CacheLl: Language Support for Customizable Caching Policies

J. Fritz Barnes

Raju Pandey

Parallel and Distributed Computing Laboratory
Computer Science Department
University of California, Davis, CA 95616
{barnes, pandey}@cs.ucdavis.edu

Abstract

Web caching has emerged as one solution for im-
proving client latency on the web. Cache effective-
ness depends on the policies used to route requests
to other caches and servers, maintain up-to-date
web objects (HTML files, images, etc.) and remove
objects from the cache. Traditional caches apply the
same policies to all web objects; however caches lack
the ability to apply specialized policies to a subset of
cached objects. We present an extensible caching in-
frastructure in which cache administrators, servers,
and end users can customize how web objects are
cached, replaced, and kept consistent. This paper
presents a domain-specific programming language,
Cachel, for defining customizable caching policies.
The resulting infrastructure will lead to the devel-
opment of a more efficient and customizable web
caching solution.

1 Introduction

Web caching [11, 17, 4] improves client latency
through the use of intermediary servers, or caches,
that accept HTTP requests from clients. When a
request is made of the cache, the cache returns a
copy of the web object being requested. If a replica
does not exist, the cache contacts other caches or
the origin server to retrieve a copy.

Caches improve web performance by migrating
web objects closer to clients. Migration reduces the
number of network hops a clients request must tra-
verse, thereby reducing propagation delay and net-
work load. Further, by not contacting the origin
server, caches reduce server load. Caches take ad-
vantage of temporal, geographical, and spatial lo-

calities [7] of web objects.

The behavior of a cache is characterized by the
following;:

e On receiving a request, the cache checks if the
requested web object is available locally. If
the object is available, the cache determines
whether the local copy is fresh, or up-to-date,
using a coherency policy. Fresh documents can
be returned to the user. Stale documents ne-
cessitate making an If-Modified-Since (IMS)
request to determine whether the document has
been modified.

o If the web object does not exist locally, the
cache contacts other caches or the origin server
to locate the document. The cache uses a rout-
ing policy for deciding how it should locate a
document.

e Once the cache has retrieved the object, it uses
a placement policy to determine whether the
cache should make a copy of the object in the
local store.

e When the local store exceeds a predefined high-
water usage of resources, the cache removes
enough objects from the object store to reach
a predefined low-water mark. A cache uses a
removal policy to determine which web objects
to remove.

Removal policies can have a significant effect on
the cache hit rate, because removing web objects
that will be accessed again causes misses. Previous
work has explored the performance of several re-
moval policies: Least-Recently-Used (LRU), Least-
Frequently-Used (LFU), Perfect LFU [2], removal
of large objects from caches [19], hybrid techniques

utilizing estimation of client latencies [20], and coop-
erative caching techniques [9, 10]. These techniques
demonstrate similar performance when applying the
removal policy to all web objects. The algorithms
each have special cases in which they perform well.
An analysis of cooperating caches [10] concluded
that dynamic policies that can turn on and off coop-
eration might be useful. Ideally it would be useful
to apply a removal policy to the set of objects for
which it performs well.

Caches determine whether documents are stale.
Stale documents must be verified to determine
that they are still up-to-date. Maintaining co-
herency affects the performance of caches because
coherency may require checks to see whether a
document is up to date. Current caches [17,
16] utilize a combination of MIME headers [6]
(Last-Modified, Expires, and Cache-Control) to
determine whether a web object is fresh. Servers
can specify when an object is no longer valid
with the Expires header. Alternatively, a maxi-
mum age, or time a document can spend in the
cache before being verified can be specified with
the Cache-Control! header. When a request is
made for a stale document the cache will make an
If-Modified-Since request to the origin server.
The server will only transmit the document if the
document has changed. Coherency policies are lim-
ited by the HTTP standard. Caches need informa-
tion from the origin server to determine coherency.
Passing this information between servers and caches
requires recognized headers. Alternatively, if servers
could inform caches how to handle coherency for
their documents, the server would not be limited
defining coherency.

Current caches support a rich set of policies for
routing, coherency, and removal of web objects, yet
there are many limitations. Routing policies cannot
discriminate on the type of content or the semantic
information of web objects. Removal policies have
not explored applying different decisions to different
objects although the performance in caches of ob-
jects can vary widely. For example, images result in
a hit rate that is four to five times greater than hy-
pertext (HTML) files [14]. We believe caches should
be customizable while running, and should export
interfaces that allow servers to participate in how
objects are handled. Our solution uses a domain
specific language to specify policies. We discuss
how programmable policies provide customization

IThe Expires header is defined for use with HTTP/1.0,
the Cache-Control header is defined for use in HTTP/1.1

and allow servers to participate in defining how a
cache stores objects originating from that server.

This paper is organized as follows: we discuss the
need for customizable caching policies in Section 2.
In Section 3, we follow this up with a discussion
of Cachel. a domain specific language for specify-
ing caching policies, and discuss how caches can use
Cachel to create customizable policies. We discuss
some example policy implementations in Section 4.
This paper concludes with a discussion of previous
work, Section 5, and a summary and future work,
Section 6.

2 The Case for Customizable Policies

Caching systems utilize predefined policies for
cache management and document consistency. In
the previous section we have discussed some com-
monly used policies. These policies assume that all
documents are similar and therefore a single policy
is applied to all documents. However there are often
differences among web objects; some examples are
listed below.

e The author of a set of web pages can elimi-
nate the concerns of coherency for images and
applets. Coherency concerns are ignored, be-
cause the HTML objects that reference the im-
ages and applets can utilize a new name for
modified images and applets.

e Summary pages which change on a set sched-
ule. These pages include: index pages, table of
contents for web magazines and weather fore-
casts.

e The news articles on web magazines and news-
papers have a time of life during which they
will be accessed.

e A reference material’s popularity is indepen-
dent of time. Accesses to these pages are more
likely to change due to a paradigm shift rather
than time.

In the above categories we list general types of ob-
jects. One could also categorize web objects by
server location. Fetching web objects that are on
international networks have different performance
characteristics than nearby networks.

In the rest of this section we discuss three exam-
ples that exemplify why customizable policies are
important in today’s caching systems. We discuss
an example of a daily Internet magazine, multiple
caching hierarchies defined by content, and a scheme
for hierarchical removal of documents.

We first consider caching policies for a daily Inter-
net magazine designed to improve the hit rate in the
cache for articles from the magazine. The following
aspects of the news magazine require a customizable
coherency policy.

e The table of contents or the magazine home
page should be regularly reloaded. If there is
enough demand for the magazine by the cache
users, the cache can pre-load the magazine con-
tents.

e The current edition can specify the headline ar-
ticles or those articles that are most likely to be
accessed. The cache makes use of this informa-
tion to pre-fetch these articles.

e Deadlines can be applied to the articles in the
cache. This is particularly useful for a news
magazine as it is likely that articles will have a
given time-of-life that is dependent on the client
demographics of a cache and the rate at which
new editions are created.

Allowing the news magazine administrators to spec-
ify the desired policies for the web objects associated
with the magazine allows them to take advantage of
the three items outlined above.

A second example of the usefulness of providing
customized caching policies is an organization in
which there are multiple caches utilized by differ-
ent populations. An example of this is a univer-
sity setting where the cache used by members of
the physics department is likely to have high hit
rates for physics documents. However the same de-
partment is likely to have a much lower hit-rate for
biological issues. In this instance, the physics server
could create cache entries for the biological docu-
ments, but would likely find the documents at a
cache in the biology department. Although the bi-
ology department cache could be specified as a peer,
it might be advantageous to make use of different
hierarchies dependent on the type of documents.

A final example involves cache removal policies.
Consider a hierarchy of documents that can logically

reload

Y

uncachable
request
Not in Cache In Cache, Fresh
e
Purged
¢) Get IMS
expires
n Cache, Stale 4+
Tequest

Figure 1: States in a cache

cacheable

accessed

be thought of as a single entity, such as an article
that is spread out across several different web ob-
jects. When one of the items in the article expires
it may be appropriate to also remove the other items
from the cache.

3 The Cachel Language

In this section, we will discuss language char-
acteristics of CacheL. Our goal is to create a lan-
guage that can be used by clients, web servers, and
cache administrators in order to create customizable
caching policies. Our system provides the ability to
specify different routing, placement, and coherency
policies for objects, as well as changing the way in
which removal of objects is performed. In this sec-
tion, we discuss a simple example to introduce the
language. We then discuss some of the characteris-
tics of the language. We follow this by giving details
of how the language can be implemented.

3.1 Overview

A cache combines local policies defined by the
cache administrator and policies specific to web ob-
jects defined by the server administrator from which
the objects originated. Cachel is used to specify ac-
tions that are to be taken when an event occurs for
a web object or set of objects. We are concerned
with the events that cause changes in the state of a
cache. Figure 1 shows a state diagram of the differ-
ent states for an object in the cache and the events
that cause a cache to change from one state to an-
other state.

As an example, we consider a pre-fetch caching

Event: New-Store
use_count = Q

Event: Access-0ffline
use_count = use_count + 1

Event: Stale
if (use_count > GetMime("X-Cache-Policy-Count"))
CacheFetchIMS(CurrentURL())
use_count = 0
endif

Figure 2: Example policy that pre-fetches docu-
ments when they expire

policy for pages that change often. When we at-
tempt to decide whether to pre-fetch the page, we
want to take into account the popularity of the page
which we are pre-fetching. This policy would be
appropriate for network magazines or organization
pages that change periodically on a set schedule.

In Figure 2, we show this pre-fetch policy. The
policy specifies actions to take when New-Store,
Access-0ffline, and Stale events occur in the
cache. The policy specifies a use counter,
use_count, that measures how often the web ob-
ject is accessed. Whenever the web object enters
the cache, a New—-Store event occurs. Policy actions
are executed when their corresponding events occur.
For instance, in this example the New-Store event
initializes the use_count variable to zero. Web ob-
ject accesses cause Access-0ffline events. For
these events the use_count is incremented. When
the object expires a Stale event occurs, the pol-
icy determines if the number of accesses is greater
than the server’s predefined requirement specified
by the X-Cache-Policy-Count MIME header. If
this requirement is met, the policy instructs the
cache to update the current object by executing
an HTTP GET IF-MODIFIED-SINCE (IMS) request.
The prefetch policy allows us to change the way in
which a set of objects is maintained by the server. In
this example, it allows us to eliminate the necessity
of making IMS requests for a set of objects.

We now describe the details of the language.
CacheL consists of three components: events, ac-
tions, and operations. Changes in cache and object
states trigger events. Policy scripts can register ac-
tions or code to be executed when an event occurs.
Cache operations allow the script to control how the
cache reacts to these events.

3.2 Cache Events

The building block for providing extensible caches
is the use of events within the cache. Administrators
can write actions to enforce a policy for an arbitrary
set of web objects. We consider the following events.

Route events occur when objects must be re-
trieved. The action must send an HTTP re-
quest to a cache or the origin server, return
an alternate document in the cache, or respond
with an error.

New-Store events occur after new documents are
retrieved or Get IMS requests for a stored doc-
ument return a new document.

Access-Inline events occur when requests are
made for a document in the cache. These
events occur during retrieval of the document
for the client. Scripts can perform checks for co-
herency as well as modify MIME headers that
are passed to clients.

Access-Offline events occur when requests are
made for documents in the cache. Execution
of actions associated with this event are inde-
pendent of the steps to actually retrieve a web
object and therefore these actions do not affect
the retrieval time of a web object.

Stale events occur when the cache must verify that
the cached document has not changed on the
origin server. Stale events occur independent
of the requests for an object.

High-Water events occur when the cache is full.

Sort events occur when the cache compares two dif-
ferent objects to determine which of the two
documents should be removed from the cache.

Purge events occur when a document is removed
from the cache.

Timer events occur as a result of policy-defined
alarms.

3.3 Specifying Actions with CacheL

Policy scripts use CacheL to specify actions in re-
sponse to an event. Actions consist of a set of cache
operations and expressions. Customized policies

can be created using these actions. Cache opera-
tions include contacting other caches and servers, af-
fecting documents stored locally, and setting alarms
to schedule an action in the future. We enumerate
some of the pertinent cache operations:

e CacheFetch(URL): requests a web object
from the object’s originating server.

e CacheFetchIMS(URL): performs an
If-Modified-Since request for the given
web object.

e CachePost(URL, Data): contacts a host
with a post request and includes the Data in
the request. This is primarily used for actions
to pass information back to their originating
server.

e CacheICPFetch(HOST, URL):requests a web
object from another cache using the Internet
Caching Protocol.

e CacheResponse(URL): sends a local copy of
URL to the client as a response to the clients
request.

e CachePurge(URL): removes the specified ob-
ject from the local store.

e CacheStore(URL): instructs the cache to
store the object that is being requested.

e CacheSetTimer(Date, Time): sets an
alarm to go off.

e Cachelog(Message): provides a debugging
mechanism that writes the given message to the
cache’s log file.

3.3.1 Expressions

Cachel saves the state associated with a policy
through the use of variables. The language supports
relational, arithmetic, and logical expressions; con-
ditional execution; set, array, numeric, and string
data types; and iteration over sets. The lan-
guage also provides special facilities for manipulat-
ing date/time values as well as MIME headers asso-
ciated with objects. We ignore these details here.

3.3.2 Granularity of Policy Specifications

Policies may apply to a single object as well as sets
of objects. Policies that govern a single document,
such as coherency and routing, are applied to a sin-
gle object, although the same policy may be reused
for many objects. Our example policy which pre-
fetches objects when they expire is an example of a
policy specification on the object level.

Removal policies often deal with multiple objects.
This policy utilizes characteristics of a set of objects
in order to make decisions as to which objects to
remove from the cache store.

Variable state in Cachel is associated at the gran-
ularity of the policy. If a policy is applied on an
object level, then variables in the policy are scoped
by objects. For example, two documents utilizing
the pre-fetch on expire policy would have different
usage counters. Similarly policies associated with
a set of documents would scope the variables with
the set of documents. CachelL also provides policy
variables which can be accessed by a given policy
when operating on any object or set of objects.

3.4 Associating Policies with Web Ob-
jects

A cache administrator, the person responsible for
the cache, and a server administrator, the person
running the web site from which a web object origi-
nates, define a cache’s policy for an object. We con-
sider techniques utilized by both cache and server
administrators to define the policy applied to a
given web object or set of web objects.

3.4.1 Cache Administrators

Cache administrators can define a set of web pages,
or a MIME header that indicates which policy
should be used for a given web object. At this point
the policy is registered for use with that web object.
In Figure 3, the configuration file specifies the poli-
cies to utilize for the documents on the CNN and
ABCNews web sites. The configuration file specifies
the objects a policy applies to and the URL of the
policy script. Cache administrators can utilize wild-
cards for easy specification of policies applying to
multiple objects at a host or multiple hosts. While

www.cnn.com/index.html
www.cnn.com/features/*
WWW.cnn.com/*
www.abcnews.com/index.html

http://mycache.org/TOC.plcy
http://mycache.org/Article.plcy
http://mycache.org/cnn_removal.plcy
http://mycache.org/TOC.plcy

Figure 3: Entries from a mycache.org’s CacheL configuration file that define web objects to which different
policies are applied. The configuration file can be used to define different policies for the same document.

restricting policy placement to cache administrators
provides limited security,? it restricts the ability of
server administrators who may have the best knowl-
edge of their objects to define the policy mechanisms
appropriate for a given web object.

3.4.2 Server Administrators

In addition to allowing cache administrators to de-
fine policy mechanisms, server administrators can
define policies relevant to the objects on their server.
We consider two techniques for server administra-
tors to specify policies. First, one adds an X-Cache-
Policy MIME header that specifies the URLs of pol-
icy scripts to apply to the object. When a cache re-
trieves an object with an X-Cache-Policy header it
will retrieve the policies if they are not already in the
cache. Then it will apply actions for the web object
so that the desired policies can be enforced. A draw-
back of this mechanism is the additional support
that is needed by the MIME headers and servers for
handling the policy mechanism specification.

The alternative technique is to utilize a
standard directory, e.g. http://www.origin.-
com/cache-policy/, on web servers which can be
checked by caches to locate policies that exist for
web objects at that server. This directory includes
an index that defines the different policies available,
and the web objects to which they apply. This tech-
nique has a disadvantage: if servers do not com-
monly add policies to web objects, this technique
will require overhead to access the policy index at
the server.

3.4.3 Arbitrating Policies

One problem that evolves once we have multiple
policies is how the policies work together. This is
primarily a concern when we wish to remove web

2As long as the administrator is actively responsible for
policy content.

objects, but also crops up in how we maintain co-
herency for objects. With respect to removing ob-
jects, even if a server would like a given object to be
always cached, problems can arise if people are not
accessing the object or worse if all servers wanted
all of their objects cached.

In coherency, clients may want to apply their own
policies for what is considered out-of-date for a given
document. Consider the New York Times online
service, which is updated every ten minutes. Its
publishers would prefer caches to update their home
page with the same frequency. However, the cache
would rather provide information to users with at
most a half hour out-of-date policy in order to take
advantage of geographical locality. Additionally, a
user might recognize the fact that they only read
the New York Time web site once a day, so they
only care that the news is current for today.

Arbitrating between the policies desired by
clients, servers, and the cache can be a complicated
task. We consider the following two forms of ar-
bitration. In arbitrating removal policies, we allow
servers to specify the removal policy for a set of doc-
uments. Therefore, a policy can rank the order in
which a set of documents are to be deleted, but it
does not affect documents that are not inside the
set. When determining the ordering for documents
between different sets we utilize the default removal
algorithm for comparing objects (i.e. LFU, LRU.)

In arbitrating coherency policies we can either ar-
bitrarily specify how the cache will operate (i.e. it
will ignore the server specified expiration times), or
extend servers to allow better arbitration. When we
extend servers, the server should inform the cache of
the expiration time of an object, as well as the max-
imum length of time the server will allow caching of
objects after the deadline. Essentially the server
is specifying a range during which the cache and
clients can specify the policy they desire for the
given web page.

Sprockets International

San Jose

(Gacne A

Figure 4: Cooperative Caches located at different
sites for Sprockets International

4 Examples

We now explore two examples that utilize our
extensible caching system for specifying alternative
policies for subsets of cached objects. The first ap-
plication utilizes the characteristics of an object to
apply different removal policies. The second appli-
cation we consider uses extensible policies to handle
protocol extensions for caches.

4.1 Removal Policy Customization

We examine the ability of a caching administra-
tor to specify how objects should be removed from
the cache store. The caching administrator controls
several caches for an organization distributed across
several different work sites. A cache exists at each
of these sites and a single connection to the Internet
is provided. The bandwidth available to the Inter-
net is limited®, and the bandwidth between cache
locations is plentiful. This scenario is pictured in
Figure 4, where Sprockets International has offices
in San Jose, Boulder and Boston, with a single con-
nection to the Internet. As a result of limited band-
width to the internet, the cache administrator would
like to utilize removal algorithms that favored shar-
ing of objects in caches. However, the administrator
would like to cache popular sites, such as a trade
journal at all sites.

One description of this policy is shown in Fig-
ure 5. This policy utilizes several cache opera-
tions we did not discuss earlier. In particular, we

3Bandwidth limitations are either physical or due to the
fact that the Internet Service Provider charges for bandwidth
use

Actions for implementing caches that prefer removing
objects that are stored in nearby caches.

Event: Compare(objA, objB)
Determine whether object A is in a peer cache

if (CacheDirectoryLookup(objA) != "NotFound")
objACached = false

else
objACached = true

endif

Determine whether object B is in a peer cache

if (CacheDirectoryLookup(objB) != "NotFound")
objBCached = false

else
objBCached = true

endif

if both are cached in peers use the default ordering
if (objACached && objBCached) CacheCompareDefault()

otherwise favor removal of the object in a peer cache
else if (objACached) CacheLess()

else if (objBCached) CacheGreater()

else CacheCompareDefault() endif

Figure 5: Actions used to implement a specialized
removal policy

assume that the cache we are implementing this
policy for has a directory that contains objects
cached by nearby servers [15, 13, 5]. The operation
CacheDirectoryLookup is utilized to consult the lo-
cal entries in the cache table. Additional operations
that are used are the CachelLess and CacheGreater
operations which are used to define the ordering be-
tween two documents in the cache. If the default
cache algorithm is to be used for the comparison
instead of this algorithm, the policy can use the
CacheCompareDefault operation.

In order to only apply the above algorithm to files
that are not located at our popular servers we utilize
the following assignment of the policy to web pages:

The following excerpt from the Cachel configu-
ration file allows us to use a default removal policy
for popular servers and our alternative cost-based
policy, Figure 5, all other objects.

.acm.org/ default
.nytimes.com/ default
.redhat .com/ default
/ http://sprockets.org/Removal.plcy

In this manner, when comparing pages that are not
in the popular list of web sites the default removal
policy for the cache is utilized to determine how to
sort which objects are removed first. If we compare
objects from servers not in our popular list they will

use our defined sorting rules, Figure 5. When we
compare a popular object with an unpopular object
we utilize the default comparison techniques.

4.2 Hit Metering and Usage Limiting

Cachel can also be used to implement new pro-
tocols. An interesting example is hit metering and
usage limiting (RFC 2227) [12]. CacheL provides all
of the facilities necessary to make these changes for
caches. The cache can associate a counter with web
objects to keep track of metering and make the ap-
propriate GET IMS requests to the origin server to
update the count of clients making requests for this
object.

In Figure 6 we describe most of the actions for im-
plementing hit-metering and usage limiting. When
we receive routing events we add headers to signify
to the server that we support hit-metering. Addi-
tionally when routing IMS requests to the server we
append information about the number of accesses to
this page. When a document arrives for storage, we
parse the headers to determine whether we should
provide hit-metering, usage limiting, or both. When
accesses are made, we determine during the request
whether we have exceeded the usage limit. We in-
crement our count of how often a page was accessed
using the Access-0ffline event.

5 Related Work

Caughey et al. [3] describe an architecture for
caching web objects. Their ideas are similar to ours
in that by caching objects they can customize the
way in which the caching occurs. Their goal is to
provide open caching that exposes the caching de-
cisions to the users of the cache. Our work differs
in that we are interested in minimizing the interac-
tion between clients and caches while still providing
customizable policies.

Other languages have been proposed for use on
the web. One of these is WebL [8], which is used
to provide document processing. The goal of this
system is to provide both reliable access to web ser-
vices through the use of service combinators and
techniques for gathering information and modifying
documents through markup algebra. WebL is uti-

lized for a different purpose than CacheL, and in
fact combining the two may be a fruitful. It would
allow caches to make simple customizations of web
pages rather than requiring uncacheable web pages
that utilize CGI scripts at the server.

The squid web cache [4, 18, 16] is one of the more
popular web caches currently deployed in caching
architectures. Squid is designed to be used in a hi-
erarchical mesh of cooperating caches. Caches uti-
lize siblings and parents in order to satisfy requests.
Squid provides static implementation of user poli-
cies. Configuration files allow the cache administra-
tor to make modifications of runtime settings. This
can be used to provide multiple hierarchies for doc-
uments from different domains.

An alternative for communicating between caches
and organizing the hierarchies is discussed by Zhang
et al. [21]. They present an adaptive technique
for organizing caches that make use of multicasting
cache query messages.

Push-caching [7] or server dissemination [1] is
a server-driven technique for caching web objects.
The origin server contacts caches, performing the
tasks of locating objects, maintaining coherency and
removing objects from caches. Push caching allows
servers to set the policies of files, however it requires
the server to negotiate resources with caches and
maintain state about which caches maintain copies
of documents.

6 Summary and Future Work

Caching systems are beginning to become com-
mon, however information producers and cache ad-
ministrators are often limited in the policies that
can be applied to the web objects that are cached.
This paper describes the Cachel language and mod-
ifications to caches in order to provide customizable
policies for web pages.

Currently, we have designed the language spec-
ification for CacheL. The next step will be to im-
plement CacheL using an interpreter and modify an
existing cache in order to provide customization of
user policies. The performance of a working imple-
mentation will be examined.

Variables Used:

bSupport : is hit-metering and usage-limiting supported
bDoMeter : were we instructed to do metering

bDoLimit : were we instructed to do usage limiting

cu, cr : usage counters (cu=use, cr=reuse)

tu, tr : counters for usage-limiting

mu, mr : limits placed on usage (mu=use, mr=reuse)

HOEHHHEHEHHEHRRER

=
=
[

variables are scoped to be associated with a web object

Event: Route(type)

if (type == "Fetch")
Request-Mime-Add("Meter:")
Request-Mime-Append("Connection:", "Meter")
CacheFetch(CurrentURL())

else if (type == "IMS")
if (bSupport)

Request-Mime-Append("Connection:", "Meter")

if (bDoMeter)
Request-Mime-Add("Meter: will-report-and-limit, count = " +
cu + "/" + cr)
cu =cr =0
endif
endif
CacheFetchIMS(CurrentURL())
endif

Event: New-Store

if (Mime-Exist("Connection:", '"meter"))
bSupport = true
if (Mime-Exist("Meter:", "dont-report")) bDoMeter = false endif
if (Mime-Exist("Meter:", "max-uses"))

bDolLimit = true
tu=tr =0

mu = MimeParse("Meter:", "max-uses=%", "DIGIT")
endif
if (Mime-Exist("Meter:", "max-reuses"))
mr = MimeParse("Meter:", "max-reuses=%", "DIGIT")
endif
else
bSupport = false
endif

Event: Access-Inline(type)
if (bSupport)
if (bDoLimit)
if (type = "Fetch") tu++ endif
if (tu < mu) CacheResponse(CurrentID())
else CacheFetchIMS(CurrentURL()) endif
endif
endif

CacheResponse(CurrentID())

Event: Access-0ffline
if (bSupport)
if (bDoMeter)
if (type = "Fetch") cu++ else cr++ endif
endif
endif

Create a POST message to update the hit-counts

that accessed this page
Event: Purge

Figure 6: CachelL actions to implement Hit-Metering and Usage Limiting

7

Acknowledgements

We would like to gratefully acknowledge Earl
Barr, Brant Hashii, Kelsi King, Scott Malabarba
and the anonymous reviewers for their valuable sug-
gestions.

References

[1]

2]

[5]

[6]

BESTAVROS, A. WWW traffic reduction and load
balancing through server-based caching. IEEE
Concurrency 5, 1 (Jan-March 1997), 56-67.

Bresrau, L., Cao, P., Fan, L., PHiLLIPS, G.,
AND SHENKER, S. On the implications of Zipf’s
law for web caching. In 3rd International WWW
Caching Workshop (1998).

CAUGHEY, S. J., INGHAM, D. B.,; AND LITTLE,
M. C. Flexible open caching for the web. In Proc.
Sizth International World-Wide Web Conference
(Santa Clara, California, USA, April 7-11 1997),
vol. 29 of Computer Networks and ISDN Systems,
pp- 1007-1017.

CHANKHUNTHOD, A., DANZIG, P. B., NEERDAELS,
C., ScHWARTZ, M. F., AND WORRELL, K. J. A
hierarchical internet object cache. In Proceedings
of the USENIX 1996 Annual Technical Conference
(1996), pp. 153-63.

Fan, L., Cao, P., ALMEIDA, J., AND BRODER,
A. Z. Summary cache: A scalable wide-area web
cache sharing protocol. In ACM SIGCOMM ’98
Conference. Applications, Technologies, Architec-
tures, and Protocols for Computer Communication
(Vancouver, BC, Canada, 2-4 September 1998),
vol. 28.

FIELDING, R., GETTYS, J., MOGUL, J., FRYSTYK,
H., AND BERNERS-LEE, T. Hypertext transfer pro-
tocol — HTTP/1.1. RFC 2068, UC Irvine, Digital
Equipment Corporation, M.I.T., January 1997.

GWERTZMAN, J. S., AND SELTZER, M. The case
for geographical push-caching. In Proceedings F'ifth
Workshop on Hot Topics in Operating Systems
(HotOS-V) (1995), IEEE CS Press, pp. 51-55.

KISTLER, T., AND MARAIS, H. WebL — a program-
ming language for the web. In 7th International
World Wide Web Conference (Brisbane, Qld., Aus-
tralia, April 14-18 1998), vol. 30 of Computer Net-
works and ISDN Systems, pp. 259-70.

Koruporu, M. R., AND DanLIN, M. Coordi-
nated placement and replacement for large-scale
distributed caches. http://www.cs.utexas.edu/-
users/dahlin/papers.html, November 1998.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

KRISHNAN, P., AND SugLaA, B. Utility of co-
operating Web proxy caches. In 7th International
World Wide Web Conference (Brisbane, Qld., Aus-
tralia, April 14-18 1998), vol. 30 of Computer Net-
works and ISDN Systems.

LUOTONEN, A., AND Arris, K. World-
wide web proxies. In Computer Networks
and ISDN Systems (1994), First Inter-
national Conference on the World-Wide

Web, Elsevier Science BYV. Available from:
http://www.cern.ch/PapersWWW94/luotonen.ps.

MoguL, J., AND LEACH, P. Simple hit-metering
and usage-limiting for http. RFC 2227, October
1997.

Rousskov, A., AND WEssSELS, D. Cache di-
gests. In 8rd Internation WWW Caching Workshop
(1998).

NLANR hierarchical caching system usage statis-
tics. http://www.ircache.net/Cache/Statistics/.

TEWARI, R., DAHLIN, M., VIN, H. M., AND Ay,
J. S. K. Beyond hierarchies: Design considerations
for distributed caching on the internet. Tech. Rep.
TR98-04, The University of Texas at Austin, 1998.

WESSELS, D. Squid internet object cache.
http://squid.nlanr.net/.

WESSELS, D. Intelligent caching for world-wide
web objects. In Proceedings INET 95 (Honolulu,
Hawaii, June 27-30 1995).

WESSELS, D., AND CLAFFY, K. ICP and the
squid web cache. IEEE Journal on Selected Ar-
eas in Communication 16, 3 (April 1998), 345-
357. Available from: http://ircache.nlanr.net/ wes-
sels/Papers/.

WILLIAMS, S., ABRAMS, M., STANDRIDGE, C. R.,
ABpurLLa, G., AND Fox, E. A. Removal poli-
cies in network caches for world-wide web docu-
ments. In ACM SIGCOMM ’96 Conference Appli-
cations, Technologies, Architectures, and Protocols
for Computer Communications (October 1996),
vol. 26, ACM, pp. 293-305.

WOOSTER, R. P., AND ABRAMS, M. Proxy caching
that estimates page load delays. In Computer Net-
works and ISDN Systems (September 1997), vol. 29
of Sizth International World Wide Web Confer-
ence, Elsevier, pp. 977-86.

ZHANG, L., MIcHEL, S., NGUYEN, K., ROSEN-
STEIN, A., FLOYD, S., AND JACOBSON, V. Adap-
tive web caching: Towards a new caching archi-
tecture. In Third International Caching Workshop
(June 15-17 1998).

