
Event-based Composition of Concurrent

Programs?

Raju Pandey James C. Browne

Department of Computer Sciences

University of Texas at Austin

Austin, TX 78712

fraju, browneg@cs.utexas.edu

Abstract. This paper presents a model for concurrent programming,

where programs (concurrent program structures) are represented as com-

position expressions over component programs with suitably de�ned op-

erators. In this model of programming, called Composition bY Event

Speci�cation (C-YES), a composition of programs speci�es that all events

(individual occurrences of named operations, called actions) of compo-

nent programs can execute in parallel, except for a set of events that

interact with each other. Interactions among such events can be speci-

�ed by establishing execution orderings among them. This paper presents

a mechanism, where such interactions are speci�ed by constructing al-

gebraic expressions from a set of primitive interaction expressions and

interaction operators. The primitive expressions model interactions at

the fundamental level of computations, namely, events. The interaction

operators model nondeterministic interactions and interaction over sets

of events.

A mechanism for the representation of concurrent programs, called inter-

acting blocks, is also given. The interface of an interacting block contains,

in addition to the conventional parameters, references to events that may

interact with events of other interacting blocks. The implementation of

an interacting block contains de�nitions of its computations and map-

pings between internal events, and references to these events. Examples

illustrating the properties of the C-YES model are presented in the pa-

per.

1 Introduction

A concurrent program is a composition of a set of component programs. The

components represent certain aspects of a problem that the composite program

models. During an execution of the composite program, the components execute

in parallel and contribute to the overall result by solving sub-problems. They

cooperate and share information and resources with each other. Such coopera-

tion, called interaction, among the component programs arises due to semantic

? This work was supported by Texas Advanced Research Program under grant 003658-

445.

In proceedings of the Sixth Languages and Compilers for Parallel

Computing Workshop 1993

dependencies such as data dependency, resource consistency, resource fairness,

etc., among certain operations of the component programs. The dependencies

impose constraints on how such operations can be executed. A correct execu-

tion of a concurrent program is one where executions of these operations satisfy

any semantic constraints associated with the interactions of the component pro-

grams.

Concurrent programming is di�cult because asynchronous and concurrent

executions of component programs introduce nondeterminism in the way inter-

acting operations can a�ect each other. It is possible that semantic constraints

associated with interactions are not preserved over di�erent executions of a con-

current program. One of the outcomes is that di�erent executions may produce

di�erent results. Mechanisms are needed to ensure that semantic constraints

are preserved during the executions of the component programs. Such mecha-

nisms, called interaction speci�cation mechanisms, are very important aspects

of a concurrent programming model. They in
uence how programs are designed,

implemented, and reasoned with (during veri�cation and debugging).

Many models for concurrent programming have been proposed [And91]. In

most of these models, the components of a concurrent program contain two

kinds of operations: i) simple operations denoting certain computations, and ii)

synchronization operations of the form

if <condition> <operation> else <delay>

The execution of a synchronization operation delays the executing program if

the <condition> is not true. The program starts to execute again once the

<condition> becomes true. A concurrent program execution, thus, consists of

parallel executions of the component programs, where each component repeat-

edly executes a simple operation or a synchronization operation. Interaction

among the components is realized by a set of synchronization operations. The

following characterize the interaction speci�cation mechanisms in these models:

{ Indirect: Semantic dependencies among operations are speci�ed indirectly

through a set of synchronization operations. Conditions in synchronization

operations determine if a component program might violate any semantic

constraints by executing a synchronization operation. If it does so, the pro-

gram is delayed until other component programs execute a set of operations

in order to ensure that the delayed program may proceed to execute the

operation without violating the semantic constraints. Programs, therefore,

a�ect each other indirectly by accessing and modifying elements that a�ect

the validity of synchronization conditions.

{ Operational: Synchronization operations are embedded within the de�nitions

of component programs. One must reason with the logic associated with the

implementation of a program in order to determine how synchronization

operations are used in the program and how they a�ect the executions of

other programs.

{ Noncompositional: The interaction speci�cation mechanisms identify a set

of synchronization operations and their semantics. All interactions must

2

only be realized through these synchronization operations only. There is

no separate mechanism for combining the synchronization operations order

to construct more powerful and abstract synchronization operations. Most

languages use sequential compositional mechanisms (such as if{then{else,

procedure or function composition operators, etc.,) to combine synchroniza-

tion operations.

All of these characteristics make it di�cult to design, implement, and reason

with concurrent programs.

This paper presents a model of concurrent programming, called Composition

bY Event Speci�cation (C-YES). The C-YES model is based on the observa-

tion that concurrency and interaction represent speci�c kinds of semantic rela-

tionships among operations of programs. The relationships underline semantic

independence or dependence among these operations. Semantically independent

operations can execute in parallel. Executions of dependent operations should

occur in an order that preserves any semantic constraints associated with the

interaction.

The C-YES model identi�es individual occurrences of operations, called events,

as the basis for specifying concurrency and interaction relationships. Concurrent

events are not ordered and, therefore, can execute in parallel. Our interaction

speci�cation mechanism identi�es the interaction between two events as the fun-

damental interaction. It models such an interaction by specifying an execution

ordering between the two events. The interaction speci�cation mechanism rep-

resents other interactions by combining fundamental interactions among di�er-

ent events with suitable operators, called interaction operators. The interaction

operators model nondeterministic interactions as well as interactions over sets

of events. The following are the characteristics of the interaction speci�cation

mechanism:

{ Interactions are speci�ed directly and precisely by establishing ordering re-

lations among events.

{ The interaction speci�cation mechanism is compositional: it de�nes mecha-

nisms for specifying fundamental interactions, and for combining interaction

expressions in order to represent more powerful and abstract interactions.

{ The interaction speci�cation mechanism is algebraic. It is possible to reason

with interaction expressions in order to determine how programs a�ect each

other.

{ The interaction speci�cation mechanism captures only the abstractions asso-

ciated with interactions. The primitives and the operators do not depend on

the semantics of their operands (events); it is, therefore, possible to use the

interaction speci�cation mechanism for both shared and distributed memory

programming models.

This paper also presents a mechanism, called an interacting block , for rep-

resenting concurrent programs. A program represented using this mechanism

contains two elements: the �rst is the speci�cation of its computations, and

the second is the identi�cation of certain execution points, called interaction

3

points, where the program may interact with other programs. Interaction points

are abstractions of execution points of a program: they capture those execution

points that may have semantic relationships with the interaction points of other

programs. A concurrent program, therefore, is de�ned by specifying its compo-

nent programs and an interaction expression. The latter determines execution

orderings among the interaction points of the component programs.

Our model separates interaction speci�cations from program speci�cations. It

is, therefore, possible to reuse a program de�nition in many concurrent program

compositions. Also, the model separates how interaction points are used and

how they are de�ned. This allows one to localize changes in either program

implementations or interaction behaviors without a�ecting each other in certain

cases.

The paper is organized as follows: Section 2 contains de�nitions of basic

terms, and their notations. In Section 3, we present the C-YES model. It �rst

describes how programs can be composed and how their interactions can be spec-

i�ed. The representation mechanism of concurrent programs is then presented.

We develop the classical producer and consumer problem, and a problem from

numerical analysis (Gaussian elimination algorithm) to illustrate the C-YES

model. We brie
y survey the di�erent synchronization mechanisms in section 4.

Section 5 contains �nal remarks and ongoing work.

2 Basic De�nitions

We de�ne two sets of terms we used in this paper. The �rst denotes terms that

are used while specifying the representation of programs, whereas the second

contains terms used during the execution of programs.

2.1 Structures

De�nition 2.1 (Program) A program is a composition of operations and other

programs. /

De�nition 2.2 (Action) An action labels operations that will be performed

during the execution of a program. /

Actions represent the alphabet that a programmer can use to compose a

program. At a certain level of abstraction, the notions of program and action

coincide. We will not distinguish between the two and will use them interchange-

ably.

2.2 Executions

De�nition 2.3 (Computation) A computation denotes a speci�c execution of

a program. /

4

Each program has a set of computations associated with it.

Notation: Let terms �s(C) and �(C) respectively denote the set of computations

and some computation of program C.

De�nition 2.4 (Event) An event is a speci�c occurrence of an action during

a computation. /

The relationship between actions and events can be described by the following

program:

for (i = 0; i < 5; i = i+1)

sum();

In the above, sum() denotes an action. It is executed �ve times when the above

program is executed. Each execution of sum() denotes a unique event occurrence

during the above computation.

De�nition 2.5 (Event Ordering) The event ordering relation
< between two

events is an asymmetric, nonre
exive, and transitive relation. The relation e1
<
e2 speci�es that e1 occurs before e2. /

Relation
< models the execution ordering between events.

De�nition 2.6 (Concurrent Event) Events e1 and e2 are concurrent if there is

no ordering relation between the two events. /

Notation: We use (e1 ke e2) to denote concurrency between events e1 and e2.

Concurrency is modeled by the lack of any execution orderings.

A concurrent computation is a set of events such that some of the events are

not ordered with respect to each other, and hence, can be executed in parallel.

We will use two mathematical entities, pomsets [Pra86] and event dependency

graphs, to represent a concurrent computation.

De�nition 2.7 (Pomset) A labeled partial order is a 4-tuple (Vc; �;
<;�) con-

sisting of i) a set Vc of events, ii) an alphabet � of actions, iii) a partial order

< on set Vc, and iv) a labeling function � : Vc ! � assigning symbols to events,

each labeled event representing an occurrence of the action labeling it. /

Notation: We will write (Vc;
<) for pomsets when � and � can be derived from

the context.

Notation: We will use e 2 Vc to mean that e is an event in computation (Vc;
<).

De�nition 2.8 (Event Dependency Graph) An event dependency graph G =

(Vc; Ec) is a directed graph such that i) Vc is a set of events, and ii) (e1; e2) 2 Ec

i� e1
< e2. /

5

3 C-YES Model

3.1 Model of Concurrent Programming

In most conventional concurrent programming models, a concurrent program is

composed from a set of component programs, each containing a set of both sim-

ple as well as synchronization operations. During the execution of the composite

program, the components form separate threads of executions, and execute in

parallel. A thread of execution is delayed if it attempts to execute a synchro-

nization operation and the condition associated with the operation is not true.

It remains blocked until the condition becomes true. A correct execution of the

composite program is one where the executions of the components satisfy all

semantic constraints associated with the interactions of the components.

We take an alternate, and direct, view of the composition of concurrent

programs: here, the role of a concurrent composition mechanism is to estab-

lish two kinds of relationships among operations of programs. The �rst, called

concurrency, represents semantic independence among these operations. Such

operations can execute in parallel. The second, called interaction, underlines

semantic dependencies among operations. Semantic dependencies arise because

an operation may rely on information produced by another operation (data de-

pendency), operations must access a resource in an ordered manner (resource

consistency and fairness), or operations must satisfy other application speci�c

semantic considerations. Unlike existing programming models, where interaction

and concurrency are represented indirectly through the executions of concurrent

threads and synchronization constraints, our compositional model represents the

two relationships directly.

Our model is based on the Pomset model [Pra86] in that concurrency and

interaction among operations are represented by specifying the presence or ab-

sence of execution orderings among the operations. Concurrency is speci�ed by

the lack of execution orderings, whereas interaction is represented by specifying

the order in which interacting operations must be executed. For instance, if an

operation e1 utilizes information produced by an operation e2, their interaction

is speci�ed by the relation

e2
< e1

The relation states that e1 executes only after e2 has terminated. Other seman-

tic dependencies such as consistency and fairness can also be represented by

establishing proper execution orderings among operations.

3.2 Event-based Concurrent Program Composition

We now present our concurrent composition mechanism. We choose \event" as

the basis for specifying concurrency and interaction relations: concurrency is

speci�ed by the lack of execution orderings among events, whereas interaction is

represented by specifying constraints on the execution orderings of interacting

events. The composition mechanism is de�ned below:

6

De�nition 3.1 (Constrained Concurrent Composition) The constrained concur-

rent composition

(C1 k C2 k : : : k Cn) where E

of programs C1; C2; : : : ; Cn denotes a program C such that during an execution

�(C) of C,

h 8 i; j : i; j 2 f1 : : : ng ^ i 6= j :

h 8 ek; el : ek 2 �(Ci) ^ el 2 �(Cj) ^ :(Ordered(E ; ek ; el)) :
ek ke elii

where Ordered(E ; ek ; el) is true if the event ordering constraint expression E
speci�es an ordering relation between ek and el. Computations �(Ci) and �(Cj)

respectively are speci�c executions of program Ci and Cj and occur during the

computation �(C). /

Intuitively, the above composition expression de�nes a program C such that

during its execution, all events in the computations of C1; C2; : : : ; and Cn occur

in parallel with respect to each other, except for a small set of events (compared

to the number of events in the composite program). Events in this set must be

executed in an order that satis�es the ordering constraints imposed by the event

ordering constraint expression E . The focus of a composition, therefore, is on the
identi�cation of interacting events, and on the derivation of an event ordering

constraint expression.

3.2.1 Interaction speci�cation. Interaction among programs in our model

is speci�ed by an algebraic expression, called event ordering constraint expres-

sion. It is used to represent semantic dependencies among the events of com-

ponent programs by specifying execution orderings | deterministic or nonde-

terministic | among the events. An event ordering constraint expression (eoce)

is constructed from a set of primitive ordering constraint expressions and a set

of interaction operators. A primitive ordering constraint expression captures the

interaction between two events, whereas the interaction operators are used to

represent nondeterministic interactions as well as interactions among sets of

events.

Syntax: The BNF expression for generating an event ordering constraint expres-

sion (eoce) is shown in �gure 1.

In the BNF de�nition, the term <event id> denotes a unique event. Since

most programming languages do not de�ne any syntactic mechanisms for di�er-

entiating the di�erent occurrences of actions, we use the notation (<ActionId>,

<Selector>) to denote events in this paper. Here <ActionId> denotes an ac-

tion, and <Selector> is one of the following:

{ Occurrence number:We associate a number with each occurrence of an action,

starting with the number 1. A unique event can be selected by identifying

its occurrence number.

7

<eoce> ::= event id
< event id

j<eoce>
_ <eoce>

j<eoce>
̂ <eoce>

j forall <iterator> in <set>

<eoce>

j exists <iterator> in <set>

<eoce>

j (<eoce>)

Fig. 1. BNF expression for event ordering constraint expressions

{ Boolean condition: The boolean condition selector speci�es a condition that

must be true during the execution of an action. Note that it is the program-

mer's responsibility to specify a boolean condition that uniquely identi�es

an event.

The term <iterator> in �gure 1 is a mechanism used to iterate over a set

denoted by the term <set>.

Semantics: We develop the semantics associated with event ordering constraint

expressions by de�ning two terms, Ordering Constraint Set and Satisfy.

De�nition 3.2 (Ordering Constraint Set) An ordering constraint set S is a set

of sets of ordered pairs (a; b) such that a and b are events and a
< b. /

Notation: We use O(E) to denote the ordering constraint set associated with the

event ordering constraint expression E.

De�nition 3.3 (Sat) For a computation (V;
<v) and an event ordering con-

straint expression E, the term Sat((V;
<v); E) is true if

h9 s : s 2 O(E) :
h8 (ei; ej) : (ei; ej) 2 s :

(ei 2 V) ^ (ej 2 V) ^ (ei
<v ej) i i

We say that (V;
<v) satis�es E. /

Intuitively, if O(E) = fo1; o2 : : : ong, a computation satis�es E if all orderings

speci�ed in at least one of oj ; j 2 f1 : : : ng are preserved in the computation.

The constrained concurrent composition

C = (C1 k C2 k : : : k Cn) where E

of programs C1; C2; : : : ; Cn, therefore, denotes a program C such that

h 8 (V;
<v) : (V;
<v) 2 Xs(C) : Sat((V;
<v); E) i

We now de�ne the semantics of the primitive event ordering constraint expression

and the interaction operators by specifying the corresponding ordering constraint

sets:

1. For expression <eoce>::= event id1
< event id2

8

O(<eoce>) = ffevent id1, event id2gg

The above expression models the interaction relationship between two events.

The order of execution between the events is determined by issues such as data

dependency, safety, and progress properties. Primitive ordering constraint ex-

pressions allow one to capture such interactions when they are translated to the

most primitive level of computations, that is, events.

2) And constraint operator (
̂): The operator
̂ is used for combining a set

of event ordering expressions in order to represent interactions among sets of

events. For expression <eoce>::= E1
̂ E2

O(E1
̂ E2) =
[

si2O(E1)

(
[

sj2O(E2)

si [sj)

Intuitively, the above expression speci�es that a computation satis�es (E1
̂ E2)

if it satis�es both E1 and E2.

Example 3.1 (
̂ operator) For expression E = (a
< b)
̂ (c
< d)

O(E) = ff(a; b); (c; d)gg

A computation satis�es E if event a occurs before event b and event c occurs

before event d in the computation. /

3) Or Constraint Operator (
_): The operator
_ is used to incorporate nondeter-

minism in the orderings of events. For expression <eoce>::= E1
_ E2

O(E1
_ E2) = O(E1) [O(E2)

Intuitively, the above expression speci�es that a computation satis�es (E1
_
E2) if it satis�es at least one of E1 or E2.

Example 3.2 (
_ operator) For expression E = (a
< b)
_ (b
< a)

O(E) = ff(a; b)g; f(b; a)gg

A computation satis�es E if a occurs before b or b occurs before a in the com-

putation. Expression E speci�es mutual exclusion between the events a and b.

/

Assume that F and G denote ordered (with respect to an index) sets of events

ff1; f2; : : : ; fng and fg1; g2; : : : ; gng respectively. Terms fi and gj denote the

ith and jth events of F and G respectively. Note that sets F and G may include

any kind of events, including events that are occurrences of di�erent actions.

4) forall: The expression

forall i in f1 : : : ng
P (fi; gi)

9

is equivalent to the expression

P (f1; g1)
̂ P (f2; g2)
̂ � � �
̂ P (fn; gn)

Here P (fi; gi) is an event ordering constraint expression between the events

denoted by fi and gi.

5) exists: The expression

exists i in f1 : : : ng
P (fi; gi)

is equivalent to the expression

P (f1; g1)
_ P (f2; g2)
_ � � �
_ P (fn; gn)

Operators forall and exists are extensions of operators
̂ and
_ respectively.

Example 3.3 (Event ordering constraint expression) For expression E,

E = ((a
< b)
_ (c
< d))
̂ ((a
< c)
_ (b
< d))

the ordering constraint set is

O(E) = ff(a; b); (a; c)g; f(a; b); (b; d)g; f(c; d); (a; c)g; f(c; d); (b; d)gg

/

3.3 Representation of Programs

There are two unique aspects in our model of concurrent programming: the �rst

is the separation of interaction de�nitions from programs speci�cations, and the

second is the choice of \events" as the basis for interaction. We now examine

how the two aspects a�ect representations of programs.

Concurrent programs aim to model applications where entities exist and per-

form independently. During an execution, an entity performs certain operations.

Occasionally, it interacts with its environment at certain points. We call such

execution points interaction points. Programming languages such as CSP[Hoa78]

model such entities as processes and model their interactions with other entities

by sending and receiving messages on channels of communications. Sends and

receives, therefore, form the interaction points of processes.

We observe that there are two elements of an interaction point: the �rst

is its identi�cation. This underlines the fact that a program may interact at

the interaction point. In CSP, for instance, names of communication channels

along with the send and receive operations identify the interaction points of a

process. The second is its role in an interaction. The role of an interaction point

determines the manner in which a program participates in an interaction at the

interaction point. For instance, the role associated with a \receive" interaction

point determines a process's behavior at the interaction point, that is, the process

is delayed until a message arrives.

10

In our model of programming, the two elements of an interaction point |

its identi�cation and its role | are separated. Interaction points of a program

are identi�ed when the program is speci�ed. However, the roles of the interac-

tion points are determined (by event ordering constraint expressions) when the

program is composed with other programs by the composition operator. Since

\events" form the basis for de�ning event ordering constraint expressions, we

choose events to represent interaction points. We now present a representation

for programs, which contains, in addition to its composition de�nition, de�ni-

tions of interaction points.

In sequential imperative programming languages, programs are represented

by blocks [CK89]. A block, say fs, has two components: i) interface of the form

fs(p1; p2; : : : ; pn), where variables p1; p2; : : : ; pn parameterize the execution

behavior of fs; and ii) composition of operations, specifying the computations of

fs. A block identi�es | implicitly | two interaction points: i) entry point, where

control and values of the parameters are passed and ii) exit point, where the block

terminates and returns any values. All other execution points are encapsulated

by the block abstraction.

We extend the notion of sequential blocks. We call such entities interacting

blocks. The following are the elements of an interacting block:

1. Interface: An interacting block fc has an interface of the form

fc(p1; : : : ; pn ; i1; : : : ; im)

Here p1; p2; : : : ; and pn are parameter variables. Interaction parameters

i1; i2; : : : ; and im denote interaction points of fc.

2. Implementation: The implementation of an interacting block is partitioned

into two. The �rst speci�es the sequential and concurrent composition of a

program. It determines the execution behaviors of the program. The second

contains a mapping between the interaction parameters i1; i2; : : : ; and im

and the events of the program.

The composition of two interacting blocks fc(v1; : : : ; vn ; i1; : : : im) and

gc(w1; : : : ; wl ; j1; : : : ; ik) is, thus, speci�ed by the expression:

fc(v1; : : : ; vn) k gc(w1; : : : ; wl)

where

E(e1; : : : ; ep)

Here, the event ordering expression E is over a set of events fe1; : : : ; epg such
that every event in this set is an interaction point of either fc or gc.

3.4 Examples

This section contains two examples, each highlighting aspects of the C-YES

model. The emphasis in the �rst example is on the composition and interaction

speci�cation mechanisms. In the second example, it is on the representation

of concurrent programs by interacting blocks. The language that we use here

contains features from C [KR78] and a few extensions in order to present our

ideas. We explain these extensions where they are used.

11

3.4.1 Example 1: Producer/Consumer. Let Producer and Consumer be

two programs, whose abstract representations are:

Producer(Prod(int i)) = f Consumer(Cons(int j)) = f
while (1) f while (1) f

: :

Produce(Buf); Consume(Buf);

: :

g g
Prod(int i) = (Produce, i) Cons(int j) = (Consume, j)

g g

Interaction parameters Prod(i) and Cons(j) are interaction points of Producer

and Consumer programs respectively. Parameter Prod(i) names all Produce

events. It denotes a set of events such that Prod(k) denotes (Produce, k) (kth

occurrence of Produce) in the Producer program. Parameter Cons(j) is simi-

larly de�ned. We will write (Prod, i) and (Cons, j) for Prod(i) and Cons(j)

respectively.

We now derive a composition of the Producer and Consumer programs. The

actions Produce and Consume interact with each other. All other actions are non-

interacting and hence execute in parallel during the execution of the composite

program. The following is such a composition of the two programs:

Comp = (Producer k Consumer) where ConsExp

The above expression speci�es that during an execution of Comp, all events in

Producer and Consumer execute in parallel except for those that must satisfy

the ordering constraints imposed by the event ordering constraint expression

ConsExp.

The simplest interaction arises from the mutual exclusion constraint between

the actions: no occurrences of Produce and Consume should execute in parallel.

The following event ordering constraint expression captures the mutual exclusion

constraint between the ith and jth occurrences of Produce and Consume actions:

((Prod, i)
< (Cons, j))
_ ((Cons, j)
< (Prod, i))

The expression for mutual exclusion among all occurrences of Produce and

Consume, therefore, is:

ConsExp = forall i in f1 : : : g
forall j in f1 : : : g
((Prod, i)
< (Cons, j))
_ ((Cons, j)
< (Prod, i))

There are many possible executions of Comp that satisfy the event order-

ing constraint expression ConsExp. One such execution is shown in �gure 2.

Only the interacting events are shown in the �gure. Here all occurrences of

Produce dominate the �rst occurrence of Consume, thereby causing the starva-

tion of Consumer. The interaction in the �gure is captured by the following event

ordering constraint expression:

12

ConsExp1 = forall i in f1 : : :g
(Prod, i)
< (Cons, 1)

Note

h8v : v 2 �s(Comp) : Sat(v; ConsExp1)) Sat(v; ConsExp)i

2

:

i

1 1

Produce Consume

:

:

Fig. 2. Domination of Produce events over Consume events

A di�erent interaction semantics for the Producer and Consumer programs

can be speci�ed by constructing a di�erent event ordering constraint expression.

For instance, assume that Producer and Consumer access a bu�er of size one.

The semantic constraints on accessing and modifying the bu�er are: i) No data

is consumed until it is produced, and ii) No data is produced until the previ-

ously produced data has been consumed. The following event ordering constraint

expression captures these constraints:

ConsExp2 = forall i in f1 : : : g
((Prod, i)
< (Cons, i))
̂ ((Cons, i)
< (Prod, i+1))

Figure 3 shows the event dependency graph of the computation of the composi-

tion. Note that there are no starvations or deadlocks.

3.4.2 Example 2: Gaussian Elimination. We develop below a concurrent

program for the Gaussian elimination algorithm. The purpose here is to highlight

the important ideas inherent in the notion of interacting blocks, and to discuss

their usefulness in the representation of concurrent programs.

For a n� n matrix A, the Gaussian elimination algorithm [Ste73] solves the

linear equation
Ax = b

There are two distinct steps in the algorithm. The �rst step, called forward

elimination, transforms A into an upper triangular matrix, whereas the second

13

2

:

i

1

2

:

i

1

Produce Consume

: :

: :

: :

Fig. 3. Single bu�er interaction between Producer and Consumer

step uses the transformed matrix to derive the solutions of the unknowns. We

will focus our attention here on the forward elimination step.

There are (n� 1) steps, each called pivot, in the forward elimination step. In

the ith pivot step, elements A[i+1; i] through A[n; i] are reduced to zero, while

modifying certain other elements of A. We represent each pivot by an interacting

block. The forward elimination program is a constrained concurrent composition

of the (n�1) pivot programs. The event ordering constraint expression associated
with the composition represents the interaction among the pivot steps.

A motivation for structuring the forward elimination program in this manner

is to show that i) there is concurrency among the di�erent pivot steps, and ii)

this concurrency can be easily expressed by our composition and interacting

block mechanisms. The interacting block associated with the ith pivot step is

shown in �gure 4. The details of the de�nition in �gure 4 are :

P(int i; Access(int aIndJ, int aIndK), Change(int cIndJ, int cIndK)) = f
int j, k;

f /*implements functionality of P(i) */

for (j = i+1; j < n; j = j + 1)

for (k = i+1; k < n; k = k+1)

A[j, k] = A[i, k] - (A[j, k]*(A[i, i]/A[j, i]));

g
/* Map interaction points to internal execution points*/

Access(int aIndJ, int aIndK) = (read.A[j, k], 1);

Change(int cIndJ, int cIndK) = (write.A[j, k], 1);

g

Fig. 4. Representation of the ith Pivot step

1. Interface: The interface of P(i) de�nes three parameters. The �rst, i, iden-

ti�es the ith pivot. The interaction parameters, Access(int aIndJ, int

14

aIndK) and Change(int cIndK, int cIndK), denote the interaction points

of P(i).

2. Implementation: The �rst part of the implementation speci�es the computa-

tions of the ith pivot. The implementation shown here is sequential. Most

implementations of the forward elimination step focus on exploiting paral-

lelism inherent within each pivot step.

The second part speci�es how interaction parameters are mapped to the

actual events of P(i). The parameter Access(int aIndJ, int aIndK) de-

notes a set of P(i)'s �rst read events of elements of A. For instance, term

P(i).Access(2, 3) denotes the �rst read of element A[2, 3] that P(i)

executes. Since all such �rst reads in the ith pivot step interact with the

writes to the corresponding elements of the (i� 1)th pivot steps, we include

these read events in the set denoted by Access by the following de�nition:

Access(int aIndJ, int aIndK) = (read.A[j, k], 1);

The variables j and k in the above de�nition refer to the variables j and k of

the implementation of P(i). The parameters aIndJ and aIndK are used to

select unique events from the set that Access denotes. The other interaction

parameter Change(cIndJ, cIndK) is de�ned similarly.

The forward elimination program can now be speci�ed as a constrained con-

current composition of the (n � 1) pivot steps. Let us look at the interaction

between the ith and (i+1)th pivot steps: Pivot P(i+1) should not read or write

to any A[j, k] until P(i) has modi�ed this A[j, k]. There is an explicit or-

dering between the reads and writes of the two steps and the event ordering

constraint expression must capture this data dependency. The following expres-

sion represents such a dependency:

(forall aj, ak in P(i+1).Access

P(i).Change(aj, ak)
< P(i+1).Access(aj, ak))

̂
(forall cj, ck in P(i+1).Change

P(i).Change(cj, ck)
< P(i+1).Change(cj, ck))

In the above expression, aj, ak, cj and ck are variables that range over

the sets that Access and Change denote. The expression captures the order-

ings among the interacting reads and writes of P(i) and P(i+1). The forward

elimination program is shown in �gure 5.

3.5 Discussion

We now examine the characteristics of our program composition and program

representation mechanisms.

15

ForwardElimination = f

kn�1i=1 P(i) where

forall i in f1, : : :, (n-2)g
(forall aj, ak in P(i).Access

P(i).Change(aj, ak)
< P(i+1).Access(aj, ak))

̂
(forall cj, ck in P(i).Change

P(i).Change(cj, ck)
< P(i+1).Change(cj, ck))

g

Fig. 5. Forward elimination program

3.5.1 Event Based Program Composition. The constrained concurrent

composition of programs speci�es two kinds of relationships among the events of

component programs: concurrency and interaction. The notion of concurrency

is assumed to be universal, that is, events are concurrent by default. Interaction

among events is modeled by interaction expressions, which determine execution

orderings among the events. The model contains several unique ideas such as

separation of program and interaction speci�cations, \events" as the basis for

interaction, abstraction of interaction, and algebraic interaction expressions. We

discuss each in detail below.

The composition mechanism separates interaction speci�cations from program spec-

i�cations. A program in our model does not include any synchronization infor-

mation; it merely speci�es what its computations are. Since programs interact

with other programs only when they are composed, interaction speci�cations are

elements of concurrent compositions. They are de�ned when such compositions

are de�ned.

One of the implications of the above separation is that a program speci�ca-

tion can be used in many concurrent compositions, each de�ning di�erent event

ordering constraint expressions. The interaction behavior of the program may be

di�erent in each of the compositions. For instance, the two event ordering con-

straint expressions ConsExp and ConsExp2 specify di�erent interaction semantics

for the same Producer and Consumer programs.

Interaction is speci�ed at the \event" level. The composition mechanism is based

on the observation that fundamental interaction occurs between two events.

All other interactions can be represented by suitable combinations of primitive

interaction expressions. The name space in our model, therefore, is �ne-grained,

since it contains names for actions as well as their individual occurrences.

One of the implications of such a �ne-grained name space is that interaction

relationships can be de�ned among all events directly. This is unlike other ap-

proaches, where the name space contains a �xed set of named actions. Also, the

interaction among the occurrences of these actions is predetermined, and cannot

be changed.

16

Our concurrent constrained composition mechanism, in conjunction with the

choice of \events" as the basis for interaction, allows one to represent programs

that are highly concurrent. We show this by extending the producer-consumer

example. Assume that Producer and Consumer programs access a bu�er such

that

Produce = P(buffer[0]); P(buffer[1])

Consume = C(buffer[0]); C(buffer[1])

Here, every Produce event creates information in buffer[0] and buffer[1]

and every Consume event retrieves information from buffer[0] and buffer[1].

Note that Produce and Consume here are not atomic actions anymore; they are

composed (with the sequential operator `;') from actions P and C respectively.

Expression ConsExp2 can be used here to specify an interaction between

Produce and Consume. However, it overconstrains the executions of P and C

events. It introduces unnecessary ordering among events when there should be

none. In order to derive an event ordering constraint expression that does not

impose any ordering constraints among the events that occur at di�erent bu�ers,

we need to identify P and C as the basis of interaction | not Produce and

Consume. The rede�ned interaction points Prod and Cons, therefore, are:

Prod(i) = (P, i)

Cons(j) = (C, j)

The derivation �rst speci�es single bu�er interactions at buffer[0] and

buffer[1], and then combines the two expressions to construct an expression

for both the bu�ers.

For all i 2 f 1 : : : g, let

(P1, i) = (Prod, 2i-1) (3.5.1)

(P2, i) = (Prod, 2i) (3.5.2)

(C1, i) = (Cons, 2i-1) (3.5.3)

(C2, i) = (Cons, 2i) (3.5.4)

E1 E2
= fSingle buffer interaction at Buf[0]g = fSingle buffer interaction at Buf[1]g

forall i in f1 : : :g forall j in f1 : : :g
(P1, i)
< (C1, i)
̂ (P2, j)
< (C2, j)
̂
(C1, i)
< (P1, i+ 1) (C2, j)
< (P2, j + 1)

= f eqn 3.5.1, eqn 3.5.3 g = f eqn 3.5.2, eqn 3.5.4 g
forall i in f1 : : :g forall j in f1 : : :g

(Prod, 2i � 1)
< (Cons, 2i� 1)
̂ (Prod, 2j)
< (Cons, 2j)
̂
(Cons, 2i � 1)
< (Prod, 2i+ 1) (Cons, 2j)
< (Prod, 2j + 2)

= f k = 2i� 1 g = f l = 2j g
forall k in f1, 3, : : :g forall l in f2, 4, : : :g

(Prod, k)
< (Cons, k)
̂ (Prod, l)
< (Cons, l)
̂

17

(Cons, k)
< (Prod, k + 2) (Cons, l)
< (Prod, l+ 2)

f Combine E1 and E2 g
ConsExp3 = E1
̂ E2 =

forall i in f1 : : :g
(Prod, i)
< (Cons, i)
̂
(Cons, i)
< (Prod, i+ 2)

CP

2

1

3

2

1

i

i+2i+2

:

:

3

:

i

:

: :

:

:

Fig. 6. Two bu�er interaction between Producer and Consumer

Figure 6 shows the event dependency graph associated with an execution of

Comp. Observe that

h 8 i : i 2 f 1 : : : g : (P; i+ 1) ke (C; i) i

Intuitively, it means that Consumer can access buf[0] while Producer is modi-

fying buf[1]. Also, the above interaction expression can be extended to de�ne

interaction over a bu�er of size N:

E = forall i in f1 : : :g
(Prod, i)
< (Cons, i)
̂ (Cons, i)
< (Prod, i+N)

The interaction speci�cation mechanism captures the fundamental abstractions of

interaction. It speci�es interaction by suitable ordering relations among the inter-

acting events of programs. It does not depend on the semantics of these events.

Hence, the model can be used for both shared and distributed memory programs.

For instance, the event ordering constraint expressions ConsExp1 and ConsExp2

18

in the producer-consumer example specify interaction in accessing a bu�er. The

bu�er can be a shared memory structure or a distributed resource. Implementa-

tions of the Produce and Consume actions determine the shared or distributed

nature of the bu�er.

The interaction expressions are algebraic in nature. They are composed from a

set of primitive ordering constraint expressions and the interaction operators.

The approach is constructive in that one �rst identi�es the events that interact,

and represents their interaction through a set of primitive ordering constraint

expressions. An event ordering constraint expression is then constructed from

the primitive expressions and the interaction operators. This facilitates modular

[Blo79] construction of event ordering constraint expressions. For instance, in the

two-bu�er producer-consumer example, we derive separate event ordering con-

straint expressions for the two bu�ers and then use the
̂ operator to combine

the two expressions.

Since the properties of the basic primitives and the operators are well de�ned,

it is possible to reason with the interaction speci�cations in a rigorous manner.

For instance, it is possible to prove that

h8v : v 2 �s(Comp) : Sat(v; ConsExp2)) Sat(v; ConsExp)i

which states that the interaction expression ConsExp2 guarantees mutual exclu-

sion between the Produce and Consume actions.

3.5.2 Concurrent Program Representation. An interacting block ex-

tends the notion of sequential block by incorporating mechanisms to identify a

set of events as interaction points. The interface of an interacting block includes

interaction parameters denoting interaction points of the block. The implemen-

tation de�nes the mappings between the interaction parameters and the events

of the block.

The separation between the interaction parameters (de�ned at the interface)

and their mappings (de�ned in implementation) provides a powerful mechanism

for isolating the de�nition of the interaction behavior of a program from the

implementation of the program. It is, therefore, possible to change the imple-

mentation, the interaction parameters, or the interaction parameter mappings

without changing other aspects of the program de�nition. We explore how these

changes can be made and what they mean in terms of design and implementation

of concurrent programs.

It is possible to change a program's implementation without changing any

composition expressions that include this program. This is possible because of

the separation between how interaction points are de�ned (in implementations)

and how they are used (in event ordering constraint expressions). Note, how-

ever, that changes in the implementation should not a�ect the semantic nature

of the interaction points and their participation in the composition de�nition.

We clarify this by showing that it is possible to modify P(i)'s implementa-

tion without changing either the de�nitions of the interaction points or the

ForwardElimination program.

19

The idea is to change those aspects of the program that do not a�ect either

the interaction points or the orderings between the interaction points of the

di�erent pivots. In P(i), it is easy to do so, since we can parallelize one or some

aspect of the pivot without changing either the interaction points (reads and

writes) or the ordering constraints between them. The implementation in �gure

7 is one such realization.

P(int i; Access(int aIndJ, int aIndK), Change(int cIndJ, int cIndK)) = f
int j, k;

f /*implements functionality of P(i) */

kj=n�1
j=i+1

kk=n�1
k=i+1

A[j, k] = A[i, k] - (A[j, k]*(A[i, i]/A[j, i]));

g
/* define interaction points*/

g

Fig. 7. Parallel implementation of P(i)

The body of P(i) now utilizes the parallelism inside each pivot step. The def-

initions of Access, Change, and ForwardElimination remain unchanged, since

there are no changes either in the interaction points or in the orderings among

interacting events. The above algorithm is optimally concurrent in that no event

is delayed unless it is semantically dependent on some other event.

Another implication of the separation between the interaction parameter and

an interacting block's implementation is that the interaction behavior of a pro-

gram can be changed by modifying either the mappings between the interaction

parameters and the internal events, or the event ordering constraint expressions,

or both. This is useful in determining those interaction points and interaction

expressions that provide optimal performance for a given algorithm by balancing

the costs involved in computation and interaction.

In the Gaussian elimination example, the interacting block P(i) waits for

P(i+1) to modify an element A[j, k] before it can read or write this element.

The di�erent pivot steps, therefore, interact at the level of single elements of the

matrix. In many systems (e.g., message passing systems), such closely coupled

interactions can be very ine�cient. A modi�ed version of ForwardElimination

is shown in �gure 8. In this implementation, the interaction between the pivots

occurs at the level of rows: P(i+1) reads or writes a given row j only after P(i)

has modi�ed this row.

The above de�nes an ordering between the writes to the last element of a

row by P(i) and reads and writes to the �rst element of a row by P(i+1). The

composition relies on the fact that a row j is modi�ed sequentially within P(i).

It exploits the ordering relationships between the reads and writes in a single

row. The above composition expression, therefore, cannot be used if the rows

are not modi�ed sequentially in P(i) (as is the case in �gure 7).

20

ForwardElimination = f
f

kn�2
i=1

P(i) where

forall i in f1, : : :, (n-2)g
(forall aj in P(i+1).Access

P(i).Change(aj, n)
< P(i+1).Access(aj, i+1))

̂
(forall cj in P(i+1).Change

P(i).Change(cj, n)
< P(i+1).Change(cj, i+1))

g
g

Fig. 8. Row level interaction among pivots of forward elimination program

4 Related work

We now look at the interaction mechanisms that di�erent concurrent program-

ming languages use. We classify two broad classes of interaction mechanisms on

the basis of how common information is manipulated by concurrent programs in

these languages.

4.1 Unstructured

In unstructured approaches, programming models do not impose any constraints

on how shared information can be manipulated or exchanged inside programs.

The models identify a set of synchronization primitives, which are used to syn-

chronize accesses to shared information or to access distributed information.

The interaction between the synchronization primitives is de�ned at the \ac-

tion" level. All interactions are constructed from suitable combinations of these

primitives. Examples of unstructured synchronization primitives are semaphores

[Dij65, Dij68], message-passing primitives [Hoa78, Per87], and write-once shared

variables [Sha89, FT89] of logic programming languages.

Interactions among programs in these languages are realized indirectly through

the executions of suitable synchronization primitives. The synchronization primi-

tives are at a low level of abstraction, which makes it di�cult to de�ne concurrent

programs. Also, since the synchronization primitives are embedded within the

speci�cations of the programs, one must reason, operationally, with the logic of

these programs.

4.1.1 Structured Approaches In structured approaches, a module M =

(I1; I2; � � � ; In) provides a set of services through interfaces I1; I2; : : : ; In. Any

accesses or modi�cations to the data structures of M must be made through the

interfaces. Examples of structured approaches are Monitor [Hoa74], abstract data

types with Path Expressions [CH74, And79] or abstract expressions [AHV85],

21

Mediators [GC86], rendezvous{based models [Geh84, GR86], remote{procedure

call models [BN84], and concurrent object{oriented models [Ame87, YBS87,

TS89, CK92, WKH92].

There are two possible sources of concurrency and interactions among pro-

grams in such models: i) External interaction and concurrency: these arise when

a program C requests for a service through an interface Ik. The requested ser-

vice and C can both execute in parallel and interact. ii) Internal interaction and

concurrency: these arise because of the concurrent invocations of services within

M . The concurrent requests interact because they share the data structures that

M encapsulates.

Models based on structured approaches support hierarchical and modular

software development methodologies and hence should be a basis for software

development in the concurrent domain as well. However, support for concurrency

and interaction in these models is weak. The reasons are the following:

1. The external interaction in most languages such as ADA [Geh84] and Mon-

itors [Hoa74] is based on synchronous call-return semantics. This limits the

possible concurrency between the calling and called computations.

2. Models that do allow for external concurrency among the calling and called

computations employ ad-hoc mechanisms such as future [YBS87] for speci-

fying external interaction between the two computations. There is no general

mechanism for specifying arbitrary external interactions.

3. Many programming models such as Monitors [Hoa74] and ADA [Geh84] do

not support internal concurrency.

4. Models such as Mediator [GC86] do allow concurrent executions within a

module. However, they either support only non-interacting concurrent exe-

cutions or use unstructured primitives to specify interactions. Such models

inherit the problems associated with the unstructured primitives.

5 Conclusions and Future Work

There are two elements in a program de�nition in our model: the �rst speci�es

its computations (what the program does when it is executed), and the second

identi�es its interaction points (places where the program may interact with

its environment). Interaction points are abstractions of a subset of execution

points of the program. A constrained concurrent composition combines a set

of programs by specifying both ordering relationships among their interaction

points as well as concurrency among all other execution points.

In our model, \events" form the basis for identifying interaction points as

well as for specifying interaction among programs. The latter is speci�ed by

constructing an algebraic expression from a set of primitive interactions and

interaction operators.

Our programming model isolates a program's speci�cation from its interac-

tion behaviors. The separation between the interaction and program speci�ca-

tions allows one to reuse the program de�nition in many concurrent composi-

tions. Also, the notion of interacting block separates how interaction points are

22

de�ned (within a program's implementation) and how they are used (in inter-

action expressions). Hence, it is possible to change a program's implementation

without changing any composition expressions as long as certain semantic prop-

erties of the interaction points are preserved. In addition, the separation allows

one to experiment with di�erent interaction expressions in order to examine

di�erent interaction behaviors of the program. This provides a
exible mecha-

nism for �nding those interaction points that try to balance the cost involved in

computation and interaction.

The choice of \events" as a basis for interaction and the algebraic mechanism

for interaction speci�cations allow direct and precise formulation of interaction

de�nitions among programs. The interaction expressions are modular and alge-

braic. Also, it is possible to rigorously analyze interaction expressions in order

to determine certain classes of properties of programs.

The programming model, therefore, supports the speci�cation of concurrent

programs, which are i) highly concurrent and asynchronous, ii) portable across

both shared and distributed memory architectures, and iii) represented as ex-

pressions over component programs. The composition also supports precise and

direct speci�cations of interactions.

We are investigating a number of issues that deal with the theoretical, lan-

guage design, and implementation aspects of our model. Active work is pro-

ceeding on the integration of our concurrent programming model within the

object{oriented framework. The issues that we consider here deal with the rep-

resentation of concurrent and interacting objects, method compositions, inher-

itance of methods and interactions expressions, and association between events

and method activations. Further, we aim to extend an existing object{oriented

programming language to de�ne a concurrent programming language. We also

plan to de�ne execution semantics for this language. In addition, we are looking

at extending the set of interaction operators and their associated semantics. One

of the interesting operators is conditional ordering operator. We are examining

its semantics and its relationship with the _ and exists operators.

References

[AHV85] F. Andre, D. Herman, and J. P. Verjus. Synchronization of Parallel Pro-

grams. The MIT Press, Cambridge, MA, 1985.

[Ame87] Pierre America. POOL-T: A Parallel Object{Oriented Language. In

A. Yonezawa and M. Tokoro, editors, Object-Oriented Concurrent Program-

ming, pages 199{220. The MIT Press, 1987.

[And79] S. Andler. Predicate Path Expression. In Proc. Sixth ACM Symposium on

Principles of Programming Languages, pages 226{236, 1979.

[And91] Gregory R. Andrews. Concurrent Programming. The Benjamin/Cummings

Publishing Company, Redwood City, CA, 1991.

[Blo79] Toby Bloom. Evaluating Synchronization Schemes. In Proc 7th Symposium

on Operating Systems Principles, pages 24{32. ACM, 1979.

[BN84] Andrew Birrell and B. J. Nelson. Implementing Remote Procedure Calls.

ACM Transactions on Computer Systems, 2(1):39{59, 1984.

23

[CH74] R. H. Campbell and A. N. Habermann. The Speci�cation of Process Syn-

chronization by Path Expressions. In Lecture Notes on Computer Sciences,

volume 16, pages 89{102. Springer Verlag, 1974.

[CK89] Gianna Cioni and Antoni Kreczmar. Modules in High Level Programming

Languages. In Advanced Programming Methodologies, pages 247{340. Aca-

demic Press, Ltd., 1989.

[CK92] K. Mani Chandy and Carl Kesselman. Compositional C++: Compositional

Parallel Programming. Technical Report Caltech-CS-TR-92-13, Cal Tech,

1992.

[Dij65] E. W. Dijkstra. Solution of a Problem in Concurrent Programming Control.

Communication of the ACM, 8(9):569, 1965.

[Dij68] E. W. Dijkstra. The Structure of the THEMultiprogramming System. Com-

munication of the ACM, 11(5):341{346, 1968.

[FT89] Ian Foster and Stephen Taylor. Strand: New Concepts in Parallel Program-

ming. Prentice Hall, Englewood Cli�s, N. J., 1989.

[GC86] J. E. Grass and R. H. Campbell. Mediators: A Synchronization Mechanism.

In Sixth International Conference on Distributed Computing Systems, pages

468{477, 1986.

[Geh84] Narain H Gehani. Ada: Concurrent Programming. Prentice Hall, Englewood

Cli�s, N.J., 1984.

[GR86] Narain H Gehani and W. D Roome. Concurrent C. Software { Practice and

Experience, 16(9):821{844, 1986.

[Hoa74] C. A. R. Hoare. Monitor: An Operating System Structuring Concept. Com-

munication of the ACM, 17(10):549{557, 1974.

[Hoa78] C. A. R. Hoare. Communicating Sequential Processes. CACM, 21(8):666{

677, 1978.

[KR78] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language.

Prentice{Hall, Englewood Cli�s, New Jersey, 1978.

[Per87] Brinch Hansen Per. Joyce - A Programming Language for Distributed Sys-

tems. Software { Practice and Experience, 17(1):29{50, 1987.

[Pra86] Vaughan Pratt. Modeling Concurrency with Partial Order. International

Journal of Parallel Programming, pages 33{71, 1986.

[Sha89] Ehud Shapiro. The Family of Concurrent Logic Programming Languages.

ACM Computing Surveys, 21(3):413{510, 1989.

[Ste73] G. W. Stewart. Introduction to Matrix Computations. Academic Press, New

York, 1973.

[TS89] Chris Tomlinson and Mark Scheevek. Concurrent Object Oriented Program-

ming Languages. In Won Kim and F. H. Lochovsky, editors, Object Oriented

Concepts, Databases, and Applications, pages 79{124. ACM Press, 1989.

[WKH92] Barbara B. Wyatt, K. Kavi, and Steve Hufnagel. Parallelism in Object{

Oriented Languages: a Survey. IEEE Software, 9(6), 1992.

[YBS87] A. Yonezawa, J. Briot, and E. Shibayama. Modeling and Programming

in Object{Oriented Concurrent Language ABCL/1. In A. Yonezawa and

M. Tokoro, editors, Object-Oriented Concurrent Programming, pages 55{89.

The MIT Press, 1987.

This article was processed using the LATEX macro package with LLNCS style

24

