Proceedings of USITS' 99: Th& 2ISENIX Symposium on Internet Technologies & Systems

Boulder, Colorado, USA, October 11-14, 1999

PROVIDING DYNAMIC AND CUSTOMIZABLE
CACHING POLICIES

J. Fritz Barnes and Raju Pandey

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WhtiZ// www. usenix.org

Rights to individual papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Providing Dynamic and Customizable Caching Policies*

J. Fritz Barnes

Raju Pandey

Parallel and Distributed Computing Laboratory
Computer Science Department
Uniwversity of California, Davis, CA 95616
{barnes, pandey}@cs.ucdavis.edu

Abstract

Web caching has emerged as one solution for im-
proving client latency on the web. Cache effective-
ness depends on the policies used to route requests
to other caches and servers, to maintain up-to-date
web objects and to remove objects from the cache.
Traditional caches apply one set of policies, which
determines the efficiency as well as the effectiveness
of the caches. This set of policies often does not ex-
ploit the diversity inherent in different web objects,
caches and clients. Policies that do exploit this di-
versity result in convoluted caching policies that at-
tempt to combine multiple policies and guess at the
unknown characteristics of web objects, caches and
clients.

In this paper, we present an extensible caching in-
frastructure in which cache administrators, servers,
and end users can customize how web objects are
cached, replaced, and kept consistent. The in-
frastructure includes a domain-specific language,
Cachel, for defining customizable caching policies
that can be changed dynamically. Analysis of our
prototype, PoliSquid, shows the benefits of the in-
frastructure for variable coherency policies, local-
ized removal policies, and early removal of objects
from servers.

1 Introduction

Web caching [15, 21, 8] improves client latency
through the use of intermediate servers or caches,

*The authors are partially supported by the Defense Ad-
vanced Research Project Agency (DARPA) and Rome Lab-
oratory, Air Force Materiel Command, USAF, under agree-
ment number F30602-97-1-0221.

that accept HTTP [10] requests from clients. When
a request is made to a cache, the cache returns a
copy of the web object being requested. If a replica
does not exist, the cache contacts other caches or
the origin server to retrieve a copy. Caches improve
web performance by migrating web objects closer
to clients. Further, by not contacting the server,
caches reduce origin server load.

Caches use several policies for cache management.
Cache policies determine:

e which objects and when to pre-fetch (pre-fetch
policy),

e how requests for objects are routed (routing pol-
icy),

e where objects are placed in a cache hierarchy
(placement policy),

e how cache objects are kept fresh (coherency pol-
icy), and

e which objects to remove when the cache is full
(remowal policy).

Research on caches has focused primarily on devel-
oping optimum policies for all users and objects. For
instance, several removal policies such as Least Re-
cently Used (LRU), Least Frequently Used (LFU),
Perfect LFU [3], and removal of large objects from
caches (SIZE) [23] try to reduce bytes requested
from the server and client latencies. These policies
depend on a single attribute of the web object. For
instance, SIZE removes large objects from the cache
which make room for multiple smaller objects. As a
result, caches hit rate improves. However, there are
a variety of cache performance measurements. Of-
ten a single web object attribute will not necessarily
improve all measurements. The SIZE algorithm im-
proves the hit rate, but may degrade client latencies

due to the high network overhead of uncached large
documents.

Several object replacement algorithms have been de-
veloped that extend the single attribute algorithms
by weighting multiple attributes or applying cost
functions. These algorithms include: a HYBRID
policy [24] that uses a weighted combination of ob-
ject attributes; Greedy-Dual-Size [4] that uses an
appropriate cost function; and biased replacement
policies [12] that use a combination of weights based
on the origin server and LRU. These policies provide
more flexibility in optimizing multiple cache perfor-
mance measurements. However, knowledge about
the cache environment, such as the bandwidth of the
nearby network topology, cannot be explicitly repre-
sented in these algorithms. Parameterizations and
cost functions are not sufficiently general enough to
define policies for specific environments.

In addition to dependence on multiple parameters,
cache policies may also depend on the semantics of
the cache objects. For instance, if we consider ob-
jects in a cache, we observe that there is a large
variance in hit rates for objects with different con-
tent types. Image requests generate a hit rate that
is about 4-5 times greater than the hit rate for hy-
pertext files [18]. In other words, a single set of
policies cannot be applied to a diverse population
of objects, caches and clients.

Further, cache policies are often dynamic in na-
ture. An example is the applicability of cooper-
ative algorithms in different operating conditions.
Cooperative caching improves performance by shar-
ing objects across multiple caches. This effectively
increases the cache store size. Additionally it in-
creases the number of potential clients, which in-
creases the probability that two clients will request
the same object. An analysis of cooperative algo-
rithms [14] concludes that the overhead in commu-
nication between cooperating caches may outweigh
the benefit of additional hits provided by a neigh-
boring cache. Dynamic policies provide better sup-
port in these circumstances. Cooperation should
be used when the overhead is inconsequential com-
pared to the reduced bandwidth and increased hit
rates. However, cooperation should be turned off
when the overhead becomes too great. Therefore,
caching policies should be dynamic in response to
the ever-changing pattern of web requests.

Thus, what is needed is a caching infrastructure that
allows both clients, servers, and caches to specify

and customize policies to suit semantics of objects,
variations in parameters, and the dynamic behavior
of the web. In this paper, we present such a caching
infrastructure. In this infrastructure, a cache policy
is defined by registering a set of actions with a set of
events. The events denote entry points for applying
caching policies, whereas the actions implement spe-
cific caching policies. The infrastructure includes a
domain specific language, called Cachel, for spec-
ifying the actions. The infrastructure also allows
caching policies to be changed dynamically in order
to take advantage of the changing environment.

We have implemented the infrastructure as a cache
simulator, DavisSim and as part of a web cache,
PoliSquid. We evaluate the benefit of: allowing vari-
ation in client tolerance for fresh documents; cus-
tomizing removal policies to the network topology
and using object semantics to remove objects ear-
lier than the standard removal policy. The results
of the experiments demonstrate that the customiza-
tions help improve cache performance. Finally, we
investigate the overhead associated with adding ex-
tensibility to a caching system, Squid [20]. The re-
sults show that the overhead is moderate (about
8.5%) and can be improved significantly with ag-
gressive optimizations.

This paper is organized as follows: We present a tax-
onomy of the different caching policies and how they
can be customized in Section 2. In Section 3, we
describe an infrastructure for providing these cus-
tomizations. In Section 4, we briefly present the
design of a caching simulator and our prototype im-
plementation. We present the performance analysis
of our infrastructure in Section 5. We describe re-
lated work in Section 6. We conclude with a sum-
mary and discuss future work.

2 Customizable Caching Policies

In this section, we look at the various cache policies
and how they can be extended. The behavior of
a cache is defined by a set of cache policies: pre-
fetch, routing, placement, coherency, and removal
policies. In Table 1, we list the different policies
and the applicable customizations. Below we focus
on the pre-fetch, routing, and coherency policies in
more detail.

Policies

Creator of customized policy

Client

Cache Server/Web Object

pre-fetch policy client-side pre-fetch

traditional pre-fetch

push-caching

routing policy routing based on clients

complicated peering
arrangements

mirroring servers

placement policy | not-applicable

cooperative caching

push-caching

coherency policy | personalize user tradeoffs

policy for shared documents

specify when objects expire

removal policy not-applicable

take advantage of costs
realized at the cache

take advantage of semantic
content

miscellaneous content transducers

measurement & tuning

protocol extensions

Table 1: Analysis of different caching policies

Pre-fetching policies request objects before they
are requested by a client. Pre-fetching increases the
hit rate because the first document access might re-
sult in a hit. However, pre-fetching can increase
the amount of bandwidth requested by the server
if a pre-fetched object is never accessed. The ef-
fectiveness of pre-fetching depends on how well the
pre-fetching policy can predict which objects will
be accessed and therefore should be retrieved in ad-
vance.

Pre-fetching can be used in different ways. A client
might use pre-fetching to load objects from the
cache into the browser. This may be of particular
interest in reducing the latency due to slow dialup
connections. Allowing pre-fetch customization al-
lows the cache to support different browsers using
different schemes to perform pre-fetching of docu-
ments into the browsers.

Caches could be customized to accept objects
pushed out from servers. This provides a technique
whereby servers can perform push-caching of pop-
ular documents. As a result, fewer requests will
be served at the origin server reducing server con-
tention and improving performance.

Routing policies determine how a cache retrieves
an object. Clients, caches and servers might each
use the routing policy in a different manner. The
manner in which the cache routes outgoing requests
might be determined by the client. Let us con-
sider a network that supports differentiated services.
Clients could specify routing policies that use differ-
ent priorities of services. A cache administrator, on
the other hand, might specify a routing policy that
allows cooperation among multiple caches. A rout-
ing policy provided by a web site might be used to
alternate requests between different mirrors of that
web site. Even better, the routing policy might de-

termine the optimal mirror the cache should con-
tact.

Coherency policies determine how a cache re-
sponds to a request for an object in the cache. The
coherency policy decides either to consider the ob-
ject fresh or stale. In the case of stale objects, the
cache consults with the server to verify that the copy
is up-to-date. A commonly used algorithm in de-
ciding coherency is the TTL algorithm [6]. This
algorithm determines whether an object is fresh by
evaluating the equation:

Tnow - Tzn < k (Tzn - T‘last_mod) (1)

where T, is the time of the request, Tj, is the time
when the object entered the cache or was last veri-
fied, and Tj4st_moa is the time when the object was
last changed. If the boolean expression is true than
the document is considered fresh. Different clients
may desire different values of k. Larger values of
k result in fewer validation checks which would in-
crease hit rates with a tradeoff of sometimes return-
ing stale objects. Caches set the global default co-
herency policy. Additionally, a cache might place
limits on the range of client customization. Servers
can specify an invalidation scheme to use, or an algo-
rithm for deciding coherency that takes into account
their object/server specific characteristics. For ex-
ample, a server specified coherency policy might
take advantage of the fact that all of its objects are
only updated in the morning.

In the next section, we describe in more detail our
infrastructure for specifying these customized poli-
cies.

Request/Prefetch Private Stored
/——» Objact /—\
Not M Fresh Accessed
) Public /N
he
Cached J Object.

- [—
Removed From Cache Get IM: uest
Object
~
Stale

Public
Object
Figure 1: States of a document in a cache

3 Customizable Infrastructure

In this section, we discuss our caching infrastructure
for creating customizable policies. Our goal is to
create a caching system in which clients, cache ad-
ministrators, or web object authors can customize
caching policies. The caching infrastructure pro-
vides the ability to specify different routing, place-
ment, coherency, and removal policies for objects.
We first discuss an event-based model, which pro-
vides the technique for specification of policies.
These policies are written in a domain-specific lan-
guage, CachelL. We next describe the architecture
used to attach policies to web objects. We conclude
this section with an example that uses Cachel to
provide a customized removal policy.

3.1 Event-based Architecture

The caching infrastructure is based on subdividing
a policy into actions that are taken when specific
events occur. In Figure 1, we show the pertinent
states in the lifetime of a web object. The arcs in
the figure represent events that cause an object state
to change.

For example, we will discuss the changes in
state of the web object, http://wonderland.net/
tea-party.html, as first the Dormouse and later
Alice request the tea party object. Initially, the tea
party object exists in the Not Cached state. When
the Dormouse makes a request for the tea party ob-
ject, the routing policy is used to determine how the
cache retrieves a copy of the tea party. This object
enters the Private Object state. Now, the placement
policy determines whether we store the tea party
object in the cache. If we store the object it enters
the Fresh Public Object state. Later, when Alice re-
quests the tea party object, we enter the Requested
state. At this point the coherency policy determines

whether the document is fresh or stale and, if stale,
checks whether the original has changed using a Get
If-Modified-Since (IMS) request.

The amount of space available in the cache also af-
fects the state of web objects. When the cached
bytes exceed capacity, the cache uses a removal pol-
icy to determine the best objects to be removed.
These objects leave the Fresh or Stale Public Object
states and return to the Not Cached State.

3.2 CachelL

CachelL defines policies with a policy script. A policy
script specifies a set of actions to take when differ-
ent cache events occur. An action consists of a set of
cache operations and expressions. Cache operations
include contacting other caches and servers, chang-
ing the state of local objects, and setting alarms to
schedule an action in the future.

The language supports simple variables; relational,
arithmetic and logical expressions; conditional exe-
cution; set, array, numeric, and string data types;
and iteration over sets. It also supports facilities for
manipulating date/time values, as well as MIME
headers associated with objects.

3.2.1 Cache Events

The infrastructure provides a predefined set of
events. We describe what causes these events as
well as required and optional cache operations that
should be associated with these events.

Route events occur when objects must be re-
trieved. The action associated with a Route
event should send an HTTP request to a cache
or the origin server, return an alternate docu-
ment in the cache, or respond with an error.

New-Store events occur after new documents are
retrieved or Get IMS requests for stored doc-
uments return new documents. Associated ac-
tions should decide whether the object should
become a Fresh Public Object or return to the
Not Cached state.

Access-Inline events occur before responding to a
request made for an object in the cache. Asso-
ciated actions should handle coherency policies.

Actions can also modify the MIME headers of
the object requested.

Access-Offline events are triggered by a request
but handled independent of the response. Ac-
tions that do not affect the response should be
attached to this event. For instance, a counter
could be used to keep track of object accesses.

High-Water events occur when the bytes stored in
the cache exceed a predetermined level. Asso-
ciated actions should purge one or more objects
from the cache.

Purge events occur when a document is removed
from the cache. This event allows actions to in-
form another party when an object is removed,
or to adjust policy-specific state.

Timer events occur as a result of policy-defined
alarms. Actions are policy dependent.

3.2.2 Cache Operations

We enumerate some of the pertinent cache opera-
tions:

CacheFetch(URL) requests a web object from
the object’s originating server.

CacheFetchIMS(URL) performs an If-Modified-
Since request for the given web object.

CachePost(URL, Data) contacts a host with a
post request and includes the Data in the re-
quest. This is used primarily for server-specific
policies to pass information back to their orig-
inating server.

CachelCPFetch(HOST, URL) requests a web
object from another cache using the Internet
Caching Protocol.

CacheResponse(URL) sends a local copy of URL
to the client as a response to the client’s re-
quest.

CachePurge(URL) removes the specified object
from the local store.

CacheStore(URL) instructs the cache to store
the object that is being requested.

CacheSetTimer(Date, Time) sets an alarm.

CacheLog(Message) provides a debugging mech-
anism that writes the given message to the
cache’s log file.

3.3 Cache Policy Management

The infrastructure provides support for cache
clients, cache administrators, and the web site au-
thor to specify caching policies. Cache administra-
tors specify policies locally and can refuse to allow
servers to modify policies. Currently, we require
a cache administrator to specify client policies by
mapping client identifiers to policies. However, in
future work we would like to investigate alternative
techniques for clients to post policies.

In order to specify policies, cache administrators
construct a configuration file that contains a list of
web objects and the URLs of policy scripts. The
Web objects can occur multiple times within the
configuration file for different policies. Cache ad-
ministrators can utilize wildcards for easy specifica-
tion of policies that apply to multiple objects and
hosts.

In addition to allowing cache administrators to de-
fine policy mechanisms, server administrators can
define policies relevant to a web object on their
server. Policies are specified by adding an X-Cache-
Policy MIME header that specifies the URLSs of the
policy scripts that apply to the object. When a
cache retrieves the object with an X-Cache-Policy
header, it retrieves the policies if they are not al-
ready in the cache. Then it applies the actions for
the web object so that the desired policies can be
enforced.

3.4 Removal Policy Example

We provide an example situation where a cache ad-
ministrator wishes to customize the cache removal
policy. This example provides a concrete demon-
stration of actions written in CachelL. More exam-
ples can be found on our web page http://pdclab.
cs.ucdavis.edu/qosweb/Cachel/ and in a previ-
ous paper [1].

In this example, the caching administrator controls
caches distributed across several different work sites.
A cache exists at each of these sites and a single con-
nection to the Internet is provided. The bandwidth
to the Internet is limited, and the bandwidth be-
tween the cache locations is plentiful. This scenario
is shown in Figure 2, where Sprockets International
has offices in San Jose, Boulder, and Boston, with

Sprockets International

Boulder

San Jose

(Gt 2

Figure 2: Cooperative Caches located at different
sites for Sprockets International

Event: Initialize
CreateList("Unique");
CreateList("Duplicate");

Event: New-Store(obj)
if (CacheDirectoryLookup(obj) == "NotFound")
ListAdd("Unique", obj);
else
ListAdd("Duplicate", obj);
endif

Event: High-Water
if (! IsListEmpty("Duplicate")) {
obj = GetLast("Duplicate");
if (CacheDirectoryLookup(obj) !'= "NotFound")
CachePurge(obj);
ListRemove("Duplicate", obj);
else
ListRemove("Duplicate", obj);
ListAdd("Unique", obj);
endif
else
obj = GetLast("Unique");
CachePurge(obj);
ListRemove ("Unique", obj);
endif

Figure 3: Actions used to implement a specialized
removal policy

a single connection to the Internet. As a result of
the limited bandwidth to the Internet, the cache ad-
ministrator would like to favor removal policies that
evict objects that are cached in multiple locations,
thus maximizing the total number of objects cached.

We show an implementation of this policy in Fig-
ure 3. The policy employs several actions associ-
ated with different events. Our infrastructure pro-
vides multiple linked lists and priority queues that
can be used for implementing the removal policy.
To implement the desired cache policy, we assume
that each cache has a directory containing objects
cached by nearby servers [19, 17, 9]. The CacheDi-
rectoryLookup operation consults the local entries in
the cache table and returns the neighbor that caches

an object or NotFound.

The implementation associates actions with the
New-Store and Highwater events as well as initially
creating the linked lists that will be used by this pol-
icy. When an object is first stored in the cache, the
removal policy determines whether another cache
already caches the object. If the object is already
cached it is stored in the Duplicate linked list; oth-
erwise it is stored in the Unique linked list. When a
Highwater event occurs, the cache attempts to purge
objects that are cached by other caches. The High-
water action requires that we doublecheck that the
objects are still cached by a neighboring cache since
one of the neighbors may have removed it.

4 Infrastructure Design and Imple-
mentation

We have implemented two caching systems that
are based on our extensible caching infrastructure.
The first, DavisSim, is an event-based cache sim-
ulator. The second, PoliSquid extends the popular
Squid [20] web cache by adding the ability to specify
cache policies. We have used an event based design
for implementing the caching systems. The event-
based design matches well with the implementation
of Squid, which uses events to handle asynchronous
I/O. When an event occurs the caching infrastruc-
ture will determine whether an action is attached to
that event and execute all attached actions. Below
we briefly describe the Cachel interpreter, DavisSim,
and PoliSquid.

CachelL Interpreter: We have implemented an in-
terpreter that is invoked for executing actions spec-
ified in CacheL. Our current implementation uses a
recursive descent interpreter and does not transform
the input into an optimized abstract representation.
As a result, each execution of an action requires a
parsing step. In future versions, we plan to store the
abstract representation within the cache in order to
avoid the overhead of parsing a policy script every
time it is executed.

DavisSim: is based on the Wisconsin Cache Simu-
lator!. Tt uses a pre-processed web trace. This web
trace contains the time of request and server, docu-
ment and client identifiers. Additional information

I Available at:
webcache-simulator.html

http://www.cs.wisc.edu/"cao/

about the object, such as last modified time, size,
and perceived latency, are included in the trace.
Each request in the trace causes either a New-
Store event if an object is not already cached, or
an Access-Inline event if the object is cached. We
do not support Routing events at this time because
DavisSim does not simulate cooperative caching.

The cache operations allow scripts to store objects
in the cache and purge objects to make more space.
Internally the simulator maintains statistics about
true/false hits, true/false misses, and latencies. A
true hit occurs when the object being requested hits
in the cache and the object has not been modified
from the version stored in the cache. If the object
was modified it is considered a false hit. Similarly,
if an IMS request is generated and the object has
been modified we refer to this as a true miss, oth-
erwise a false miss. In some of our experiments, we
utilize Cachel to provide additional statistics. This
is useful when we want to keep statistics about two
different types of objects.

PoliSquid: allows us to load Cachel scripts speci-
fied by the cache administrator in a configuration
file. We store policy files as another object in the
cache. When an event occurs for an object, the pol-
icy executor looks up the URL associated with that
script and then passes this to the interpreter.

5 Analysis

We now analyze the performance behavior of the ex-
tensible caching infrastructure. The primary goals
of analysis are:

e Do caches benefit from supporting customizable
policies?

o What is the overhead of adding extensibility to
a caching system?

In the remainder of this section, we describe the
experiments we have conducted in order to address
the above questions.

5.1 Effectiveness of Customizable

Caching Policies

In this subsection, we analyze the performance
of the extensible caching infrastructure when the
clients, caches and origin servers implement differ-
ent caching policies. We consider the benefit of
client, cache and server customized policies through
three experiments. In the first two experiments, we
use DavisSim to evaluate the effects on the cache.
We examine a weeks worth of the DEC Squid traces?
in our simulations. We further refine the dataset
for coherency experiments by removing files with-
out last modified times. These requests are ignored
because we want to get an idea of how changing
factors in the TTL computation affect coherency.
We also remove those documents that are requested
only once. Experiments involving removal policies
use all requests in the week, and use an optimal
prediction of whether a file has changed.

We make the following assumptions in the cache
simulator. We use the LFU algorithm by default
unless otherwise stated for cache removal. We use
a value of £k = 0.5 in the TTL algorithm (Equa-
tion 1) to decide coherency unless otherwise stated.
If a new request exceeds the size of the cache, then
the request is considered a miss and is not stored in
the cache. The simulator creates high water events
when the size of the documents stored in the cache
exceeds 95% of the cache size. The cache discards
documents until the stored documents occupy less
than 90% of the cache size.

5.1.1 Client-Customized Policies

We perform two experiments that look at the effects
of different clients selecting a different factor in the
TTL calculation of document freshness. The first
experiment explores the benefit of allowing clients
to specify different factors in the TTL calculation.
In this experiment, we subdivide the clients into
two groups: strict clients and lax clients. The strict
clients have minimal tolerance for web objects that
have changed. As a result they utilize a small con-
stant (k = 0.001) in the TTL calculation. How-
ever, this small constant penalizes the lax clients
that can tolerate some old information. In Figure 4,
we show the results of the experiment, varying the

2Provided by Compaq at: ftp://ftp.digital.com/pub/
DEC/traces/proxy/webtraces.html

100

T T T
Lax Clients True Hits —+—
Lax Clients False Hits ---x---
Strict Clients True Hits ---*--

Strict Clients False Hits &

Hit Rate (%)

a0 | 4

0 0.05 0.1 0.15

0.2 0.25 0.3 0.35 0.4 0.45 05
TTL Modifier (for lax clients)

Figure 4: Cache Hit rates when different coefficients
are used for lax clients.

100 T T
Lax Clients —+—
Strict Clients ---x---

Hit Rate (%)

8 10 12 14 16
Cache Size (GB)
Figure 5: Change in latency when half of the cache
clients utilize a restrictive caching policy and the
others use a variable caching policy.

TTL constant for the lax clients. The graph plots
the true/false hit rates achieved by the clients. The
strict clients have a low true hit rate because they
require many IMS requests to verify coherency, or
false misses. As a tradeoff however, they minimize
the number of false hits to about 0.3%. In contrast,
the lax clients achieve hit rates 10 times the level
of the strict clients at the cost of a higher false hit
rate of 4.5%. This experiment demonstrates that it
is desirable to allow clients to specify their desired
level of coherency.

In the second experiment, we look at the effects of
changing the cache size on multiple coherency poli-
cies. In this experiment we use a constant k& of 0.5
for the lax clients. The results of the experiment,
shown in Figure 5, demonstrate that hit rates im-
prove as the cache size increases for the lax clients.
However, we see the hit rates decrease for the strict

T
75% Cache Store —+—

A x 25% Cache Store ---x---

Percentage Change in Hit Rate

3
Cache Store Size (GB)

Figure 6: Percentage Differences in hit rates for ob-
jects subdivided by incoming network

clients. The reduction in the hit rates for the strict
clients is due to the greater reuse of the objects by
the lax clients. When the cache is small, it is more
likely that an object will not exist in the cache and
therefore the the lax clients will miss more often, re-
sulting in objects that are fresh for small k values.
However, as the cache size increases, the lax clients
requests will generate more hits, thereby decreas-
ing the number of objects that are fresh for small k
values.

5.1.2 Cache-Customized Policies

In this experiment, we explore cache-customized
policies that take advantage of the network envi-
ronment near a cache. We assume that the cache’s
host has a high-bandwidth and low-bandwidth net-
work link. The cache administrator would like to
allocate a greater percentage of the cache to docu-
ments arriving over the low-bandwidth link in order
to increase the hit rate on that link.

DavisSim uses a user-defined function that deter-
mines whether incoming requests traverse the high-
bandwidth or the low-bandwidth link. We subdi-
vide the cache into two portions: we use 75% of the
cache store for the slow link, the rest for the other
link. The resulting hit rates are shown in Figure 6.
The graph represents the difference in the hit rate
when the cache is subdivided to hit rates when the
cache is not subdivided and demonstrates that at
small and large cache sizes there is not much bene-
fit to using subdivided caching policies. However, at
medium cache sizes the hit rate for the slow link is
improved by 2%, with a decrease in the hit rate for

100

Web Objects (%)

a0 | 4

Time (days)

Figure 7: Percentage of objects accessed within z
days of the original access

3500

3000 —

2500 B

2000 —

1500 B

Extra Incurred Bandwidth (kB)

1000 —

500 - B

10 15 2‘0 25
Days Before Removal
Figure 8: Extra Bandwidth necessary if files are re-
moved early

documents over the fast link. These results, demon-
strate that subdividing the cache can adjust the hit
rates for different sets of objects when the cache is
large enough that objects are not removed immedi-
ately and not so large that all objects fit within the
cache.

5.1.3 Server-Customized Policies

In this experiment we explore the benefits of using
information based on the server’s web content for
customizing caching policies. The idea in this ex-
periment is to consider a web newspaper that adds
new articles each day. We use NLANR logs from De-
cember 21, 1998-February 2, 1999 to investigate the
unique behavior of news articles and images from
the ABCNews web site®. The files in our trace rep-

3http://www.abcnews . com/

resent 29 MB of requested objects. In Figure 7, we
plot the time over which a document continues to
be requested. We notice that 87% of the web ob-
jects are not accessed after 24 hours from the initial
request. Therefore, by taking advantage of the ob-
ject semantics to remove objects early, we can make
room for other objects in the cache. To evaluate
the benefits, we apply a specialized removal policy
that purges documents from the cache after a given
number of days have passed. Figure 8 shows the
additional bandwidth required to access files that
were removed early. If documents are purged af-
ter 1-2 days, there will be .5-1.5 MB of documents
that will be requested that were previously cached.
Most of this bandwidth comes from a few files. A
smarter policy would allow exceptions to the one-
day purge rule for these few files. We conclude that
using the document semantics can provide a benefit
in decreased cache utilization by files that won’t be
accessed again and a slight decrease in hit rate for
a few popular pages.

5.2 Overhead of Customizable Policies

We now describe an experiment for assessing the
overhead of using extensible policies. We wish to
measure the overhead of generating events, inter-
preting Cachel scripts, and taking appropriate ac-
tions. Our experiment involves specifying a script to
handle Access-Inline events. These events occur ev-
ery time a hit occurs for an object. Therefore, when
we ran the experiment we specified a trace where we
achieve a 100% hit rate after a warmup period. In
our experiment we wrote the coherency policy con-
tained within Squid, including special cases, as a
script, which consisted of 20 lines of Cachel code.

We use three 350 MHz Pentium IT PCs running the
Linux operating system to perform the experiments.
Two machines were used as client/server processes
for the Polygraph* web proxy performance bench-
mark. We performed an experiment to measure the
latency observed in accessing a 4KB file. We use a
single process accessing the files with a short delay
between the requests. The experiment measures the
mean response latency.

We find that the latency of requests using PoliSquid
to calculate the coherency policy incurs an 8.5%
overhead compared to the latency for Squid. Fig-

4Polygraph is available at:
Polygraph/

http://www.ircache.net/

25

15+ B

Running Time Normalized to Unmodified Squid

0.5 —

° ‘ ‘ 3‘0 4‘0 5‘0 6‘0 7‘0 80
CachelL Script Size (lines)

Figure 9: Response overhead of PoliSquid normal-
ized to the running time for Squid using the same

requests.

ure 9 contains the results as we vary the number of
lines in the coherency policy script. The non-linear
result is due to the manner in which different length
scripts were created. Scripts were created as follows:

e 1-20 lines: repetitive TTL calculations (Equa-
tion 1), the most expensive statement in the
coherency policy script;

e 20 lines: duplicating squids hard-coded policy
in squid;

e 204 lines: inserting additional TTL calcula-
tions.

We note that an actual coherency policy would be
shorter than 20 lines because it would be customized
to the attributes of the object. For example, it
would not use conditional statements to determine
which coherency policy to employ, rather different
policies would be attached depending on the ob-
ject’s attributes. In actual operation, the overheads
would be less apparent due to larger file sizes, and
I/0 overheads due to network and disk accesses by
a large group of users. In addition, our modified
version of Squid has not been optimized, which we
believe can reduce the overhead substantially.

6 Related Work

There are two relevant areas of previous work that
relate to extensible web caching: techniques to al-

low customization of caches and schemes that give
greater control over caches to servers.

6.1 Cache Customization

The Squid web cache [8, 22, 20] is one of the more
popular web caches currently deployed in caching
architectures. Squid supports composition of and
parameterization of policies. For example, Squid
uses expiration, time-to-live (TTL), or constant life-
time coherency policies. The policy depends on
whether an expiration or last-modified time was in-
cluded with the object. Squid allows the cache ad-
ministrator to customize caching policies through
modification of parameters and weights. This dif-
fers with our infrastructure, which allows a cache to
specify different policies using an interpreted lan-
guage.

An alternative for communicating between caches
and organizing the hierarchies is discussed by Zhang
et al. [25]. Their adaptive technique for organizing
caches uses separate hierarchies for different servers,
to avoid the overload that would occur at a single
server. The adaptive cache configures itself and al-
lows hosts to enter and exit cooperation.

Nottingham’s work in optimizing object freshness
controls [16] considers techniques to avoid object
validation. He evaluates optimum parameters for
freshness calculation that depend on the object type
and the location from which the object was re-
trieved.

Other languages have been proposed for use on the
web. One of these is WebL [13], used for document
processing. The goal of this system is to provide
both reliable access to web services through the use
of service combinators and techniques for gather-
ing information and modifying documents through
markup algebra. WebL is intended for a different
purpose than Cachel, and in fact combining the two
may be fruitful: it would allow caches to make sim-
ple customizations of web pages instead of forcing
these requests to be handed by the origin server.

6.2 Server Control

Caughey et al. [7] describe an open caching archi-
tecture for caching web objects that exposes the

caching decisions to users of the cache. Open
caching allows both clients and servers to customize
the caching infrastructure. Customization is per-
formed through object-orientation of resources.

Push-caching [11] and server dissemination [2] are
server-driven techniques for caching of web objects.
An origin server contacts caches, performs the tasks
of locating objects, maintains concurrency and re-
moves objects from caches. Push caching allows
servers to set policies for objects, but requires the
server to negotiate resources with caches and main-
tain state about which cache maintains copies of
objects.

Active Cache [5] allows Java programs to be exe-
cuted in the cache. The objective of this scheme is
to be able to cache dynamic objects within caches.
As a result, this scheme does not provide the same
abilities to modify the behavior of the caching poli-
cies.

7 Summary

Caching systems are becoming common. However,
caches are often limited in the policies that can be
applied to cached web objects. This paper describes
an infrastructure that provides customizable and
dynamic policies for web objects.

We have designed an infrastructure that allows
caches, web authors, and clients to customize poli-
cies. We have used this design to simulate a web
cache and used traces from the DEC Squid cache
and the NLANR cache infrastructure to assess dy-
namic and customizable caching policies. We have
incorporated Cachel into Squid in order to assess
the overhead of using an interpreted language to
handle policies. Performance analysis shows that
customized policies indeed allow caches to adapt
to the requirements of clients, servers, and other
caches. The overhead of adding customizable poli-
cies to a cache system is moderate.

Areas of future work include: efficiency, and a
toolkit to provide several different policies already
created to simplify the work of cache administrators
and web authors.

Availability

More information on this project can be found
by visiting the CachelL web page (http://pdclab.
cs.ucdavis.edu/qosweb/Cachel/). This page in-
cludes a formal description of the Cachel grammar,
script files used in running the experiments in this
paper, source code for the DavisSim cache simula-
tor, and patches that allow the embedding of our
infrastructure within Squid.

Acknowledgements

We gratefully acknowledge Earl Barr, Brant Hashii,
Peter Honeyman, Scott Malabarba, and the anony-
mous reviewers for their valuable suggestions.
Thanks also to Tom Kroeger, Jeff Mogul, Carlos
Maltzahm, and Digital Equipment Corporation for
making the DEC logs available. We thank Duane
Wessels at NLANR for making the NLANR cache
logs available. The NLANR data used in some sim-
ulations were collected by the National Laboratory
for Applied Networks Research under National Sci-
ence Foundation grants NCR-9616602 and NCR-
9521745.

References

[1] J. Fritz Barnes and Raju Pandey. CacheL: Lan-
guage support for customizable caching policies.
In Fourth International WWW Caching Workshop,
San Diego, CA, USA, 31 March—2 April 1999.

[2] Azer Bestavros. WWW traffic reduction and load
balancing through server-based caching. IEEE
Concurrency, 5(1):56-67, January—March 1997.

[3] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and
Scott Shenker. Web caching and Zipf-like distribu-
tions: Evidence and implications. In Proceedings
of IEEE INFOCOM °99, the Conference on Com-
puter Communications, New York, NY, USA, 21—
25 March 1999.

[4] Pei Cao and Sandy Irani. Cost-aware WWW proxy
caching algorithms. In Proceedings of the USENIX
Symposium on Internet Technologies and Systems,
pages 193-206, Monterey, CA, USA, 8-11 Decem-
ber 1997.

[6] Pei Cao, Jin Zhang, and Kevin Beach. Active
cache: Caching dynamic contents on the web.

[10]

[11]

[12]

[13]

In Middleware ’98. IFIP International Conference
on Distributed Systems Platforms and Open Dis-
tributed Processing, pages 373-88, Lake District,
UK, 15-18 September 1998.

Vincent Cate. Alex — a global filesystem.
In USENIX File Systems Workshop Proceedings,
pages 1-12. USENIX, May 1992.

Steve J. Caughey, David B. Ingham, and Mark C.
Little. Flexible open caching for the web. In Pro-
ceedings Sixth International World- Wide Web Con-
ference, volume 29(8-13) of Computer Networks
and ISDN Systems, pages 1007-17, Santa Clara,
California, USA, 7-11 April 1997.

Anawat Chankhunthod, Peter B. Danzig, Chuck
Neerdaels, Michael F. Schwartz, and Kurt J. Wor-
rell. A hierarchical Internet object cache. In Pro-
ceedings of the USENIX 1996 Annual Technical
Conference, pages 153-63, 22-26 January 1996.

Li Fan, Pei Cao, Jussara Almeida, and Andrei Z.
Broder. Summary cache: A scalable wide-area
web cache sharing protocol. In ACM SIGCOMM
’98 Conference. Applications, Technologies, Archi-
tectures, and Protocols for Computer Communica-
tion, volume 28(4) of Computer Communication
Review, pages 254—65, Vancouver, BC, Canada, 2—
4 September 1998.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and
T. Berners-Lee. Hypertext transfer protocol —
HTTP/1.1. RFC 2068, UC Irvine, Digital Equip-
ment Corporation, M.I.T., January 1997.

James S. Gwertzman and Margo Seltzer. The
case for geographical push-caching. In Proceedings
Fifth Workshop on Hot Topics in Operating Sys-
tems (HotOS-V), pages 51-5, Orcas Island, WA,
USA, 4-5 May 1995.

Terence P. Kelly, Yee Man Chan, Sugih Jamin, and
Jeffrey K. MacKie-Mason. Biased replacement poli-
cies for web caches: Differential quality-of-service
and aggregate user value. In Fourth International
WWW Caching Workshop, San Diego, CA, USA,
31 March—2 April 1999.

Thomas Kistler and Hannes Marais. WebL — a
programming language for the web. In Seventh
International World Wide Web Conference, vol-
ume 30(1-7) of Computer Networks and ISDN Sys-
tems, pages 259-70, Brisbane, Qld., Australia, 14—
18 April 1998.

P. Krishnan and Binay Sugla. Utility of co-
operating Web proxy caches. In Seventh Interna-
tional World Wide Web Conference, volume 30(1-
7) of Computer Networks and ISDN Systems, pages
195-203, Brisbane, Qld., Australia, 14-18 April
1998.

Ari Luotonen and Kevin Altis. World-wide web
proxies. In First International Conference on the

[16]

[17]

18]

[25]

World-Wide Web, volume 27(2) of Computer Net-
works and ISDN Systems, pages 147-54. Elsevier
Science BV, 1994. Available from: http://wuw.
cern.ch/PapersWWW94/luotonen. ps.

Mark Nottingham. Optimizing object freshness
controls in web caches. In Fourth International
WWW Caching Workshop, San Diego, CA, USA,
31 March—2 April 1999.

Alex Rousskov and Duane Wessels. Cache digests.
In Third International WWW Caching Workshop,
Manchester, UK, 15-17 June 1998.

NLANR hierarchical caching system usage
statistics. http://www.ircache.net/Cache/
Statistics/.

Renu Tewari, Michael Dahlin, Harrick M. Vin, and
Jonathan S. Kay. Beyond hierarchies: Design con-
siderations for distributed caching on the internet.
Technical Report TR98-04, The University of Texas
at Austin, 1998.

Duane Wessels. Squid internet object cache. http:
//squid.nlanr.net/.

Duane Wessels. Intelligent caching for world-wide
web objects. In Proceedings INET ’95, Honolulu,
HI, USA, 27-30 June 1995.

Duane Wessels and K. Claffy. ICP and the squid
web cache. IEFEE Journal on Selected Areas in
Communication, 16(3):345-357, April 1998. Avail-
able from: http://ircache.nlanr.net/ " wessels/
Papers/.

Stephen Williams, Marc Abrams, Charles R. Stan-
dridge, Ghaleb Abdulla, and Edward A. Fox. Re-
moval policies in network caches for world-wide web
documents. In ACM SIGCOMM ’96 Conference
Applications, Technologies, Architectures, and Pro-
tocols for Computer Communications, volume 26(4)
of Computer Communications Review, pages 293—
305, Stanford, CA, USA, 26-30 August 1996. ACM.

Roland P. Wooster and Marc Abrams. Proxy
caching that estimates page load delays. In Sizth
International World Wide Web Conference, volume
29(8-13) of Computer Networks and ISDN Systems,
pages 977-86, Santa Clara, CA, USA, 7-11 April
1997. Elsevier.

Lixia Zhang, Scott Michel, Khoi Nguyen, Adam
Rosenstein, Sally Floyd, and Van Jacobson. Adap-
tive web caching: Towards a new caching architec-
ture. In Third International WWW Caching Work-
shop, Manchester, UK, 15-17 June 1998.

