
Syntactic Analysis
Introduction

I Second phase of the compiler.
I Main task:

I Analyze syntactic structure of program and its components
I to check these for errors.

I Role of parser:

Lexical
Analyzer

Rest of
Front end

Parser

Symbol
Table

source

tree

parse

req

token
IR

I Approach to constructing parser: similar to lexical analyzer

I Represent source language by a meta-language, Context Free Grammar
I Use algorithms to construct a recognizer that recognizes strings generated by the

grammar.
This step can be automated for certain classes of grammars. One such tool:
YACC.

I Parse strings of language using the recognizer.

1 / 1

Context Free Grammar (CFG)

I Syntax analysis based on theory of automata and formal languages, specifically
the equivalence of two mechanisms of context free grammars and pushdown
automata.

I Context free grammars used to describe the syntactic structures of programs of
a programming language. Describe what elementary constructs there are and
how composite constructs can be built from other constructs.

Stmt → if (Expr) Stmt else Stmt

Note recursive nature of definition.
I Formally, a CFG has four components:

a) a set of tokens Vt , called terminal symbols, (token set produced by the scanner)
examples: if, then, identifier, etc.

b) a set of different intermediate symbols, called non-terminals, syntactic categories,
syntactic variables, Vn

c) a start symbol, S ∈ Vn, and
d) a set of productions P of the form

A→ X1 · · ·Xn

where A ∈ Vn, Xi ∈ (Vn ∪ Vt), 1 ≤ i ≤ m,m ≥ 0.

I Sentences generated by starting with S and applying productions until left with
nothing but terminals.

I Set of strings derivable from a CFG G comprises the context free language,
denoted L(G).

2 / 1

CFG - example.
I Nonterminal start with uppercase letters. rest are non-terminals.
I If-then-else:

Stmt → IfStmt | other

IfStmt → if (Exp) Stmt ElseStmt

ElseStmt → else Stmt | ε
Exp → 0 | 1

Example strings:
other

if (0) other

if (1) other else if (0) other else other

Derivation of if (1) other else if (0) other else other:
Stmt ⇒ IfStmt ⇒ if (Exp) Stmt ElseStmt

⇒ if (1) Stmt ElseStmt

...
I Grammar for sequence of statements:

StmtSeq → Stmt; StmtSeq | Stmt

Stmt → s

L(G) = { s, s;s, s;s;s, ... }
I What if statment sequence is empty?

StmtSeq → Stmt; StmtSeq | ε
Stmt → s

L(G) = { ε, s;, s;s;, s;s;s;, ... }
Note: Here ’;’ is not a statement separator, but a terminator.
What if we want a statement separator?

StmtSeq → NonEmpStmtSeq | ε
NonEmpStmtSeq → Stmt; NonEmpStmtSeq | Stmt

Stmt → s

3 / 1

Context Free Grammar (CFG) - cont’d.
I Notations:

1. Nonterminals: Uppercase letters such as A, B, C
2. Terminals: lower case letters such as a,b, c , operators +,−, etc,

punctuation, digits, and boldface strings such as id.
3. Nonterminals or terminals: Upper-case letters late in alphabet, such

as X , Y , Z .
4. Strings of terminals: lower-case letters late in alphabet, such as x , y ,

z .
5. Strings of grammar symbols: lower-case greek letters α, β, etc.
6. Write A → α1, A → α2, etc as

A → α1|α2| · · ·
I Example:

E → E A E | (E) | − E | id
A → +| − | ∗ |/| ↑

I Derivation of strings: a production can be thought of as a rewrite
rule in which nonterminal on left is replaced by string on right side.
Notation: Write such a replacement as E ⇒ (E).
Example:

E ⇒ −E ⇒ −(E)⇒ −(id)

4 / 1

CFG - cont’d.

I Notation: Write αAβ ⇒ αγβ if A → γ.
I Notation: Write α

∗⇒ β to denote that β can be derived from α in zero or
more steps.
L(G) = {α| S ∗⇒ α}

I Sentential form: α is a sentential form, if S
∗⇒ α and α contains

non-terminals.
Example: E + E

I Leftmost derivation: Derivation α ⇒ β is leftmost if the leftmost terminal in
α is replaced.
Example:
E

∗⇒ EAE
∗⇒ idAE

∗⇒ id + E
∗⇒ id + id

Production sequence discovered by a large class of parsers (the top-down
parsers) is a leftmost derivation; hence, these parsers are said to produce
leftmost parse.

I Rightmost derivation: Derivation α ⇒ β is left most if the rightmost terminal
in α is replaced.
Example:
E

∗⇒ EAE
∗⇒ EAid

∗⇒ E + id
∗⇒ id + id

Also, called canonical derivation. Corresponds well to an important class of
parsers (the bottom-up parsers). In particular, as a bottom up parser discovers
the productions used to derive a token sequence, it discovers a rightmost
derivation, but in reverse order : last production applied is discovered first,
while the first production is the last to be discovered.

5 / 1

Representations of derivations
I Derivations represented graphically by a derivation of parse tree:

I Root: start symbol, leaves: grammar symbols or ε
I Interior nodes: nonterminals; Offsprings of a nonterminal represent application of

a rule.

I Example: Parse tree for leftmost and rightmost derivations of string id + id ∗ id :
E

E E

E*

id

id

+

E

id

idE

id

E

id

+

E

E E*

I Abstract syntax tree: A more abstract representation of the input string.

OtherOther0

if (exp) Stmt else Stmt

Stmt

otherother

if

0

I Parse tree may contain information that may not be needed in later phases of
compiler. AST does not include intermediate nodes primary used for derivation
purposes.

I In general, during the semantic analysis phase, the parse tree of a string may
be converted into an abstract syntax tree.

6 / 1

Parse Tree - Examples

I Parse tree for string: if (o) other else other
Stmt

IfStmt

if (exp) Stmt ElseStmt

0 other else Stmt

other

if

0 other other

I Parse tree for string: s;s;s
StmtSeq

Stmt ; StmtSeq

Stmt ; StmtSeq

s
s

s

seq

s s s

7 / 1

Properties of Context Free Grammars

I Context free grammars that are limited to productions of the form A → a
B and C → ε form the class of regular grammars. Languages defined by
regular grammars are a proper subset of the context-free languages.

I Why not use lexical analysis during parsing?
I Lexical rules are in general simple.
I RE are more concise and easier to understand.
I Domain specific language so that efficient lexical analyzer can be

constructed.
I Separate into two manageable parts. Useful for multi-lingual programming.

I Non-reduced CFGs: A CFG containing nonterminals that are unreachable
or derive no terminal string.
Example:

S → A|B

A → a

B → B b

C → c

Nonterminal C cannot be reached from S. B does not derive any strings.
Useless terminals can be safely removed from a CFG without affecting the
language. Reduced grammar:

S → A

A → a

Algorithms exist that check for useless nonterminals.

8 / 1

Properties of Context Free Grammars - Ambiguity

I Ambiguity : A context free grammar is ambiguous if it allows different
derivation trees for a single tree.

E

E E

E

id

id E

id

−
− id

E

E E−
E

id

E

id

−

Each tree defines a different semantics for −
I No algorithm exists for automatically checking if a grammar is ambiguous

(impossibility result). However, for certain grammar classes (including
those that generate parsers), one can prove that grammars are
unambiguous.

I How to eliminate ambiguity: one way is to rewrite the grammar: Example:
S → if E then S | if E then S else S

S → M|U

M → if E then M else M

U → if E then S | if E then M else U

Represents semantics:Match each else with the closet previous unmatched
then. The above transformation makes the grammar unnecessarily
complex.

I Another approach: Disambiguate by defining additional tokens end.
S → if E then S end | if E then S else S end

I Provide information to the parser so that it can handle it in a certain way.

9 / 1

Properties of Context Free Grammars - cont’d.

I Left recursion: G is left recursive if for a nonterminal A, there is a
derivation A

+⇒ Aα
Top-down parsing methods cannot handle left-recursive grammars. So
eliminate left recursion.

I Left factoring : Factor out the common left prefixes of grammars: Replace
grammar A → αβ1|αβ2 by the rule:

A → αA′

A′ → β1|β2
I Context free grammars are not powerful enough to represent all constructs

of programming languages.
Cannot distinguish the following:

I L1 = {wcw |w ∈ (a|b)∗}: Conceptually represents problem of verifying that
an identifier is declared before used. Such checkings are done during the
semantic analysis phase.

I L2 = {anbmcncm|n ≥ 1 ∧m ≥ 1}. Abstracts the problem of checking that
number of formal parameters agrees with the number of actual parameters.

I L3 = {anbncn|n ≥ 0}.

CFG’s can keep count of two items but not three.

10 / 1

Properties of Context Free Grammars - cont’d.

I Context free grammar can capture some of language semantics as
well.

I Example grammar:

<exp> ::=<exp> + <term> | <term>

<term> ::=<term> * <term>

| ‘(’<exp>‘)’

| <number>

<number> ::= 0 | 1 | · · · | 9

I Precedence of * over +: by deriving * lower in the parse tree.
I Left recursion

<exp> ::= <exp> + <term>

left associativity of +
I Right recursion:

<exp> ::= <term> + <exp>

right associativity of +

11 / 1

Backus-Naur Form(BNF)

I BNF: a kind of CFG.
I First used in Algol60 report. Many extensions since, but all similar and most

give power of context-free grammar.
I Has four parts: (i) terminals (atomic symbols), (ii) non-terminals (representing

constructs), called syntactic categories, iii) productions and iv) a starting
nonterminal.

I Each nonterminal denotes a set of strings. Set of strings associated with
starting nonterminal represents language.

I BNF uses following notations:

(i) Non-terminals enclosed in < and >.
(ii) Rules written as

X ::= Y

(a) X is LHS of rule and can only be a NT.
(b) Y can be a string, which is a terminal, nonterminal, or concatenation of terminal

and nonterminals, or a set of strings separated by alternation symbol |.

I Example: Terminals: A, B, · · · Z; 0, 1, · · · 9

Nonterminals: <id>, <rest>, <alpha>, <alphanum>, <digit>

Starting NT: <id>
Productions/rules:
<id> ::= <alpha> | <alpha><rest>

<rest> ::= <rest><alphanum> | <alphanum>

<alphanum> ::= <alpha> | <digit>

<alpha> ::= A | B | · · · | Z

<digit> ::= 0 | 1 | · · · | 9

12 / 1

Extended BNF (EBNF)

I Extend BNF by adding more meta-notation =⇒ shorter productions
I Nonterminals begin with uppercase letters (discard <>)
I Terminals that are grammar symbols (’[’ for instance) are enclosed in ‘’.
I Repetitions (zero or more) are enclosed in {}
I Options are enclosed in []:
I Use () to group items together:

Exp ::= Item {+ Item} | Item {- Item}
=⇒

Exp ::= Item {(+|-) Item}
Conversion from EBNF to BNF and Vice Versa

I BNF to EBNF:

i) Look for recursion in grammar:
A ::= a A | B =⇒ { a } B

ii) Look for common string that can be factored out with grouping and options.
A ::= a B | a =⇒ A := a [B]

I EBNF to BNF:

i) Options []:
A ::= a [B] C =⇒

A’ ::= a N C

N ::= B | ε
ii) Repetition {}:

A ::= a B1 B2 ... Bn C =⇒
A’ ::= a N C

N ::= B1 B2 ... Bn N | ε

13 / 1

