at time (τ) and is currently (t) executing:

VTA(t) = VTA(τ)+ t − τSA (4)

where SA represent A’s shares.

The virtual time of an application measures the degree to which the application has received its propor-

tional share of CPU on the basis of its share allocation. The difference between VTA(t) and VTP(t) gives a

measure of whether A has received its share-based allocation. If VTA(t) is less then VTP(t), A has received

less than its share and vice-versa. The virtual time for an application advances at a rate inversely propor-

tional to the number of shares it holds. If an application has a large number of shares, its virtual time will

increase at a smaller rate and, therefore, the application will be scheduled more often to make its virtual

time same as that of the queue.

The virtual finish time of an application refers to its virtual time if the application had been selected for

the currently executing time quantum.

• VFT of application: When application A joins queue P at time τ:

VFTA(τ) = VTP(τ)+ Q
SA

(5)

where Q is the time quantum. Later, when A has been scheduled for some time and now is going to

be stopped (t):

VFTA(t) = VFTA(τ) + Q
SA

(6)

where τ is the time when VFTA was last changed.

A property of virtual finish time is that it does not change while the application is executing. It changes

only when the task is rescheduled. The scheduling algorithm selects the application with the smallest virtual

finish time from the highest priority queue for scheduling.

To extend the idea of virtual time to a hierarchy, we define three quantities: upper virtual time (UVT ),

virtual finish time (VFT ) and lower virtual time (LVT ) for each node in the hierarchy. The reason we require

UVT and LVT is that inNRTG, each internal node is both a child node and a parent node. UVT of the internal

node is compared with the LVT of the parent node to select the child node that should be scheduled.

Assume that the algorithm has reached an internal node A, and the children nodes of A have share based

constraints associated with them. Let Ap be the parent of A, and let A own SA shares under Ap . Let Achild
be the set of children nodes of A. Also let each Ai in Achild own Si shares.

• LVT : The lower virtual time at A is used for selecting from one of A’s children.

Initially, when A joins the hierarchy:

LVTA(t) = 0 (7)

Later, if a mobile program from the subtree within A was initiated for execution at time τ and is

currently (t) executing:

LVTA(t) = LVTA(τ)+ t − τ
∑

a∈Achild
Sa

(8)
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• UVT : When A joins the hierarchy for the first time at time t:

UVTA(t) = LVTAp(t) (9)

Later, if a mobile program from the subtree within A was initiated for execution at time τ and is

currently (t) executing:

UVTA(t) = UVTA(τ)+ t − τSA (10)

• VFT : The VFT of a node A is its UVT had A been selected for the current quantum. When A joins

the hierarchy for the first time at time t:

VFTA(t) = UVTA(t)+ Q
SA

(11)

whereQ is the quantum size. Later, when a mobile program from withinAwas initiated for executions

at time τ and now (t) some other program is going to be scheduled:

VFTA(t) = VFTA(τ) + Q
SA

(12)

The algorithm selects the child node with the earliest virtual finish time (VFT ). To summarize the scheduling

algorithm for non real-time programs: The scheduling of non real-time programs starts atNRTGRoot(Figure 1).

The algorithm traverses down the tree till it reaches a leaf. At an internal node A, the algorithm looks at

the constraints associated with the children nodes of A. If the children nodes have priorities, the algorithm

selects the child node with the highest priority. If children nodes have shares, the child node with the

earliest VFT is selected. If the node selected is a mobile program, it is scheduled for execution, otherwise

the process is repeated.

3.7 Scheduling of real-time programs

The scheduling of real-time mobile programs is based on the scheduling algorithm in Rialto [14]. Rialto uses

a precomputed scheduling graph to implement continuously guaranteed CPU reservations with application

defined periods, and to guarantee time constraints. Applications make CPU reservations in the form of

“reserve X units of time out of every Y units”. Real-time applications request CPU resources by specifying

time constraints of the form <S,E,T>. On the basis of the CPU reservations, Rialto constructs a Rialto

scheduling graph. The nodes in the Rialto scheduling graph indicate either reserved time periods

for applications or free time not reserved for any application. The time constraints for threads are then

satisfied from the reserved time periods and from any free time that might be available.

The real-time scheduling in our scheme differs from the problem solved in Rialto in several ways: Our

problem is a simpler instance of Rialto where we don’t consider continuous CPU reservations of the form

“reserve X units ....”. Instead we define CPU reservations over discrete base period, ie, quantum time

chunks. With the above modification in the problem statement, there is no need of computing the Rialto

scheduling graph. However, the RTG scheme is more general, since CPU reservations for time constraints

can be carried out from any place in the base period rather than from some fixed locations in the Rialto

scheduling graph. Also, there are additional constraints in the form of upper bounds.

Within each quantum time chunk, the real-time programs are scheduled according to their reservations.

The reservations fix the times at which CPU is allocated to real-time programs (Figure 2). In this section we
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look at the algorithm used for making reservations for real-time mobile programs.

Resource allocation for real-time programs is done on the basis of the rules described earlier. We first

describe the rules in more detail.

• RTG.upperbound = val1: An upper bound on the time reserved for RTG within each quantum time

chunk. This prevents starvation of non real-time programs.

• group.RTG-bandwidth = val2: Groups can reserve bandwidth within RTG so that deadline based con-

straints for member mobile programs can be satisfied from the reserved bandwidth.

• mobileprogram.deadline = <S,E,T>: A mobile program within a group can request that its time con-

straints be satisfied by utilizing the bandwidth reserved for its parent group. If there is no bandwidth

reserved for the parent group, the program will get only unreserved RTG bandwidth to satisfy its

constraints.

The scheduling algorithm allocates time within the quantum time chunks to satisfy reservation requests.

The use of quantum time chunks is similar to the notion of slot lists[22]. While the slot list method considers

only real-time applications, our scheduling scheme integrates the idea of slot lists with scheduling for non

real-time programs as well. Moreover, in RTG scheduling, CPU time available in each quantum time chunk

is constrained by upper bound on RTG.

120ms 160ms

A: 14ms

160ms 200ms 200ms 240ms

B: 5ms  A: 5ms A: 3ms

After adding reservation A: <150ms,280ms,40ms>

After adding reservation B: <150ms,170ms,5ms>

120ms 160ms

A: 16ms

160ms 200ms 200ms 240ms 240ms 280ms

A: 16ms

A: 16msA: 10ms

Figure 4: List of quantum time chunks for two reservations

The real-time algorithm first reserves the bandwidth for each group in each quantum time chunk. For

each<S,E,T> constraint, the scheduling algorithm makes reservations in the quantum time chunks (Figure 2)

that fall within times S and E. The algorithm reserves the computation time T from within the parent

group’s reserved bandwidth, if any, and any free unreserved RTG bandwidth that might be available within

the quantum chunk. It does so by creating reservation nodes in each quantum time chunk. The reservation

nodes specify the start time, the time reserved, and the mobile program for which the time has been reserved.

We demonstrate the features of the RTG scheduling algorithm by examples. Assume that the size of a

quantum time chunk is 40ms. Also assume that a host specifies an upper bound of 40% (16ms) on RTG in

each quantum time chunk. This means that a real-time program can get at most 16ms CPU in a quantum

time chunk. A groupRTA can reserve 25% (4ms) of RTG time in each quantum time chunk for RTA’s member

real-time programs. In this case a program A1 that belongs to RTA group gets 4ms of reserved time and

12ms of unreserved time in each quantum time chunk. On the other hand, a mobile program B that is not

a member of RTA gets at most 12ms of RTG time in each quantum time chunk.
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When a new real-time program arrives, the algorithm performs a feasibility check to determine if the

deadline request can be met. It goes through the list of quantum time chunks, reserving any available RTG
time for the request. If the program’s deadline cannot be met, any reservation made for the program is

freed. In the process of carrying out the feasibility checks, the algorithm performs a rearrangement of any

reservations already made for earlier programs so that the deadline based constraints are added in the

Earliest Deadline First (EDF) [17] order. Using EDF for adding new reservations improves the algorithm so

that the number of reservation requests satisfied is increased. In Figure 4, we show how the algorithm makes

reservations for two requests: reservation A (<150,280,40>) and reservation B (<150,170,5>) in that order.

The size of a quantum time chunk is 40ms. The host has specified an upper bound of 40% (16ms) for RTG.

We assume that all the CPU time (16ms) for RTG is available to the mobile programs, that is a group has

not reserved any bandwidth from the RTG group. When request A is made, the algorithm greedily reserves

any RTG time available to A. When request B arrives, the algorithm rearranges the reservation for A so that

the constraints of B can also be satisfied. This is done because B has an earlier deadline. If rearrangement

is not done, then B cannot be guaranteed its constraints because all RTG time has been used by A.

Figure 5 describes the algorithm for making a real-time reservation.

3.8 Resource usage control

The upper bound subgraph captures the upper bound and lifetime constraints on groups and mobile pro-

grams. Each security node in the graph maintains the usage information for the groups and programs that

the node monitors. As the scheduling scheme traverses the scheduling graph, it checks the security node

associated with a node before it applies any scheduling algorithm to the node. If selecting a program from

within that node will cause an upper bound or a lifetime constraint to be violated, the particular internal

node is not selected. For example, assume that the scheme decides to schedule a program in the subtree

under Ap in Figure 1. Before it decides between nodes A and A′, the scheme checks with the security nodes

that control A andA′ (UB1 for A and LC1 for A′) to ensure that the two nodes do not violate any constraints.

The scheme then employs the selection algorithm as described earlier to select one of the two.

In order to control CPU usage by programs in the real-time (RTG) group, the host can specify upper bound

on the CPU time available to the RTG group in each quantum time chunk. In addition, there can be upper

bounds and lifetime constraints on individual real-time mobile programs. As for non real-time jobs, the

scheme checks for any violation of these constraints before it applies the real-time scheduling algorithm.

Note that since the resource requirements of real-time mobile programs are known before hand during

reservation, it appears that checks for security constraints can be performed during the reservation phase

itself. We do not use this technique because the upperbound constraints that control a real-time program

might also control CPU allocation for other non real-time groups (Figure 1). It means that the checks for

upper bounds cannot be applied because the CPU usage for the non real-time programs in the future cannot

be predetermined.

4 Implementation and Performance Analysis

To assess the behavior of the scheduling scheme, we first implemented the scheme as part of a simulation

engine and conducted several experiments using the simulation engine to analyze the performance behavior

of the scheme. Once we were satisfied with the scheme, we then implemented the scheduling scheme within

the Java virtual machine (JVM). We analyzed its behavior within the JVM as well. In this section, we describe

the simulation engine. The next section describes the implementation within the JVM.
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int reserve(S,E,T)
{

//get the set of real time requests interfering with
//the current reservation, and that have later deadlines than
//the current request.
I = set of interfering requests;
Remove_reservations(I); // remove reservations for I
//see if current request can be satisfied
int result = Try_adding(S,E,T);
if (result = true) {

//if previous requests can still be satisfied
int result = Try_adding(I);
if(result = true)

return result;
else {

//not able to satisfy previous requests
//with the new one, revert to earlier situation
Remove_reservations(S,E,T);
Try_adding(I);
return false;

}
}
else {

// not able to satisfy new request, revert to earlier situation
Remove_reservations(S,E,T);
Try_adding(I);
return false;

}
}

int Try_adding(S,E,T) //add the new request <S,E,T>
{

t = get_time_quantum(S);
t’= get_time_quantum(E);
while (all T not reserved) {

Check for upper bound on RT_G in current quantum time chunk;
if (upper bound on RT_G not reached) {

reserve any RT_G time available;
}
if(all T not reserved) {

t = next_time_quantum();
if(t > t’) {

//unable to satisfy the current request
return false;

}
}

}
return true;

}

Figure 5: Algorithm for making real-time reservations
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The primary goals of the experiment were to address the following issues:

• How effective is the scheme in satisfying both real-time and non real-time constraints?

• How does the scheduling scheme behave when upper bounds and lifetime constraints are enforced?

• What is the scheduling behavior of a system when the resource allocation constraints are changed

dynamically?

We first describe the simulation engine. Next we describe the different experiments in detail.

4.1 The simulation engine

The simulation engine provides an API for creating groups, specifying group memberships, constraints and

mapping the constraints to the groups. After reading the various specifications, it builds a scheduling

graph, creates virtual threads for mobile programs, and simulates the scheduling of the virtual threads. We

simulate time by keeping a virtual timer. Whenever a virtual thread is selected for scheduling, we advance

the virtual time by the scheduling quantum and charge the quantum to the virtual thread.

The simulator is organized into two sets of APIs: the interface and the hierarchy.

Interface

The interface API provides for specifying

• Group creation/deletion: CreateGroup(), DeleteGroup().

• Thread creation/deletion: CreateThread(), DeleteThread().

• Constraint specification: Priority, shares, upper bound, lifetime constraint, deadline.

• Group membership mapping: AddtoGroup(), RemovefromGroup().

• Constraint to Group mapping: SetGroupConstraint(), SetThreadConstraint().

The interface API builds the structures containing all the information for the hierarchy to construct the

scheduling graph.

Hierarchy

The hierarchy API provides the following:

• Reading in the group structure built by the interface API and constructing the scheduling graph:

AddGroup(), RemoveGroup().

• Looking at the various constraints from the interface structure and setting them in the scheduling

graph. For example, a priority rule in the interface structure says that, between times A and B priority

is P1 and otherwise priority is P2. The scheduling graph will just specify the current priority status.

• The scheduling primitives:

– SCHEDULE() to select an eligible thread.

– AddThread() to add a thread.
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– SuspendThread() to suspend a thread.

– MakeThreadRunnable() to make a suspended thread runnable.

– RemoveThread() to remove a thread.

– ReAddThread() to simulate a mobile program re-migrating to the system. In such a case, lifetime

constraints are consulted to verify if the thread can be added to the system or not.

A Tree structure maintains the non-real time graph (NRTG). Each node in the scheduling graph contains

specifications for the priority or share constraints, a reference to the upperbound and lifetime constraints

for the node and the number of threads within the subtree under the node. The real time graph (RTG) is

maintained as a queue of reservation requests.

When a new thread is added or removed, the interface API is consulted to get the values of the constraints,

in case they depend on the number of threads. The scheduler also maintains a list of time based events

to implement time based dynamic constraints. The scheduler periodically consults with the event list to

update any constraints. SCHEDULE function is very similar to the Scheduler function described in Figure 3.

For experimental purposes, the time quantum is set to 5ms.

4.2 General scheduling behavior

S=40 S=60

P=1 P=2

S=25 S=30 S=45

MP9 MP10 MP11

MP5 MP6 MP7
MP8

Root

Group0, Share:25, Upperbound:10s

Group1, Share:30, Upperbound:30s

Group2, Share:45, Upperbound:20s

PGroup3, Priority:1, Upperbound:7s

PGroup4, Priority:2

MP9, Share:40

MP11, Share:100
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UB3 = 7s UB0 = 10s
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(a) The scheduling graph
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Figure 6: General scheduling behavior of the scheme

The first experiment demonstrates how the scheme schedules groups of mobile programs that are con-

strained by shares, priorities and upper bounds. Further, it shows how upper bound constraints interact

with shares and priority constraints. In Figure 6(a), we show the hierarchy constructed from the client and

host resource usage constraints. In Figure 6(b), we show the relative CPU allocations of groups G0, G1 and

G2. We also show the relative CPU allocations of mobile programs MP9, MP10, and MP11.
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Between times (0,40s), G0, G1 and G2 get 25%, 30% and 45% of the CPU respectively which matches their

share allocations. At time 40s, G0 reaches its upper bound. This results in relative allocation for G1 and

G2 to increase to 40% and 60% respectively that corresponds to the share ratio of 30 : 45. When the upper

bound of G2 is reached, G1 is the only group and it gets all the CPU resources till its upper bound is achieved

as well.

Within G0, the relative allocations of mobile programs MP9 and MP10 are 40% and 60% respectively,

according to their share allocations. MP11 is not scheduled in the beginning because it belongs to a lower

priority group. At time 28s, upper bound for PG3 is achieved and then mobile programs from PG4 are

scheduled till the upper bound for G0 is reached.

The scheme, thus, effectively implements relative allocations of resources within hierarchies of groups.

Further, it enforces upper bounds constraints as well. Note that changes in CPU allocation to MP9, MP10

and MP11 (programs in G0) do not affect the allocation to G1 or G2. This highlights the modularity of the

scheme.

4.3 Dynamic nature of the scheme
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Figure 7: Dynamic nature of the scheme

In the second set of experiments, we show that the scheme dynamically adapts to changes in resource

constraints. We use the scheduling graph of Figure 6(a) for the experiments. The share and the priority

constraints are as specified in the graph. We remove the upper bound constraints for these experiments.

The first experiment, depicted in Figure 7(a), demonstrates the allocation of CPU to the programs when

resource usage constraints depend on the number of mobile programs:

G0: If nmp < 4, the group has 25 shares, otherwise it has 45.

G1: If nmp < 3, the group has 30 shares, otherwise it has 20.

G2: If nmp < 3, the group has 45 shares, otherwise it has 35.

Here nmp denotes the number of mobile programs within a group. At time 20s, a new mobile program is

added to PG4, resulting in a change in relative allocation. Another program arrives at time 40s and is added

to G1. Another program is added to G2 at time 75s. During time periods (0,20) and (20,40), the relative
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allocations for groups G0 : G1 : G2 are 25 : 30 : 45 and 45 : 30 : 45 respectively. These allocation match

the specified constraints. Similarly, the relative allocations during the periods (40,75) and (75,100) also

satisfy the share constraints.

The second experiment (Figure 7(b)) demonstrates the allocation of CPU when constraints are time de-

pendent. The share specifications for the groups are as follows:

Time 0 to 20s: The share allocation for < G0, G1, G2 > is <25,30,45>.

Time 20 to 40s: The share allocation is <50,10,40>.

Time 40 to 100s: The share allocation is <30,60,10>.

Between time (20,40) the relative CPU allocation is 0.5 : 0.1 : 0.4; corresponding to the shares values. The

CPU allocation changes as the share allocation changes.

4.4 Lifetime constraints

MP3

MP4

MP5

UB4 = 3s

UB0 = 40s

LC4 = 2migrations,10s

MP6
MP7

Group1, Share:10

Group2, Share:30

MP3, Share:20

MP4, Share:50, Upperbound:3s

Lifetimeconstraint: 2 migrations, 10s

MP5, Share:30

Group0, Share:60, Upperbound:40s

Root

Group0 Group1
Group2

S=30S=60 S=10

S=20
S=30

S=50

Figure 8: The scheduling graph for lifetime constraints

This experiment demonstrates how the scheme enforces control defined by lifetime constraints. Figure 8

shows the scheduling graph. MP4 has lifetime constraint of 2 migrations, and a total lifetime usage of 10s.
MP4 also has upper bound of 3s. At time t = 20s, MP4 leaves the host site. It migrates back at t = 25s.
It again leaves at t = 40s and migrates back at t = 45s. It finally leaves at t = 55s and is not allowed

to execute when it migrates back for the third time. Figure 9(a) shows the relative allocations of mobile

programs within the group. The relative allocations for MP3 and MP5 go up when MP4 leaves. Allocation

to any of the programs within the group stops when the group’s upper bound is reached. Figure 9(b) shows

the actual allocation for MP4. The execution of MP4 stops when its upper bound is reached. Then when

it migrates back, it again gets allocated till its upper bound is reached. After the third time, the mobile

program is not allocated anymore since its lifetime constraint of 2 migrations has been achieved.

4.5 Real-time programs

In the third set of experiments, we test the scheme’s effectiveness in enforcing deadline based constraints

for real-time programs.

For the first experiment (Figure 10(a)) we simulate the execution of an application that displays real

time video streams from the local storage. The video input stream contains frames in JPEG compressed

format at 15 frames/sec. We assume that the estimated execution time per frame to be about 30ms [20].

The application makes reservation requests for each frame within a 100msec period. If the reservation
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Figure 9: Results for lifetime constraints

is granted then the application displays the frame; otherwise it skips the frame. The graph (Figure 10(a))

shows how the upper bounds and reserved bandwidth affect real time applications. The individual plots in

the figure show the number of JPEG frames rendered per second as a function of the reserved bandwidth for

the application. The different plots correspond to the upper bound set on the RTG group in each quantum

time chunk. As the amount of reserved bandwidth decreases, the number of frames rendered/second also

decreases.

The second experiment (Figure 10(b)) demonstrates how the scheduling of real-time programs takes place

in the presence of non-real time programs. There are two non-real time groups: Group0 and Group1 have

shares 40 and 20, respectively. There are three programs with real-time reservations:

MP6: <1.100s,1.150s,10ms>
MP7: <1.120s,1.500s,70ms>
MP8: <1.150s,1.180s,5ms>

The host specifies an upper bound of 40% (16ms) on the RTG group for each quantum time chunk of 40ms.
The plot shows that the real-time programs are allocated according to their reservations. At the same time

non-real time programs are allocated according to their shares. Also, since there is an upper bound on RTG
group, real-time programs cannot starve the non-real time programs (Group0 or Group1), even though

real-time programs are scheduled for more than 5ms (the default time quantum) at a given time.

5 Scheduling Scheme in Java Runtime System

We modified the Java virtual machine (Solaris JDK version 1.1) to incorporate our scheduling scheme. The

modified JVM contains an API for specifying groups, subgroups, and various resource usage constraints. In

addition, it includes a thread API for managing and scheduling threads. We have integrated the notion of

groups in our scheduling scheme with that of ThreadGroups in JVM. The current implementation does not

include support for scheduling real-time programs since the JVM currently does not have support for real

time programs.
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Figure 10: Experiments for real time constraints

In this section we describe the details of the integration of the scheduling scheme within the JVM. We

first describe the original JVM scheduling scheme, and then the modifications made in the JVM scheduling

mechanism to incorporate our scheduling scheme.

5.1 The original JVM scheduling scheme

The default scheduling scheme in the JVM is based on simple round robin based priority queues. The native

C code for thread scheduling is provided in solaris/java/green_threads subdirectory of the JVM source

tree. The main data structure is a runnable_queue that consists of runnable threads sorted in terms of

their priority. The scheduler picks up the first thread from the runnable_queue for execution. Apart

from being in a runnable state, a thread can be in suspended, monitor_wait, condvar_wait, and

monitor_suspended states. Monitor_wait state implies that the thread is waiting to enter a monitor,

and is inserted inmonitor_waitq, a queue of threads waiting on the monitor. Monitor_suspended state

means that the thread was suspended while in the monitor, and such a thread is placed in suspend_waitq
queue. A thread in condvar_wait state is a thread that is executingwait() inside a monitor and is placed

in condvar_waitq queue.

There are two kinds of threads: system threads and user threads. System threads are always created

when the virtual machine executes and they assist in performing various system tasks such as timing,

garbage collection and clock management. Examples of system threads are the clock manager, the time

slicer, the garbage collector and the idle threads. User threads are created to execute the user programs.

There is at least one user thread created for executing a Java program.

The JVM assigns priorities to various threads and uses these priorities for scheduling. Priority values

for user threads range from a minimum_priority (normally 0) to a maximum_priority (normally

10). The clock manager thread has the highest priority of maximum_priority + 2. The clock manager

is essentially a thread running at maximum priority that manages a database of timeouts. There are two

primary functions for the clock manager: to suspend a thread for a period of time (thread_sleep), and to

notify a condition variable after a timeout has expired.
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The time slicer thread is only run if the −ts flag is used when the runtime is started. It runs at priority

maximum_priority + 1, which is greater than any user thread but less than the clock manager thread.

The time slicer helps in round robin execution of user threads that have the same priority.

The idle thread runs at a priority of minimum_priority − 1. It runs when no other thread is being

scheduled. The garbage collector (GC) runs as follows: the idle thread is running at a priority lower than

anything else, including the GC thread. If the GC thread wakes up, it remembers the the number of times

the idle thread has run and then goes to sleep for a second. When the GC thread wakes up again, if the

idle count is higher than it had been, it means that the idle thread ran while the GC thread slept. This is a

reasonably good indication that nothing was going on during the last one second, and that nothing will be

going on in the near future. The garbage collector then starts to run. If the idle thread has not been run

while the GC thread slept, the GC thread goes back to sleep again.

5.2 Integration of Scheduling Scheme

The JVM is provided with an API to interface with our scheduling scheme. The API consists of following

kinds of methods:

• AddThread(): Add a new thread into the hierarchy.

• RemoveThread(): Remove a thread from the hierarchy.

• SuspendThread(): Suspend a thread.

• MakeThreadRunnable(): Make the thread state runnable.

• AddThreadGroup(): Add a new thread group to the hierarchy.

• RemoveThreadGroup(): Remove a thread group to the hierarchy.

• AddBWRule(): Add a share based rule.

• AddPriorityRule(): Add a priority based rule.

• SetUB(): Set upperbound constraint.

• SetLC(): Set lifetime constraint.

• AddtoUB(): Add thread group to an upperbound class.

• AddtoLC(): Add thread group to a lifetime constraint class.

• ClearUB(): Clear an upperbound constraint.

• ClearLC(): Clear a lifetime constraint.

We have modified the original JVM code in two places to implement our scheduling scheme:

The code modifications in solaris/java/green_threads subdirectory change the JVM scheduler for

user threads: If a thread is not a system thread, it is not added to the runnable_queue. It is added

to our scheduling hierarchy using the API. For instance, in sysThreadCreate() (thread creation) and

sysThreadExit() (thread exit), AddThread() and RemoveThread() methods are invoked. Whenever user

thread state changes from runnable to suspended and vice-versa, the API functions (SuspendThread()

or MakeThreadRunnable()) are called.

24



Modifications of Java classes in share/java/java/lang integrate the notion of groups in our schedul-

ing scheme with that of ThreadGroups in JVM. We have added some additional methods within the Thread-

Group object (ThreadGroup.java) to specify resource usage constraints in the form of priority and shares

for subgroups and member threads. These methods ultimately invoke functions in the family AddBWRule()

or AddPriorityRule() in our scheduling scheme. Some already existing methods have also been mod-

ified: add(ThreadGroup) and add(Thread) methods in JVM are modified to invoke AddThread() and

AddGroup() methods in our scheduling scheme. Similarly, remove(ThreadGroup) and remove(Thread)

methods in JVM have been changed to invoke RemoveThread() and RemoveThreadGroup().

New Java classes, UB and LC, implement upperbound and lifetime constraints. UB and LC implement

methods to associate groups with upperbound and lifetime constraints (AddtoUB()), methods to set various

constraints (setUB()), and methods to clear various constraints (clearUB()). Figure 11 presents the new

classes and the additional methods in the ThreadGroup class.

5.3 Experimental results

We conducted several experiments on the JVM. The goals of these experiments were to examine the effec-

tiveness of the scheduling scheme within the JVM in (i) satisfying non real-time constraints; (ii) enforcing

upper bound and lifetime constraints; and (iii) satisfying constraints that change dynamically. We describe

the experiments and the results below. In all the experiments, the time quantum is 10ms.
Figure 12(a) shows the hierarchy on which the experiments have been conducted. Groups G0, G1 and

G2 have shares constraints. Groups PG3 and PG4 are subgroups of G0 and are allocated on the basis of

priority. Groups G0, G1 and G2 may also be constrained by upper bounds.

5.3.1 General scheduler behavior

The first experiment demonstrates how the scheme schedules mobile programs constrained by shares and

priorities. There are no upper bound constraints in this experiment. The following are the constraint values:

S0 = 30 S1 = 60 S2 = 10

P3 = 1 P4 = 2

S5 = 30 S6 = 70 S7 = 40 S8 = 60

S9 = 10 S10 = 90 S11 = 100

Figure 12(b) shows the relative CPU allocations of groups G0, G1 and G2. Initially the relative allocations

are according to the share values. At time (t = 70s), G1 finishes execution and relative allocations to G0 and

G2 change to S0 and S2. Later G0 finishes execution and G2 is the only group scheduled.

5.3.2 Relative allocation with upper bounds

This experiment demonstrates how allocations are made for groups in the presence of upper bound con-

straints. The following are the constraint values:

UB0 = 7s, UB1 = 25s, UB2 = 100s
S0 = 30 S1 = 60 S2 = 10

P3 = 1 P4 = 2

S5 = 30 S6 = 70 S7 = 40 S8 = 60

S9 = 10 S10 = 90 S11 = 100
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public class ThreadGroup {
//create the root group for the hierarchy
private final native void CreateRootGroup();

private final native void CreateGroup(ThreadGroup t);
private final native void RemoveGroup(ThreadGroup t);
private final native void CreateThread(Thread t);
private final native void RemoveThread(Thread t);
public void Add_Priority_rule(Thread t, int value);
public void Add_Priority_rule(ThreadGroup t, int value);
public void Add_BW_rule(Thread t, int value);
public void Add_BW_rule(ThreadGroup t, int value);

// Init_rule methods invoked before changing the bw/priority rules
public void Init_BW_rule(Thread t);
public void Init_BW_rule(ThreadGroup t);
public void Init_Priority_rule(Thread t);
public void Init_Priority_rule(ThreadGroup t);

}

//Upper bound class
public final class UB {

public void Add(ThreadGroup g);
public void Add(Thread t);
public void Rem_from_UB(ThreadGroup g);
public void Rem_from_UB(Thread t);
public void Add_rule(int upperbound);
public int IsViolated();
public void ClearViolated();

}

//Lifetime control class
public final class LC {

public void Add(ThreadGroup g);
public void Add(Thread t);
public void Rem_from_LC(ThreadGroup g);
public void Rem_from_LC(Thread t);
public void Add_rule(int globalbound, int migration);
public int IsViolated();
public void ClearViolated();

}

Figure 11: The JVM Class Interface

26



MP10 MP11

MP5 MP6 MP7
MP8

MP9

Root

S10

P4

S2

UB0

UB1
UB2

S0 S1

S11

S5
S6 S7

S8P3

S9

G0 G1
G2

PG3 PG4

(a) The scheduling graph

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140 160

R
el

at
iv

e 
al

lo
ca

tio
n 

fo
r 

G
ro

up
s

Time (sec)

Group 0
Group 1
Group 2

(b) Relative allocation of CPU for groups

Figure 12: Scheduling scheme in JVM

Figure 13(a) shows the relative CPU allocations for the groups. Relative allocation forG1 andG2 increases

once the upper bound for G0 is reached (t = 25s). At time (t = 40s), the upper bound for G1 is achieved

and G2 is the only group scheduled.
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(b) Relative CPU allocation: changing rules on the fly

Figure 13: General scheduling behavior of the scheme

5.4 Dynamic changes in allocation policies

This experiment demonstrates the relative group allocation as constraints are dynamically varied. After

starting all the threads, the main thread goes to sleep. When the main thread wakes up, it changes the share

specification for G0 and G1. There are no upper bound constraints. The following are the constraint values:

S0 = 30 S1 = 60 S2 = 10 (initially)

S0 = 50 S1 = 40 S2 = 10 (when main thread wakes up)

P3 = 1 P4 = 2

S5 = 30 S6 = 70 S7 = 40 S8 = 60
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S9 = 10 S10 = 90 S11 = 100

Figure 13(b) shows the relative CPU allocations of groups. At time t = 40s, the main thread changes

the share values, and the relative allocation for groups changes. The result demonstrates that there can be

a controller thread within the system that controls all other threads and change the allocation policies as

required.

5.4.1 Dynamic Constraints

In this set of experiments, we show that the JVM dynamically adapts to changes in resource constraints.

The first experiment, depicted in Figure 14(a), demonstrates the allocation of CPU to the programs when

resource usage constraints depend on the number of mobile programs: There are no upper bound con-

straints. The following are the constraint values for the groups:

Constraint Value

S0 30

S1 60

S2 10 if nmp < 3

S2 110 otherwise

The graph results can be explained as follows: at time (t = 40s), a new thread is added to G2. As a result,

the relative allocations for the different groups change. At t = 120s, one of the threads of G2 finishes

execution, and the relative allocation goes back to the initial values. Later, when all threads of G1 have

finished execution, the relative allocations for the other groups increase.

The second experiment (Figure 14(b)) demonstrates the CPU allocation when the constraints are time

dependent. There are no upper bound constraints. The share specifications for the groups are as follows:

Constraint Value

S0 30

S1 50

S2 20 if time ∈ [0s,47s]
S2 110 if time ∈ [47s,∞]

Figure 14(b) shows the relative CPU allocations of the groups.

5.4.2 Clearing violated constraints

This experiment (Figure 15) demonstrates that any violated upper bound constraints can be cleared by a

controller thread. The following are the constraint values:

UB0 = 4.5s, UB1 = 12.5s, UB2 = 500s
S0 = 30 S1 = 60 S2 = 10

After starting all the threads, the main thread goes to sleep. When the main thread wakes up, it selectively

clears violated upper bounds for UB0 and UB1. Figure 15 shows the relative CPU allocations of groups. The

results can be explained as follows:
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Figure 14: Dynamic resource usage constraints

• At t = 30, UB0 gets violated, and execution of G0 stops.

• At t = 40s, UB1 is violated and G1 is suspended.

• At t = 53s, UB0 is cleared and G0 resumes execution.

• At t = 67s, UB0 is again violated and G0 is suspended.

• At t = 71s, UB1 is cleared and G1 resumes execution.

• At t = 88s, UB1 is again violated and G1 is suspended.

• At t = 110s, G2 finishes execution.
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Figure 15: Relative CPU allocation with upper bounds being cleared and reset

A host can use such a facility to implement overuse callbacks, actions to be executed whenever any of

the security constraints are violated. The callback methods can, for instance, reduce the priority of the

offending thread, or relax the limits set on the thread so that the thread can complete its execution.



6 Related Work

The subject of resource scheduling in general and CPU scheduling in particular has been widely studied.

[5, 2] present a taxonomy of the different CPU scheduling algorithms. The scheduling techniques range

from simple algorithms such as first come first served and priority queues [27] to more general, flexible and

modular schemes [13, 9, 11, 28]. We compare our scheduling scheme and the algorithms with only those

approaches that we believe are closest to our approach.

6.1 Scheduling schemes

Several scheduling schemes [13, 9, 11] have looked at providing modular control by statically separating

scheduling policies for different classes of applications. The policies are combined using priorities or pro-

portional sharing. CPU inheritance scheduling[9] allows threads in a hierarchy to define their own scheduling

policies within the subtree under the thread. This results in a very flexible and decentralized scheduling

mechanism where different schemes are applied on parts of the subtree to contribute to the overall schedul-

ing scheme. The scheduling scheme described in this thesis is a centralized one. This enables a host to

monitor and control external mobile programs more effectively. Further, the above schemes rely on a single

scheduler servicing both real-time and conventional applications. This results in a static scheduling hierar-

chy that is primarily based on different classes of applications. Our scheme, on the other hand, is adaptive

in that it allows the host to define classes of applications based not only on constraints but also on other

parameters such as network domains.

Many commercial systems [27] provide fixed priority scheduling for real-time applications in order to

combine scheduling of real-time applications with conventional tasks. The problem with these schemes is

that they end up starving the non real-time applications while not providing any guarantees regarding the

real-time tasks. Other systems provide timely execution of real-time tasks on the basis of some hierarchical

partitioning [9, 11]. However, these schemes are not based on deadlines and do not provide guarantees to

the real-time programs. Some schemes [20] have implemented deadline based schemes. However, they do

not provide any guarantees or resource reservations.

In our scheme, the non real-time scheduling algorithm is based on scheduling algorithm used in SMART [20].

We have extended the algorithm to enforce share and priority based constraints over a hierarchical schedul-

ing graph. Real-time scheduling in our scheme is based on Rialto[14] which provides for deadline based

resource reservations and guarantees. Our schemes extends the Rialto scheme with upper bounds on the

CPU time available to real-time applications.

The notion of upper bounds constraint has been studied in several forms. For instance, many version

of the Unix operating system provide system calls (e.g., setrlimit) for specifying limits on resource con-

sumption. VINO [23], an extensible operating system, provides similar control over allocation of resources.

The scheme in our approach supports an adaptive and fine-grained control more suited for the mobile

programming environment.

6.2 Mobile programming systems

CPU resource control schemes have been proposed for mobile programs [26, 3, 4]. These systems propose

solutions for effective utilizations of resources by mobile programs. In these systems, client and server re-

source usage constraints are not defined directly in terms of lower bound, upper bounds, shares etc. Instead

allocation of resources is based on an economic model. In these models, hosts set prices on consumption
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of resources, whereas mobile programs use money (digital or otherwise) to buy the usage of resources. A

host, thus, allocates resource to a mobile program on the program’s ability to buy these resources.

In such schemes the problem being solved is slightly different. The goal of these schemes is to have

mobile programs efficiently utilize the host resources to prevent wastage. In our case, the goal is to protect

host resources from misbehaving mobile programs. While such schemes can be used to enforce lifetime

constraints, a mobile program can cause denial of service attacks if it owns a lot of cash. This brings up

the issue of cash protection and cash management. Also, since the cost set for resources is uniform for

all mobile programs, it is difficult to define policies in which a host can control allocation of resources on

the basis of its preferences or trust relationship. Our approach differs in both the mechanisms used for

specifying and enforcing policies. We believe that the economic model can be easily modeled in terms of

upper bounds, lower bounds, shares and priority constraints.

JRes [8] is a scheme for controlling allocation of different kinds of resources (CPU, memory etc) within the

Java runtime system. JRes uses binary editing to enforce simple upper bound constraints on Java programs.

Our scheme differs from JRes model in that our scheme not only enforces upper bound constraints, but also

performs CPU scheduling based on other constraints. We have not used binary editing but implemented

the scheme by changing the scheduler within the JVM.

7 Conclusion and future work

In this paper we have highlighted the need for a CPU scheduling scheme that addresses the security and

quality of service requirements of a host. We present a CPU scheduling scheme that addresses these needs.

The scheme presents an environment for specifying CPU resource usage constraints. Mobile programs

specify shares, priority and deadline constraints. Hosts specify shares, priority, upper bound and lifetime

constraints. The scheme constructs a scheduling hierarchy to apply a set of algorithms that enforce the

various constraints. The non-real time algorithm enforces share and priority based constraints. The real

time algorithm enforces deadline constraints. The upper bounds algorithm enforces the security constraints

specified by the host. Any conflict between the client and server constraints is resolved by an algorithm

composition policy that always favors the server constraints.

Experiments show that our scheduling scheme provides modular resource control. The scheme is flexible

so that the host system can selectively trust some mobile programs. The scheme enforces protection in

the form of lifetime constraints and upper bounds, and is dynamic in the sense that the trust level and

allocation can change any time.

We plan to extend our current work in several directions. The first is to extend the scheme so that it

can be applied to user-defined resources. We also intend to make the scheme extensible so that arbitrary

resource usage constraints, their scheduling algorithms, and algorithm composition policies can be specified

and composed.
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