
MIPS Architecture

I 32-bit processor, MIPS instruction size: 32 bits.
I Registers:

1. 32 registers, notation $0, $1, · · · $31 $0: always 0. $31: return address.
$1, $26, $27, $28, $29 used by OS and assembler.

2. Stack pointer ($sp or $29) and frame pointer ($fp or $30).
3. 2 32-bit registers (HI and LO) that hold results of integer multiply and

divide.

I Data formats:

1. MIPS architecture addresses individual bytes ⇒ addresses of sequential
words differ by 4.

2. Alignment constraints: halfword accesses on even byte boundary, and word
access aligned on byte boundary divisible by 4.

3. Both Big Endian (SGI) and Little Endian (Dec). So be careful what you
choose..

I Instruction set:

1. Load/Store: move data between memory and general registers.
2. Computational: Perform arithmetic, logical and shift operations on values in

registers.
3. Jump and Branch: Change control flow of a program.
4. Others: coprocessor and special instructions.

Supports only one memory addressing mode: c(rx).

1 / 1

Assembly Programming

I Naming and Usage conventions applied by assembler. Use #include

<regdefs.h> in order to use names for registers.
I Directives: pseudo opcodes used to influence assembler’s behavior. You

will need to generate these directives before various parts of generated
code.

1. Global data segments: data segments partitioned into initialized,
uninitialized, and read-only data segments:

I .data: Add all subsequence data to the data section. (No distinction
about the segment in which data will be stored.)

I .rdata: Add subsequent data in read-only data segment.
I .sdata: Add subsequent data in uninitialized data segment.
I .sbss: Add subsequent data in initialized data segment.

2. Literals: Various kinds of literals can be added to various data segments
through the following directives:

I .ascii str: store string in memory. Use .asciiz to null terminate.
I .byte b1, ..., bn assemble values (one byte) in successive locations.

Similarly .double, .float, .half, .word.

2 / 1

Directives - cont’d.

I Code segments: A code segment is specified by the .text directive. It
specifies that subsequent code should be added into text segment.

I Subroutines: The following directives are related to procedures:
I .ent procname: sets beginning of procname.
I .end procname: end of procedure.
I .global name: Make the name external.

I .align n: align the next data on a 2n boundary.

A typical assembly program

.rdata

.byte 0x24,0x52,0x65

.align 2

$LC0:

.word 0x61,0x73,0x74,0x72

.text

.align 2

.globl main

.ent main

main:

.frame $fp,32,$31

subu $sp,$sp,32

$L1:

j $31

.end main

3 / 1

Data Transfer Instructions

I Load instruction: lw rt, offset(base). The 16-bit offset is
sign-extended and added to contents of general register base. The
contents of word at the memory specified by the effective address are
loaded in register rt.
Example: Say array A starts at Astart in heap. g, h, i stored in $17, $18,

$19.
Java−− code:

g = h + A[i];

Equivalent assembly code:
lw $8, Astart($19) # $8 gets A[i]

add $17, $18, $8 # $17 contains h + A[i]

I Store instruction: sw rt, offset(base)
Example: Java−− code:

A[i] = h + A[i];

Equivalent assembly code:
lw $8, Astart($19) # $8 gets A[i]

add $8, $18, $8 # $8 contains h + A[i]

sw $8, Astart($19) # store back to A[i]

I MIPS has instructions for loading/storing bytes, halfwords as well.

4 / 1

Computational Instructions

I Perform Arithmetic, logical and shift operations on values in registers.
I Four kinds:

1. ALU Immediate:

1.1 Add immediate: addi rt, rt, immediate
1.2 And immediate: andi rt, rt, immediate

2. 3-operand Register type instruction

2.1 Add: add rd, rs, rt
2.2 Subtract: sub rd, rs, rt
2.3 AND, OR etc.

3. Shift instructions:

3.1 Shift Left logical: sll rd, rt, shamt
3.2 Shift Right Arithmetic: sra rd, rt, shamt

4. Multiply/Divide instructions:

4.1 Multiply: mult rs, rt
4.2 Divide: div rs, rt
4.3 Move from HI: mfhi rd
4.4 Move from LO: mflo rd

5 / 1

Decision Making Instructions

I beq: similar to an if with goto
beq register1, register2, L1

Example: Java−− code:

if (i != j) f = g + h;

f = f - i;

Assume: f, g, h, i, j in registers $16 through $20.
Equivalent Assembly code:

beq $19, $20, L1 # L1 is a label

add $16, $17, $18 # $16 contains f + h

L1: sub $16, $16, $19 # f := f-1

I bne: bne register1, register2, L1. Jump to L1 if register1 and
register2 are not equal.
Example: Java−− code

if (i = j) f = g + h;

else f = g - h;

Assume: f, g, h, i, j in registers $16 through $20.

bne $19, $20, Else # L1 is a label

add $16, $17, $18 # $16 contains g + h

j Exit # skip else part

Else: sub $16, $17, $18 # f := g - h

Exit:

instruction j: unconditional jump.
I Note that addresses for labels generated by assembler.

6 / 1

Instructions -cont’d.

I Using conditional and unconditional jumps to implement loops:

while (save[i] == k) {
i = i + j;

}

Assume a) i, j, k in registers $19 through $21; b) Sstart contains the
address for beginning of save; c) $10 contains 4.

Loop: mult $9, $19, $10 # $9 = i * 4

lw $8, Sstart($9) # $8 = save[i]

bne $8, $21, Exit # jump out of loop

add $19, $19, $20
j Loop

Exit:

I Compare two registers: slt

slt $8, $19, $20: compare $8 and $9 and set $20 to 1 if the first
register is less than the second.
An instruction called blt: branch on less than. Not implemented in the
machine. Implemented by assembler. Used register $1 for it. So DO NOT
use $1 for your code generation.

7 / 1

Branch Instructions - cont’d.

I jr: jump to an address specified in a register. Useful for implementing
case statement.
Example:

switch(k) {
case 0: f = i + j; break;

case 1: f = g + h; break;

case 2: f = g - h; break;

case 3: f = i -j; break;

}

Assumption: JumpTable contains addresses corresponding to labels L0,
L1, L2, and L3.
f, g, h, i, j: in registers $16 through $20. $21 contains value 4.

Loop: mult $9, $19, $21 # $9 = k ∗ 4
lw $8, JumpTable($9)# $8 = JumpTable[k]

jr $8 # jump based on $8
L0: add $16, $19, $20 # k = 0

j exit

L1: add $16, $17, $18 # k = 1

j exit

L2: sub $16, $17, $18 # k = 2

j exit

L3: sub $16, $19, $20 # k = 3

Exit:

8 / 1

Procedures

I jal: jump to an address and simultaneously save the address of the
following instruction (return address) in $31: jal ProcedureAddress

I Assume A calls B which calls C
I A is about to call B:

1. Save A’s return address (in $31) on stack
2. Jump to B (using jal)
3. $31 contains return address for B.

I B is about to call C:

1. Save B’s return address (in $31) on stack
2. Jump to C (using jal)
3. $31 contains return address for C.

I Return from C: jump to address in $31
I On returning from B: restore B’s return address by loading $31 from stack.

I MIPS assembly code:

A: :

jal B

:

B: :

add $29, $29, $24
sw $31, 0($29) # save return address

jal C # call C + save ret addr in $31
lw $31, 0($29) # restore B’s return address

sub $29, $29, $24 # adjust stack

jr $31
C: :

jr $31
:

9 / 1

Procedures
I Two kinds of routines:

1. Leaf: do not call any other procedures
2. Non-leaf: call other routines

Determine type of your routine
I How does the generated procedure look?

Leaf procedure Non−leaf procedure

Function
Body

Prologue

Epilogue

func:

.ent func

.end func
j ra

Function
Body

func:

.ent func

.end func
j ra

I How does stack frame look?

frame
offset

Virtual frame
Pointer ($fp)

Argument n
:
:

Argument 1

local and temps

saved registers

argument build

:

High Memory

Low Memory

Stack Pointer
($sp)

:

framesize

10 / 1

Parameter Passing

I General registers $4 – $7 and floating point registers $f12 and $f14 used
for passing first four arguments (if possible).

I A possible assignment:
Arguments Register Assignments

(f1,f2,...) f1→$f12, f2→$f14
(f1,n1,f2, ...) f1→$f12 n1→ $6,f2→stack

(f1,n1,n2, ...) f1→$f12, n1→ $6,n2→$f7
(n1,n2,n3,n4,...) n1→$f4, n2→ $5, n3→$f6, n4→$f7
(n1,n2,n3,f ...) n1→$f4, n2→ $5, n3→$f6, f1→stack

(n1,n2,f1) n1→$f4, n2→ $5, f1→($6, $7)

Prologue for

procedure
I Define an entry for procedure first

.ent proc

proc:
I Allocate stack space:

subu $sp, framesize

framesize: size of frame required. Depends on
I local variables and temporaries
I general registers: $31, all registers that you use.
I floating point registers if you use them
I control link

11 / 1

Prologue for procedure - cont’d.
I Include a .frame psuedo-op:

.frame framereg, framesize, returnreg

Creates a virtual frame pointer ($fp): $sp + framesize
I Save the registers you allocated space for

.mask bitmask, frameoffset

sw reg, framesize+frameoffset-N($sp)

.mask: used to specify registers to be stored and where they are stored.
One bit in bitmask for each register saved.
frameoffset: offset from virtual frame pointer. Negative.
N should be 0 for the highest numbered register saved and then
incremented by 4 for each lowered numbered register:

sw $31, framesize+frameoffset($sp)

sw $17, framesize+frameoffset-4($sp)

sw $6, framesize+frameoffset-8($sp)

I Save any floating point register:
.fmask bitmask, frameoffset

s.[sd] reg,framesize+frameoffset-N($sp)

Use .fmask for saving register
I Save control link (frame pointer) information
I Save access link/display information (if any).

12 / 1

Epilogue of a procedure
I Restore registers saved in the previous step

lw reg, framesize+frameoffset($sp)

I Restore floating point registers
I Restore control link information
I Restore access link/display information
I Get return address

lw $31, framesize+frameoffset($sp)
I Clean up stack:

addu $sp, framesize
I Return:

j $31

13 / 1

Example Pascal and MIPS assembly program

Pascal Program

Program test;

procedure p(x: integer);

begin

end

begin

p(1);

end.

Equivalent Assembly

.text

.align 2

.globl main

.ent main

main:

subu $sp, 24

sw $31, 20($sp)

.mask 0x80000000, -4

.frame $sp, 24, $31

li $4, 1

addu $2, $sp, 24

jal p

move $2, $0

lw $31, 20($sp)

addu $sp, 24

j $31

.end main

.text

.align 2

.ent p

p:

subu $sp, 8

sw $4, 8($sp)

.frame $sp, 8, $31

sw $2, 4($sp)

addu $sp, 8

j $31

.end p

14 / 1

