
ECS 142 Spring 2011

Project (part 2): Lexical and Syntactic Analysis
Due Date: April 22, 2011: 11:59 PM.

1 Overview

This course requires you to write a compiler that takes a program written in a language, Java−−, and
constructs an equivalent program written in assembly instructions for MIPS architecture family.

Java−− is a subset of the Java programming language that inherits types, methods, expressions, and
the notion of single inheritance from Java. However, it does not include more complex concepts such as
concurrency, exception handling, packaging mechanism and interfaces. Further, it includes only a subset of
Java’s operators and expression building mechanisms. Finally, we have removed arrays from the language,
since their implementation is very similar to that of classes. The primary objective in designing this project
has been to select those features that will facilitate your understanding of how specific language features
can be implemented in a compiler.

This document first describes the lexical structure of the tokens of Java−−, followed by its syntactic
structure. The semantics of the various constructs will be described in a separate document.

2 Lexical Structure

Java−− derives much of its lexical structure from Java. The different tokens of the language are described
below:

2.1 Comments and White Space

Spaces, end of line, and comments may occur anywhere in a program except within a basic symbol. At
least one space, end of line or comment must occur between any two adjacent identifiers or constants.

Java−− supports single-line comments that begin with “//” and terminate at the end of the line.

2.2 Reserved words

Java−− reserves the following identifiers:

boolean char class continue else

extends false if input output int

new null return super string this

true while void

2.3 Constants

The language supports the following set of constants:

1. Integers: Integer constants denote any number of digits between 0 and 9.

-1-

ECS 142 Spring 2011
2. Char: Char constants begin and end with a single quote (’) and may contain any ascii characters. In

addition, the following (non)printable characters must be escaped using the following convention:

Character Escape
Newline \n

Tabulator \t

Backspace \b

Form feed \f

\ \\

" \"

3. Strings: Strings begin and end with a double quote (”) and may contain any sequence of characters
including newlines.

2.4 Identifiers

An identifier is a sequence of letters, digits and the underscore character “ ”. It must start with a letter, and
cannot be one of the reserved words.

2.5 Operators

Java−− defines the following operators:

, . ; () { } +

- * / = && || ! >

< == != >= <=

3 Syntax Description

We use the EBNF notation to describe the syntax of Java−−. A few notes about the notation:

• Nonterminals begin with uppercase letters.

• Terminals that are grammar symbols (’[’ for instance) or other non-identifier symbols (’;’, ’{’, ’*’, ’+’,
etc.) are enclosed in single quotes ’ ’.

• Keywords (such as “class” and “boolean”) are represented directly by their corresponding string rep-
resentations.

• Certain tokens such as identifier, integer and string constants are represented respectively by id,
integer constant and string constant tokens. Your lexical analyzer will return them as to-
kens.

3.1 Operator precedences and associativity

The rules of composition specify operator precedences. The operators (from lowest precedence to the highest)
are:

-2-

ECS 142 Spring 2011
||

&&

== !=

< > <= >=

+ -

* /

! Unary - Unary +

All operators other than !, Unary - and Unary + are left associative. Operators !, Unary - and Unary +
are right associative.

3.2 EBNF representation

The following describes the syntactic structure of Java−−. Program is the start symbol for the grammar.

Program ::= ClassDeclaration*
ClassDeclaration ::= class id [Extends] ClassBody

Extends ::= extends ClassType

ClassBody ::= ’{’ ClassBodyDeclaration* ’}’

ClassBodyDeclaration ::= ClassMemberDeclaration

ClassMemberDeclaration ::= FieldDeclaration

| MethodDeclaration

Type ::= PrimitiveType

| ReferenceType

PrimitiveType ::= int

| boolean

| char

| string

ReferenceType ::= ClassType

ClassType ::= SimpleName

Name ::= SimpleName

| QualifiedName

SimpleName ::= id

QualifiedName ::= Name ’.’ id

FieldDeclaration ::= Type VariableDeclarators ’;’

VariableDeclarators ::= VariableDeclarator (’,’ VariableDeclarator)*
VariableDeclarator ::= id

MethodDeclaration ::= MethodHeader MethodBody

MethodHeader ::= Type MethodDeclarator

| void MethodDeclarator

MethodDeclarator ::= id ’(’ [FormalParameterList] ’)’

FormalParameterList ::= FormalParameter (’,’ FormalParameter)*
FormalParameter ::= Type id

MethodBody ::= ’{’ LocalVariableDeclarationStatement* Statement* ’}’

| ’;’

LocalVariableDeclarationStatement ::= Type VariableDeclarators ’;’

Statement ::= IfThenStatement

| IfThenElseStatement

-3-

ECS 142 Spring 2011
| WhileStatement

| SimpleBlock

| EmptyStatement

| ExpressionStatement

| ContinueStatement

| ReturnStatement

| IOStatement

SimpleBlock ::= ’{’ Statement* ’}’

EmptyStatement ::= ’;’

ExpressionStatement ::= StatementExpression ’;’

StatementExpression ::= Assignment

| MethodInvocation

| ClassInstanceCreationExpression

IfThenStatement ::= if ’(’ Expression ’)’ Statement

IfThenElseStatement ::= if ’(’ Expression ’)’ Statement

else Statement

WhileStatement ::= while ’(’ Expression ’)’ Statement

ContinueStatement ::= continue ’;’

ReturnStatement ::= return [Expression] ’;’

IOStatement ::= (input | output) Expression ’;’

Primary ::= Literal

| this

| ’(’ Expression ’)’

| ClassInstanceCreationExpression

| FieldAccess

| MethodInvocation

ClassInstanceCreationExpression ::= new ClassType ’(’[ArgumentList] ’)’

ArgumentList ::= Expression (’,’ Expression)*
FieldAccess ::= Primary ’.’ id

| super ’.’ id

MethodInvocation ::= Name ’(’ [ArgumentList] ’)’

| Primary ’.’ id ’(’ [ArgumentList] ’)’

| super ’.’ id ’(’ [ArgumentList]’)’

PrimitiveExpression ::= Primary

| Name

Expression ::= Expression ’*’ Expression

| Expression ’/’ Expression

| Expression ’+’ Expression

| Expression ’-’ Expression

| Expression ’&&’ Expression

| Expression ’||’ Expression

| Expression ’==’ Expression

| Expression ’!=’ Expression

| Expression ’<’ Expression

| Expression ’>’ Expression

| Expression ’<=’ Expression

| Expression ’>=’ Expression

-4-

ECS 142 Spring 2011
| Assignment

| ’-’ Expression

| ’+’ Expression

| ’!’ Expression

| PrimitiveExpression

Assignment ::= LeftHandSide ’=’ Expression

LeftHandSide ::= Name

| FieldAccess

Literal ::= integer_constant

| string_constant

| null

| true

| false

4 Project Description

For this phase of the project, you will implement a lexical analyzer and a parser for Java−−. Use Lex to
construct the lexical analyzer, and Yacc to construct the syntactic analyzer. The output of your compiler
will mainly involve reporting any lexical or parsing errors. Your lexical analyzer must detect the following
set of errors:

1. unterminated character strings

2. unterminated comments, and

3. illegal characters.

Your parser should also recognize any syntactic errors. It should handle errors by reporting the error along
with the line number where the error occurred and then exit. In other words, your compiler will only report
the first error in the source program.

The grammar provided above can be used with Yacc with minor modifications. It has been presented
in an expanded form to make it clearer. Feel free to modify or optimize it, as long as it generates the same
language.

-5-

