Final Code Generation
> Input: Intermediate representation of program, Output: Assembly

instructions
» General approach:
> Interpret IR: examples Java byte code. Usually slower.
» Macro expansion: replace each IR by a set of target machine
instructions.
> Naive and can be inefficient.
> Does not utilize the state of program to generate efficient program.
» Sometimes more than one IR can be replaced by a single instruction.
> Possible code bloating.
» Threaded code:
> Replace each IR instruction with a subroutine call to a support routine
that implements the IR instruction.
> After executing the instruction, an implementation routine uses the
return address to select the next IR.
» Control threaded through a sequence of calls to implementation
routines.
» We will look at code generation issues:

1. Instruction selection
2. Register and Temporary Management
3. Instruction scheduling

17

Instruction selection

» Uniformity and completeness of instruction set important during code
generation.

» Efficiency an important consideration (not in the project, hence
mapping is straightforward).

» Simple Approach: For each three-address statement, find a code
skeleton that implements it efficiently:

X:=Y + 2 1w $19, Y
1w $20, Z
add $21, $19, $20
sw $21, X

> Generates poor code:

a:=b + c; 1w $19, b
1w $20, c
add $21, $19, $20
sw $21, a

d:=a + e; 1w $19, a
1w $20, e
add $21, $19, $20
sw $21, d

Loads and stores of a not required.

» Efficiency an important issues: if target machine provides many
instructions for implementing an operations, cost issues come into
picture.

For instance, instruction a:=a + 1 can be implemented by INC
instruction: generally very efficient.

Deciding which sequence is best may require knowledge about the
context in which a construct appears.

)

17

Register Allocation

>
| 4

Temporaries and registers used to hold intermediate results.

Instructions involving registers are faster (no need to access memory).

In most RISC processors, computations occur only through registers.
Optimization problem: efficiently allocate registers to minimize
execution time. Constraints:

» Fixed number of registers = make good use of them

» H/W and OS may require that register usage convention be observed.
Two subproblems:

1. Register allocation: pick variables for reg. allocation
2. Register assignment: map variables to specific registers.

Finding optimal assignment of registers to variables is difficult (in
general, NP-complete).
Register pool divided into three kinds:
1. Allocatable registers: Explicitly allocated and freed by compile-time
calls to register management routines.
2. Res. registers: Assigned a fixed function throughout a program.
Examples: display, stack pointer, frame-pointer etc.
3. Volatile registers: Can be safely used only in local code sequence. Used
mostly for i) holding values of variables when implementing A:= B kind
of statement, ii) holding index or offset into some table etc.

17

Allocation of registers

» Simplest possible scheme: load-use-store model. Every time a variable
is accessed, it is loaded into registers, used, and then value stored
back.

Used in your project, but can be very inefficient.

> Smarter scheme: Keep results and data value in registers if results
and data value are going to be used again. This means that code
generator must keep track of following:

» Which registers are in use and what they hold?

» Where the current value of a variable is to be found?

> Which variable will be needed later and where?

» Which variables whose current values are in registers need to be stored
in memory beforing calling procedures, making jumps etc.

» Approach:

» Limit above analysis to variables and temps within blocks

> Analyze and record liveness of variables and temps

» Extend symbol table to store information about variables where they
are in memory

» Store information about registers as well.

> Use above information for register allocation and code generation.

» We will look at all of these in next few slides.

17

Step 1: Determine blocks in IR

> Flow graph: A graph based representation of IR programs. Captures
information as to how information/control flows.
» Node: computations, Edges: control flow
» Basic block: sequence of statements in which flow of control enter at
beginning and leaves at end.
» Define a variable x: value
written into x

» Use of x: value of x read.

> live: value of a variable is
live at a point if it is used
after that point.
» Given a sequence of statements, convert into a graph with basic
blocks connected through control flows:
1. Find set of all first
statements, called leader, of
a block:

> first statement of
program is a leader

> Target of a gotos is a
leader

> Statement following a
goto is a leader.

i <= 20 goto L1;

2. A basic block = leader + all
statements until next leader.

17

Step 1: transformation of basic blocks

» Transform statements within a block so that better code will be
produced. Two kinds: i) Structure preserving ii) Algebraic
» Structure preserving transformations:
1. Common subexpression elimination: Compute common expressions

only once.

Original Transformed
a:=b + ¢ a:=b + ¢
b:=a - d b:=a - d
c:=b + ¢ c:=b + ¢
d:=a -d d:=b

2. Dead-code elimination: if value of x is never used, then one can
eliminate statements of the form x:=y + z;

3. Rename temporary variables.

4. Interchange of statements:

Original Transformed
tl:=b + c t2:=a - d
t2:=a - d tl:=b + ¢

» Algebraic: Perform simple algebraic transformations such as multiply
by 0 or 1 etc.

6/17

Step 2: find liveness and usage of variables

» Use of a variable x:
X:=a + b; (statement i)

y:=¥ + c; (statement j)
x is used in statement j.
> Next use of a variable:
a:=b + c; (statement i)
k:=g + d; (statement j)
If b is not used between statement i and j, next-use of b at statement
i is statement j.
> A variable is live if it is going to be used again in a program.
In the absence of information, assume that programmer-defined
variables are live at the end of block and temporaries are not.
» Question: how to compute next-use of variables. Start from end of
block and work backwards to construct it.

17

vyvyVvyy

>

Step 2: find next-usage of variables

Extend symbol table to hold two extra information: i) status that
indicates if variable is alive or dead, ii) next-use that indicates
statement where variable is used.
Make status of all variables live and all temporaries dead.
Make next-use of all variables and temporaries none.
Start at the end of a basic block: better to scan from the back.
For instruction (j) a:=b + ¢
1. Check symbol table and see whether a, b, or c are alive or dead, and
see what their next use is. Attach this information to this instruction.
2. Update symbol-table information for use earlier in block:

2.1 Make the symbol table entry for a dead and no next-use
2.2 mark symbol table entries for b and c live and set their next-use values

to line j.
Example: For block:
(1) u:=a - b
(2) vi=c - a
(3) wi=u + v
(4) x:=d + Db
(5) y:=c + 1
(6) z:=x * y
(7) d:=w - z

Next-use information can be used for managing temporaries: two
temporaries can be stored in same location if they are not live at the
same time.

17

Example: computation of next-use

Var | Status | next-use No Status next-use

a Live None 1

b Live None 2

c Live None 3

d Live None 4

u Dead None 5

v Dead None 6

w Dead None 7 d live; w,z:dead | d, w,z: none
X Dead None

y Dead None

z Dead None

Var | Status | next-use No Status next-use

a Live None 1

b Live None 2

c Live None 3

d Dead None 4

u Dead None 5

v Dead None 6 z live; x,y:dead z:(7), x,y:none
w Live (7) 7 d live; w,z:dead | d, w,z: none
X Dead None

y Dead None

z Live (7)

Var | Status | next-use No Status next-use

a Live None 1

b Live None 2

c Live None 3

d Dead None 4

u Dead None 5 y,c:live y:(6); c:none
v Dead None 6 z live; x,y:dead z:(7), x,y:none
w Live (7) 7 d live; w,z:dead | d, w,z: none
X Live (6)

y live (6)

z Dead None

17

Var | Status | next-use No Instr Status next-use
a Live None 1 :
b Live None 2
c Live (5) 3
d Dead None 4 x,b:live;d:dead y:(6):none
u Dead None 5 y,c:live y:(6); c:none
v Dead None 6 z live; x,y:dead z:(7), x,y:none
w Live () 7 d live; w,z:dead | d, w,z: none
x Live (6)
y Dead None
z Dead None
Var | Status | next-use
a Live None
b | Lve | (4)
c Live (5)
d Live (4)
u Dead None
v Dead None
w Live (7)
X Dead None
y Dead | None
z Dead None
Final Table:
No Status next-use
1 u, a, b: live u:3; a:2; b: 4
2 v,c, a: live v:3; c:(5); a:none
3 w live; u, v dead | w:(7), u, v: none
4 x,b:live;d:dead y:(6):none
5 y.c:live y:(6); cnone
6 z live; x,y:dead z:(7), x,y:none
7 d live; w,z:dead d, w,z: none

10/17

Step 3: Allocation of registers and code generation
» Approach:

> Look at each IR instruction and find corresponding set of machine
instructions.

» Check if variables in instruction are already in register. If so, use them
otherwise load from memory.

» Hold values of variables as long as possible. Store them back into
location when running out of registers, jumping to a procedure or
labelled statement. (Here data is not held in registers across block
boundaries.)

» Generation of code for a:=b + c¢: Many possibilities with respect to
where a, b, and c are stored, and how they will be used.
» The code generation algorithm keeps track of register contents and
addresses for names:
1. Register Descriptor: Keep track of what is currently in each register.
As code generation progresses, each register will hold the value of
names.
2. Address Descriptor. Keep track of location where current value of a
name can be found.
Used to determine the accessing method for a name.

11 /17

How to allocate registers
> GetReg: find a register for an operand y.
if (y is in register R) and
(R does not hold any other variables) and
(y is dead and has no next use) then

return R.

else if (there is an un-used register R) then
return R

else
Select an occupied register R for use
Generate a Store instruction to

save R’s contents
Update the descriptors and return R.
> Note:

> GetReg consults an address table to find status of a variable

» a := b can cause two variables to share the same register.

» When saving some occupied register, find the one whose contents will
be accessed as far possible down the block.

12 /17

Final Code Generation
» Generate code for instruction of form a:=b op c:
1. Check address table to determine where b is. If b is not in memory
then use GetReg for a register Rb for b.
If GetReg returns an empty register, generate:
1w Rb, offsetb($fp)
Here, offset defines the offset of symbol b in the activation record.
Also, assume that b is locally defined.
Mark b to be located in Rb.

2. Do the same for c. Note that you want to ensure that getting a
register for ¢ should not mean getting Rb. GetReg should be modified
by making Rb unavailable.

Generate if ¢ is not in register:
1w Rc, offsetc($fp)

3. Find a unique register Ra for holding a:

op Ra, Rc, Rb

4. Mark that a is located in Ra.

» Example for statement d:=(a - b) + (¢ - a) - (d + b)*(c+1)

u:=a -b
V:i=C - a
w:=u + v

:=d + b

1=c+1;

I=X %y

=W - Z

® N < M

13 /17

Register allocation and code generation for code

» |nitial table states: Registers Variables
[0,1,12-15 [Res. | [a-d [Memory |
[211 | Free | [uz | Nowhere |

> For code (1) u:=a - b, Call GetReg to hold a, to hold b, and to
hold u. Generate code accordingly:

Registers Variables Code:
W $2, a
0,1 [Res. 2]2 w83 b
2 a b |3 sub $4, $2, $3
3 b K
4 u c-d | Memory
511 | Free vz | Nowhere
12-15 Res.

v

For code (2) v:=c - a, Call GetReg for a, for ¢, and to hold v.
Generate code accordingly:

Registers Variables Code:
1w $5, c
0, 11215 [Res. [a |2 sub $6, §5, §2
2 a b 3
3 b u 4
4 u c 5
5 c v 6
6 v d Memory
7-11 Free | w-z | Nowhere

> For code (3) w:=u + v, Call GetReg for u, for v, and to hold w.
Note that u is dead (not used after this) Implies can use u's register.

Registers Variables Code:
add $4, $4, $6

0,1,12-15 | Res. || a 2
2 a b 3
3 b w 4
4 w c 5
5 c v 6
6 v d Memory
7-11 Free || u, y-z | Nowhere

17

Register allocation and code generation for code - cont’d.

» For code (4) x:=d + b, Call GetReg for d, for b, and to hold x. v is
not used again, so its register can be reused. GetReg will return that.

Registers Variables Code:
1w $4, d
0,1, 12-15 Res. || a 2 add $8, $4, $3
2 a b 3
3 b d 6
4 w c 5
5 c w 7
6 d X 8
7 w d, u, v-z | Nowhere
8 X
9-11 Free
» For (6) y:=c + 1:
Registers Variables Code:
addi $6, $5, 1
0,1, 12-15 | Res. || a 2
2 a b 3
3 b y 6
4 w c 5
5 c w 7
6 y X 8
7 w d, u, v-z | Nowhere
8 X
9-11 Free

Instruction Scheduling for Optimal Register Usage

» Earlier approach: Traverse left-to-right, bottom-to-top. Not the best
choice if we want to minimize register-usage.
> A better algorithm: Select the side which has maximum register
usage to generate code first.
Two phases: i) Labeling phase ii) Code generation phase
» Labeling phase: Label each node of tree by their register
requirements. Say we have a node op(t;, t):
1. if t; and t, are leaves: label both as 1 since they both need to be in a
register.
regreq(t;) = regreq(t) = 1;
2. Otherwise:

Let nn = regreq(t1), rn = regreq(t:)
regreq(op(ti, t2)) = max(n, n) if n#n
else n+1

» Example:

16 /17

Code Generation Phase

» For a node op(tl, t2), generate code for t1, t2 and then for the
node. Order of t1 and t2 depends on their register requirements.

» Manage registers by a stack: RSTACK. Stack initialized with full set of
available registers. Operations on Stack: pop, push, top, exchange
(swap top two registers)

> Notation: (t, r) to denote a node t with register requirement r.

» Convention: Topmost register at beginning of processing a subtree:

result register for t.
> Algorithm:
GenCode(t) =
if t is a leaf then
generate ‘‘lw top(RSTACK), a’’
else if t = op((tl, r1), (t2, r2)) then
case rl < r2:
GenCode (t2) ;
R:=pop (RSTACK) ;
GenCode (t1);
generate ‘‘op R, R, top(RSTACK)’’;
push (RSTACK, R);
case rl >= r2:
GenCode (t1);
R:=pop (RSTACK) ;
GenCode (t2) ;
generate ‘‘op R, R, top(RSTACK)’’;
push(RSTACK, R);

17

