
Final code generation

I Write a set of auxiliary procedures for generating labels and temporaries.
I Find types of variables. (Hopefully you found this in earlier part).
I Find all temporaries that you might need (GenCode for each expression

can find all temporaries).
I Make a map of how stack and heap is going to look like. That is, how are

specific variables going to get mapped in the memory.
I Associate an offset for all variables and parameters.
I Establish a protocol for calling a function and returning from a function.
I For every expression type, find a correspondence between the expression

and its corresponding implementation in assembly. (Check GenCode
related handout)

I For every statement type, find a corresponding implementation (Check
GenCode related handout)

1 / 18



Class

I Find size of class
I Determine all fields: include its fields and field of class classes.
I Assign an offset for members of fields (including those that you receive

from superclass). You will need type for every class:
I Arrange for code generation for every method:

ClassType::CodeGen(){

Fields *fl= Fields(); // find the fields of this class

Methods *mt = Methods(); // methods of this class

int offset = 0; // initial offset

// assume that fit is an iternator

for (fit = fl->begin(); fit!= fl->end(); fit++) {

// assign offset

(*fit).Offset = offset;

class_size = class_size + (*fit).Size();

// set offset for next field

offset = offset+(*it).Size();

}

// assume that iterator mit will go over all methods of class

for (mit = mt->begin(); mit!= ml->end(); mit++) {

// generate code for method

(*mit)->GenCode();

}

}

2 / 18



Allocation of space for variables

I Every variable (including instance and local) has an offset associated with
it.

I Two kinds of variables:

1. Primitive types: Allocate space for primitive types on stack
Allocate 1 word for each primitive type

2. Reference types:
I Allocate space for reference on stack (1 word)
I Allocate space for object on heap (equal to size of class)

I Example:
void func() {

// create an object

ClassC x = new ClassC();

...

// store a value in x.c

x.c = 4;

...

}

I func’s activation record will allocate space for x. The space for x is, thus,
allocated when func is executed.

I Generate code that will invoke sbrk to allocate space on heap for x. Use
the size of ClassC to determine amount of space (can be determined by
compiler).

I Store the address returned by sbrk on stack at an offset for the reference
(say, xoffset).

3 / 18



Generation of code for variable access

I What kind of code should be generated to refer to a specific name?
I Remember: every variable gets mapped to a memory location: either in

stack or heap.
I Local variable: Data is on stack:

I Find offset for each variable
I Can find variable by $fp + offset.

I Reference type:
I Find address for data on heap
I Find offset within heap
I Example:

1. Read the value of x into register r1 to get address on data associated with x
on heap.

2. Add offset of c to content of r1 to get address of x.c into register r2.
3. Store value 4 into the address specified in register r2.

So generated code for the assignment will look something like the following:

# load reference for x in register 16

lw $16, $fp(xoffset)

# load value 4 in register 17

lw $17, 0x04

# store $17 in address specified by 16+coffset.

sw $17, $16(coffset)

4 / 18



Method declaration

I For R p(T1 a1, T2 a2, ..) , do the following.
I Make the implicit parameter explicit: R p(Class this, T1 a1, T2 a2,

...)

I Assign an offset for each parameter. The first parameter will be nearest to
the framepointer.

I Layout space for local variables: lvarsize = size of local + temporary
variables

I Find registers that you want to save: rsize := size of registers.

I Determine stack frame size: stack frame size := lvarsize + rsize;
I Generate an assembly routine of the form:

.global _p_C_asm

.ent _p_C_asm

_p_C_asm:

I Use stack frame size to generate code that will allocate space on stack:
Generate code of the form sp := sp - stack frame size;

I Generate code for saving registers at specific offsets with AR
I Generate code for the body
I Generate code for loading registers from the current activation record.
I Generate code for jumping to routine that called this routine.

5 / 18



Method activation: x.p(f1, f2, ..., fn)

I Generate code for pushing value of fi on stack. Note: you should
generate code for evaluating and pushing the parameters on stack in such
a way that fn is pushed first, and f1 last.

I generate code for pushing value of x on stack.
I generate code for jumping to the assembly routine generated for p

I Save any registers that you want to save

// Assumption: m stores information about a method

MethodInvocationExpression *m;

// get parameters of method

ParamList p = m->GetParams();

// object on which method is invoked

Object *o = m->Object();

// Traverse parameter list in reverse order

// assume that this is how it is stored

for (pit = p.begin(); pit != p.end(); pit++) {

(*pit).GenCode(); // generate code for each parameter

}

for (pit = p.begin(); pit != p.end(); pit++) {

// push the symbtab that stores value for each

// parameter on stack

Print(‘‘push (*pit).symtab on stack’’);}

}

// push the object on stack

Print(‘‘push o->symtab on stack’’);

// construct assembly name for p

String asmFunc = AssemblyName(o->ClassName(), m->MethodName());

Print(‘‘jump to asmFunc’’);

6 / 18



Implementation of dynamic functions
I Define a table, say vtbl, for a class. The table contains pointers to virtual

functions of the class. Each object of a class contains pointer to the
virtual function table of the class.

class A {
int a;

void f(int);

void g(int);

void h(char);

};
class B extend A {

int b;

void g(int);

};
class C extends B {

int c;

void h(int);

}
I Class C layout:

int a;

int b;

int c;

vptr

vtbl:
A f

C h

B g

I Invoke a method f:
I push arguments on stack
I find f’s index in virtual function table
I jump to the label in table.

7 / 18



Example: input program

class P {

int x;

int y;

boolean z;

void M(int a) {

int b, c;

int d;

x = y+1;

d = a;

}

}

class Q {

void N() {

P ip;

int jp;

ip = new P;

ip.M(4);

}

}

8 / 18



A compact parse tree

PQ

048

M xyz

int
int

m
eth

bool

ST
 for P

N
m

eth

Param

body

Sym
bols

C
ode

Param

body

ST
 for Q

ST
 for N

B
lock

InstanceC
reation

M
ethodInvocation

ip
P

M
ethodN

am
e

Param
eterL

ist

4
ip.M

ST
 for M

Sym
bols

C
ode

0

ST
 for body

bcd
int

int

B
lock

A
ssignm

ent
A

ssignm
ent

x
A

dditionE
xpr

d
a

1

G
lobalPtr

t1
int

int
a this

P

y

48

this
Q

4

int

−
4

−
8

0

ST
 for body

ipjp
int P

−
4

−
12

9 / 18



Code Generation for program

I Code generation for example = code generation for class P and code
generation for class Q.

I The following computations need to be done:
I Class: Offsets for all instances variables + size of class. Offset will be used

for accessing a specific instance variable in heap.
For instance, in order to access instance variable x of an object X (through
expression X.x) of P, we need offset of x.

I Parameters: offsets for all parameters + total space taken by parameters.
Offset will be used for accessing specific parameter on stack.

I Block (local and temp) variables: Offsets for all local variables + total size.
Total size will be used for builiding AR, and offset for accessing local
variables within activation record.

I How will stack look for procedures?

Layout for P.M

$fp

$sp

this ($fp + 4)

a ($fp + 8)

$31
$fp

$fp

$31
$fp

$sp

Layout for Q.N

this ($fp + 4)
b ($fp - 0)
c ($fp - 4)
d ($fp - 8)

t1 ($fp - 12)
ip($fp - 0)
jp ($fp - 4)

10 / 18



General Approach

I Remember: $sp points to first free location in stack.
$fp: points to first local variable.

I For each method, generate a unique assembly routine.
I All local variables (primitives and references) and parameters of a program

or procedure will go on stack.
I Local variable: -offset($fp) (offset of local variable)
I Parameter: offset($fp) (offset of parameter)

I Use a load - compute - store model.
I Global data: For every global variable, say GL, generate code like the

following:
.data

GL: .word 0

Initialize GL to 0, and now GL can be accessed symbolically.
I Literal: Literals like strings, float, and double values can be stored in

following manner:
.data

astr: .asciiz "this is a string"

temp1: .double 4.56, 0.4e-25

temp2: .float 2.34, 0.5e-20

11 / 18



Code generation for methods of P

I Find the temporaries that you need for P.M: 1.
I Compute various sizes for P.M:

I Variables: 4+4+4+4: 16 bytes (var size)
I Registers: 4 bytes ($31) + 4 bytes ($fp)
I Framesize = 16 + 4 + 4 =24

I Code generation of P.M = prologue + body + epilogue.
We first look at prologue.

I Generate header for P.M:
.text

.ent P M asm

P M asm:
I Generate code that will construct an activation frame for P.M:

subu $sp, 24 # 24 = size of activation frame.

I Generate code for saving registers: save $31 and $fp only.
sw $31, 24-16($sp) # $sp+framesize-var size

sw $fp 24-16-4($sp) # store after $31
I Generate code for setting new frame pointer:

addu $fp, $sp, 24 # 24 = framesize

I This should take care of prologue for P.M

12 / 18



Code generation for body of P.M

I Code generation here will involve generating body for statements of P.M.
I generate code for evaluating x := y+1;

I First evaluate the right hand side y+1;
I Store this value in a temp.
I Generated code should first find y in memory, and change its value. So the

compiler must first find where y comes from. By looking at symbol tables, it
finds that y is an instance variable of P. So y is a component of object this
passed to M. Generated code can find y in two steps

I Find “this” on stack using $fp (it should be the first argument):

lw $19, 4($fp) # 4 = offset of object
I Now access y from this

lw $20, 4($19) # 4 = offset of y on heap

Register 20 contains the value of y.

I Add 1 to $20. Then store it in temp:
addi $20, $20, 1 # add 1

sw $20, -12($fp) # store in temp (at offset 20)
I Generate code for assigning temp to x. (Note that x will need to be

accessed in the same manner as y as above):
lw $19, -12($fp) # load temp; offset for temp=12

lw $20, 4($fp) # 4 = offset of this

sw $19, 0($20) # store $19 into x(at offset 0)

I generate code for evaluating d = a: Load content of a into register and
store it into d.
lw $19, 8($fp) # 8 = offset of a

sw $19, -8($fp) # store in d (at offset -8)

13 / 18



Epilogue for P.M
I Generate code for restoring $31 and $fp:

lw $31, 24-16($sp) # 24-16 = offset for 31

lw $fp 24-16-4($sp) # 24-16-4 = offset for for sp

I generate code for cleaning up stack
addu $sp, 24

I generate code for returning:
j $31

I Generated end:
.end P M asm

14 / 18



Code Generation for Q.N
I Computations by compiler:

I Variables: 4 bytes (for ip) + 4 bytes (for jp) = 8 bytes
I Registers: 4 (register 31) + 4 bytes ( register $fp)

Framesize = 8 + 4 + 4 = 16
I Generate header for Q.N:

.ent Q N asm

Q N asm:
I generate code for constructing activation frame for Q:

subu $sp, 16 # 16 = size of activation frame.

I Generate code for saving registers: save $31 and $fp only.
sw $31, 16-8($sp)

sw $fp 16-8-4($sp)
I Generate code for setting new frame pointer:

addu $fp, $sp, 16 # 16 = framesize

15 / 18



Generate body for Q.N
I Generate code for ip := new P

1. Allocate space for an object. Size of space defined by size of P.
This is done by calling sbrk

2. Store the address returned by sbrk in ip.
li $v0, 9 # 9 = sbrk code

li $a0, 12 # 12 = sizeof(P)

syscall # system call

sw $v0, -0($fp) # store returned address($2) on stack

3. The address of space allocated is stored on stack in location $fp=0. (that
is, first local variable).

4. This is the place where a constructor should be called. It will involve the
following:

I Evaluate arguments of constructor
I Push arguments on stack
I Call constructor

16 / 18



Generate body for Q.N - cont’d.
I Generate code for method invocation: ip.M(4)

1. generate code for evaluating parameters and store the evaluated values on
stack.

2. Note that there are two parameters to M: i) object on which method is
being invoked (ip in this case) and ii) int parameter with value 4.

3. Push first argument (ip):
subu $sp, 4 # allocate 4 bytes for first arg

li $19, -0($fp) # load content of ip (at offset -0)

sw $19, 4($sp) # store value of arg into stack

4. Evaluate second argument and push it on stack:
subu $sp, 4 # allocate 4 bytes for first arg

li $19, 4 # load 4 in register $19

sw $19, 4($sp) # store val of arg into stack

5. Now jump to assembly routine P M asm:
jal P M asm

6. After returning from procedure, need to take back space which was
allocated for arguments. So generate code for deallocating argument space
(two arguments)
addu $sp, 8 # 8 = size of arguments

17 / 18



Generate body for Q.N - cont’d.
I Epilogue for Q.N:

1. Generate code for restoring $31 and $fp:
lw $31, 16-8($sp) # restore $31

lw $fp 16-8-4($sp) # restore $fp

2. generate code for cleaning up stack
addu $sp, 16

3. generate code for returning:
j $31

4. Generated end:
.end Q N asm

18 / 18


