Language processing:
introduction to compiler construction

Andy D. Pimentel
Computer Systems Architecture group
andy@science.uva.nl
http://www.science.uva.nl/~andy/taalverwerking.html

YACC

What is YACC ?

— Tool which will produce a parser for a given grammar.

— YACC (Yet Another Compiler Compiler) is a program
designed to compile a LALR(1) grammar and to
produce the source code of the syntactic analyzer of
the language produced by this grammar

— Input is a grammar (rules) and actions to take upon
recognizing a rule

— Qutputis a C program and optionally a header file of
tokens

LEX

e Lex is a scanner generator
— Input is description of patterns and actions

— Output is a C program which contains a function
vylex() which, when called, matches patterns and
performs actions per input

— Typically, the generated scanner performs lexical
analysis and produces tokens for the (YACC-
generated) parser

LEX and YACC: a team

-~

N

YACC
yyparse()

~

/

LEX
yylex()

How to work ? }

Input programs

12 + 26

LEX and YACC: a team

call yylex()
LEX [0_9]_|_
yylex()
4 h] Input programs
YACC next token 13U M

yyparse() 12 + 26

_ Wy 1
NUM “+7 NUM

Availability

lex, yacc on most UNIX systems
bison: a yacc replacement from GNU
flex: fast lexical analyzer

BSD yacc

Windows/MS-DOS versions exist

<=

@& 2=

YACC

Basic Operational Sequence

File containing desired
grammar in YACC format

YACC program

C source program created by YACC

C compiler

Executable program that will parse
grammar given in gram.y

YACC File Format

Definitions
%%

Rules

%%

Supplementary Code

The identical LEX format was
actually taken from this...

Rules Section

* |sagrammar
e Example

expr - expr "+" term | term;
term - term "*" factor |
factor;

factor - "(" expr ")" | ID |
NUM;

Rules Section

 Normally written like this
e Example:

expr > expr "+° term
| term
term > term "*" factor

| factor

factor - "(" expr ")-
| ID
| NUM

Definitions Section

Example

i

#include <stdio.h>
#include <stdli
%token ID NUM

%hstart expr

Sidebar

LEX produces a function called yylex()
YACC produces a function called yyparse()
yyparse() expects to be able to call yylex()

How to get yylex()?
Write your own!

If you don't want to write your own: Use LEX!!!

Semantic actions

expr : expr "+" term { $$ = $1
| term { $$ = $1;
term : term "** factor { $$ = %1
| factor { $% = $1;
factor : "(" expr)" { $% = $2;

| ID
| NUM

+ $3; }

* $3; }

Semantic actions (cont’d)

$11

expr - expr "+" term { $% = $1 + $3; }
| term { $$ = $1; }

term : term "*" factor { $$ = $1 * $3; }
| factor { $$ = $1; }

factor : "(" expr)" { $% = $2; }

| ID
| NUM

Semantic actions (cont’d)

expr - expr "+" term { $% = $1 + $3; }
| term { $$ = $1; }

term : term "*" factor { $$ = $1 * $3; }
| factor { $$ = $1; }

factor : "(" expr)" { $% = $2; }

| ID

| NUM L$2

Semantic actions (cont’d)

expr : expr "+" term { $% = $1 + $3; }
| term { $% = $1; }
term : term "*" factor { $$ = $1 * $3; }
| factor { $$ = $1; }
factor : "(" expr ") {$$=9%$2;1}
1D | =
$3

| NUM

Default: $$ = $1;

Bored, lonely? Try this!
yacc -d gram.y
* Will produce: Look at this and you'll
y.tab.h never be unhappy againl

yacc -v gram.y

 Will produce: Shows "State Machine"®
y.output

scanner.l

Example: LEX

h{
#include <stdio.h>
#include "'y.tab.h"

i

id [a-zA-Z][_a-zA-Z0-9]*
wspcC [\t\n]+

semi [:1

comma [.1

%%

int { return INT; }

char { return CHAR; }

float { return FLOAT; }
{comma} { return COMMA; } /* Necessary? */
{semi} { return SEMI; }

{1d} { return ID;}

{wspc} {:}

o decl.y
Example: Definitions

{

#include <stdiro.h>

#include <stdlib.h>

%}

%start Iline

%token CHAR, COMMA, FLOAT, ID, INT, SEMI
%%

decl.y
Example: Rules

/* This production 1s not part of the "officiral™
* grammar. It"s primary purpose i1s to recover from

* parser errors, so 1t"s probably best 1f you leave
* 1t here. */

line - /* lambda */
| line decl
| line error {
printf(""Farlure :-(\n"");
yyerrok;
yyclearin;

}

decl.y
Example: Rules

decl : type ID list { printf('Success!\n"); } ;

list - COMMA ID list
| SEMI

type : INT | CHAR | FLOAT

%%

decl.y
Example: Supplementary Code

extern FILE *yyin;
main()

{
do {

yyparse();
} while(1feof(yyin));
¥

yyerror(char *s)

{
/* Don"t have to do anything! */

}

Bored, lonely? Try this!

yacc -d decl.y

e Produced
y.tab.h

efine CHAR 257
efine COMMA 258
efine FLOAT 259
efine ID 260
efine INT 261
efine SEMI 262

H O H OH OH H H
O O 0 o o o

Symbol attributes

e Back to attribute grammars...

* Every symbol can have a value
— Might be a numeric quantity in case of a number (42)
— Might be a pointer to a string ("Hello, World!")

— Might be a pointer to a symbol table entry in case of a
variable

e When using LEX we put the value into yylval
— In complex situations yylval is a union

e Typical LEX code:
[0-9]+ {yylval = atoi(yytext); return NUM}

Symbol attributes (cont’d)

 YACC allows symbols to have multiple types of
value symbols

%union {
double dval;
Int vblno;

char* strval;

Symbol attributes (cont’d)

%union {
double dval; yaCC -d
y.tab.h

It vbino;
| ‘
extern YYSTYPE yylval,;

[0-9]+ {yylval.vbino = atoi(yytext);
return NUM;}

[A-z]+ {yylval.strval = strdup(yytext);
return STRING;} LEX file

Include ““y.tab.n”

Precedence / Association

expr: expr '-' expr

expr '*' expr 1)1-2-3
expr '<' expr
emr | @1-273

1. 1-2-3=(1-2)-3? or 1-(2-3)?
Define ‘-’ operator is left-association.
2. 1-2*3=1-(2%*3)
Define “*” operator is precedent to

o)

-” operator

Precedence / Association

expr : expr
| expr
| expr
| expr

‘+’

S

‘/’

7 expr

expr { $%$
expr { $%$
expr { $$ = $1 * $3; }

$1 + $3; }
$1 - $3; }

expr { 1F($3==0)
yyerror(““divide 07);
else
$$ = $1 /7 $3;
+

%prec UMINUS {$$ = -$2; }

Precedence / Association

%right “=°
left "<" ">" NE LE GE
%left "+

%left **° "/°

highest precedence

Big trick

Getting YACC & LEX to work together!

LEX & YACC

lex.yy.c

a.out

y.tab.c

Building Example

e Suppose you have a lex file called scanner . and
a yacc file called decl .y and want parser

e Steps to build...
lex scanner.l
yacc decl.y
gcc ex.yy.c y.tab.c
gcc {0 parser lex.yy.o y.tab.o -

Note: scanner should include in the definitions

section: #1nc pade y-tab-'ﬁ

YACC

Rules may be recursive
Rules may be ambiguous

Uses bottom-up Shift/Reduce parsing
— Get a token
— Push onto stack

— Can it be reduced (How do we know?)
 |f yes: Reduce using a rule
* |f no: Get another token

YACC cannot look ahead more than one token

stmt: stmt “;

| NAME “

exp: exp “+’
| exp “-’
| NAME
| NUMBER

Shift and reducing

” stmt
stack
“exp
<empty>
exp
exp Input
a=7; b=3+a+ 2

Shift and reducing

stmt: stmt “;” stmt SHIFT!

exp:

| NAME “=* exp

stack:

NAME
exp “+7 exp

exp “-=7 exp
NAME 1”$?t:
NUMBER

Shift and reducing

stmt: stmt “;” stmt SHIFT!
| NAME “=° exp

stack:
NAME “=*°
exp: exp “+7 exp
| exp “-7 exp
| NAME INnput:

| NUMBER fib=3+ax+z

Shift and reducing

stmt: stmt “;” stmt SHIET!
| NAME “=° exp

stack:
NAME “=*° 7
exp: exp “+7 exp
| exp “-7 exp
| NAME Input:

- b=3 +a+ 2
| NUMBER

Shift and reducing

stmt: stmt “;” stmt -

| NAME “=* exp

stack:
NAME “=° exp

exp: exp “+7 exp

| exp “-7 exp

| NAME Input:

- b =3+ a+
| NUMBER b =3+axr2

Shift and reducing

stmt: stmt “;” stmt -

| NAME “=* exp

stack:
stmt
exp: exp “+7 exp
| exp “-7 exp
| NAME INnput:

- b=3 +a+ 2

| NUMBER

Shift and reducing

stmt: stmt “;” stmt SHIFT!
| NAME “=° exp

stack:
stmt °;°
exp: exp “+7 exp
| exp “-7 exp
| NAME Input
b=3+a+ 2

| NUMBER

Shift and reducing

stmt: stmt “;” stmt SHIFT!

exp:

| NAME “=< exp stack:

stmt “;” NAME
exp “+7 exp
exp “-=7 exp
NAME

NUMBER

V@)

+ a + 2

Shift and reducing

stmt: stmt “;”° stmt SHIFT!
| NAME “=° exp stack:
stmt “;” NAME “=°
exp: exp “+7 exp
| exp “-7 exp
| NAME
| NUMBER

Input:
3 +a+ 2

Shift and reducing

stmt: stmt “;” stmt SHIET!
| NAME “=° exp

stack:
stmt “;° NAME “=°
exp: exp “+” exp NUMBER
| exp “-7 exp
| NAME Input:
+ a + 2

| NUMBER

Shift and reducing

stmt: stmt “;” stmt -

| NAME “=* exp

stack:
stmt “;” NAME “=°
exp: exp “+7 exp exp
| exp “-7 exp
| NAME input:
+ a + 2

| NUMBER

Shift and reducing

stmt: stmt “;” stmt

SHIFT!
| NAME “=° exp
stack:
stmt “;” NAME “=°
exp: exp “+7 exp exp “+”
| exp “-7 exp
| NAME Input:
a + 2

| NUMBER

Shift and reducing

stmt: stmt “;” stmt

SHIFT!
| NAME “=° exp stack-
stmt “;” NAME “=*°
exp: exp “+7 exp exp “+7 NAME
| exp “-7 exp
| NAME Input:
+ 2

| NUMBER

Shift and reducing

stmt: stmt “;” stmt -

| NAME “=* exp

stack:
stmt “;” NAME “=°
exp: exp “+7 exp exp “+7 exp
| exp “-7 exp
| NAME input:
+ 2

| NUMBER

Shift and reducing

stmt: stmt “;” stmt -

| NAME “=* exp

stack:

stmt “;° NAME “=°
exp: exp “+7 exp exp

| exp “-7 exp

| NAME Input:
+ 2

| NUMBER

Shift and reducing

stmt: stmt “;” stmt SHIET!

| NAME “=° exp stack:-

stmt “;” NAME “=°
exp: exp “+7 exp exp “+’

| exp “-7 exp

| NAME Input:
2

| NUMBER

Shift and reducing

stmt: stmt “;” stmt SHIET!
| NAME “=° exp

stack:
stmt “;” NAME “=°
exp: exp “+7 exp exp “+° NUMBER

| exp “-7 exp

| NAME input:
| NUMBER Sempty=

Shift and reducing

stmt: stmt “:° stmt -

| NAME “=° exp stack:

stmt “;” NAME *“=°
exp: exp “+’ exp eXp ~+ exp

| exp “-7 exp
| NAME

| NUMBER

Input:
<empty>

Shift and reducing

stmt: stmt “:” stmt -

| NAME “=° exp stack-
stmt “;” NAME “=°
exp: exp “+7 exp eXp
| exp “-7 exp
| e et

| NUMBER

Shift and reducing

stmt: stmt “;” stmt |[REDUCEE

| NAME “=° exp stack:

stmt “;” stmt
exp: exp “+7 exp
| exp “-7 exp

| NAME

| NUMBER

Input:
<empty>

Shift and reducing

stmt: stmt “:” stmt -

exp:

| NAME “=* exp

stack:
stmt
exp “+7 exp
exp “-=7 exp
o

NUMBER

Shift and reducing

stmt: stmt “;” stmt -

| NAME “=° exp stack-

stmt
exp: exp “+’ exp

| exp “-7 exp

| NAME Input:
| NUMBER “empty>

IF-ELSE Ambiguity

* Consider following rule:

stmt:
IF expr stmt
| IF expr stmt ELSE stmt

Following state ;. IF expr IF expr stmt . ELSE stmt

- Two possible derivations:

IF expr IF expr stmt . ELSE stmt IF expr IF expr stmt . ELSE stmt
IF expr IF expr stmt ELSE . stmt IF expr stmt . ELSE stmt
IF expr IF expr stmt ELSE stmt . IF expr stmt ELSE . stmt

IF expr stmt IF expr stmt ELSE stmt .

IF-ELSE Ambiguity

e |tis a shift/reduce conflict
e YACC will always do shift first

e Solution 1 : re-write grammar

stmt :© matched
| unmatched

matched: other stmt
| IF expr THEN matched ELSE matched

unmatched: IF expr THEN stmt
| IF expr THEN matched ELSE unmatched

IF-ELSE Ambiguity

e Solution 2:

snonassoc IFX
%$nonassoc ELSE

the rule has the
same precedence as

token IFX
stmt:

IF expr stmt %prec IFX
| IF expr stmt ELSE stmt

Shift/Reduce Conflicts

* shift/reduce conflict

— occurs when a grammar is written in such a way
that a decision between shifting and reducing can
not be made.

— e.g.: IF-ELSE ambiguity

 To resolve this conflict, YACC will choose to
shift

Reduce/Reduce Conflicts

* Reduce/Reduce Conflicts:

start : expr | stmt
expr : CONSTANT;
stmt : CONSTANT;

 YACC (Bison) resolves the conflict by
reducing using the rule that occurs earlier
in the grammar. NOT GOOD!!

* So, modify grammar to eliminate them

y.output

e Contains a log file: use ‘-v’ to generate a log file.

State 1

e:1D.(2)

. (reduce 2
State 2

e:‘(“.e’) (3)

ID shift 1

‘(“ shift 2

. Error

e goto 5

e Shift Reduce error
— 9:shift/reduce conflict (shift 7, reduce 4) on ‘+
State 9
e:e.‘+' e(4)
e:e‘+ e.(4)
‘+’ shift 7
“’ reduce 4
‘) reduce 4

Error Messages

 Bad error message:
— Syntax error

— Compiler needs to give programmer a good advice

e |tis better to track the line number in LEX:

void yyerror(char *s)

{
fprintf(stderr, "line %d: %s\n:", yylineno, s);

}

Recursive Grammar

. list:
Left recursion item
| list ", 1tem
list:
. . 1tem
Right recursion Ctem v list

LR parser prefers left recursion
LL parser prefers right recursion

YACC Declaration Summary

"%start’ Specify the grammar's start symbol

“%union’ Declare the collection of data types that semantic
values may have

"%token’ Declare a terminal symbol (token type name) with
no precedence or associativity specified

“%type’ Declare the type of semantic values for a
nonterminal symbol

YACC Declaration Summary

“%right’ Declare a terminal symbol (token type name) that is
right-associative

"%left’ Declare a terminal symbol (token type name) that is
left-associative

“%nonassoc’ Declare a terminal symbol (token type name)
that is nonassociative (usingitin a way that would be
associative is a syntax error, e.g.:

X Op.y op. z is syntax error)

