
Object-oriented design
I Goal: construct a representation for program.

I Identify and encapsulate information associated with different aspects
of a program through C++ classes.

I Identify generalization and specialization relationship among various
classes and represent them.
Use inheritance to represent them.

I Approach:
I Construct an intermediate representation of program by

constructing a parse tree..
What is a parse tree?

I Represent nodes of a tree by specific C++ classes.
How to recognize nodes? Nodes of tree are classified according to
certain syntactic category.

I Associate attributes with parse tree nodes.
I Perform computation by traversing the tree.

Also, during building of the tree

I Advantage:
I Modular design of compiler
I Encapsulation of information
I Extensibility of program
I Re-usability

1 / 7

How to construct Parse Tree?
I Two components:

1. Identify what parse tree nodes are
2. Identify relationship between nodes.

I Identification and representation of parse tree nodes:

1. Identification: simplest approach is to represent each syntactic category
as a parse tree node.
Although you may want to optimize this to combine intermediate
nonterminals.

2. Representation mechanism: Use C++ class to represent each node.
Attributes associated with each node can be defined as a member of
the class. (Note: inheritance can help us here.)
Methods: represent certain dynamic behavior of the node. can be used
to access certain information; perform any semantic analysis; Do some
computation such as code generation.

I A parse tree is a set of parse tree nodes.
Can be implemented using STL vector mechanism.

class ParseTreeNode {
vector<ParseTreeNode *> children;

:

}

I Result of this analysis will lead you to construct a set of parse tree
nodes, disjoint at this juncture.

2 / 7

Example

Grammar:

Statement ::= IfThenStatement | IfThenElseStatement

| ForStatement | Block

| EmptyStatement | ExpressionStatement

| ContinueStatement | ReturnStatement

EmptyStatement ::= ’;’

ExpressionStatement ::= StatementExpression ’;’

StatementExpression ::= Assignment

| MethodInvocation

| ClassInstanceCreationExpression

IfThenStatement ::= if ’(’ Expression ’)’ Statement

IfThenElseStatement ::= if ’(’ Expression ’)’ Statement

else Statement

ForStatement ::= for ’(’ [ForInit] ’;’ [Expression] ’;’

[ForUpdate]’)’ Statement

ForInit ::= StatementExpressionList

| LocalVariableDeclaration

ForUpdate ::= StatementExpressionList

StatementExpressionList ::= StatementExpression

(’,’ StatementExpression)*

ContinueStatement ::= continue ’;’

ReturnStatement ::= return [Expression] ’;’

Create a class for each nonterminal

class StatementClass ... { ... }

class EmptyStatementClass ... { ... }

class ExpressionStatement ... { ... }

class StatementExpression ... { ... }

class IfThenStatementClass ... { ... }

class ForStatementClass ... { ... }

class StatementExpressionListClass ... { ... }

class ContinueStatementClass ... { ... }

class ReturnStatementClasss ... { ... }

...

3 / 7

What should each class contain?
I For each NT, and its rule, look at its RHS and construct the class:

S ::= A c B d

Class for S will contain:
class SClass: public ParseTreeNode {

ParseTreeNode *getA();

void setA(ParseTreeNode *A);

ParseTreeNode *getc();

void setc(ParseTreeNode *c);

ParseTreeNode *getB();

void setB(ParseTreeNode *B);

ParseTreeNode *getd();

void setd(ParseTreeNode *d);
...

}
Note that ParseTreeNode contains a vector. So get and set methods
can access the corresponding elements from vector

I Example for ForStatement:
class ForStatementClass: public ParseTreeNode {

ParseTreeNode *GetInitExpression() {
return children[0];

}
ParseTreeNode *GetLoopCondition(); {

return children[1];

}
ParseTreeNode *GetLoopUpdateExpression() {

return children[2];

}
ParseTreeNode *GetBody(); {

return children[3];

}
...

};

4 / 7

How to construct Parse Tree? - cont’d.

I Step2: construct class-subclass relationships among parse tree node
type.

I Hierarchy is an important aspect of context free grammar.
Statement ::= IfThenStatement

| IfThenElseStatement

| ForStatement

| Block

| EmptyStatement

| ExpressionStatement

| ContinueStatement

| ReturnStatement

Captures information that Statement denotes general statements,
whereas if-then-else, case, etc are more specific kind.

I Inheritance precisely captures this relationships:
class StatementClass: public ...

{ ... }

class IfThenClass: public StatementClass

{ ... }

class WhileStatementClass: public StatementClass

{ ... }

I class StatementClass will declare all common attributes and virtual
methods
IfThenElseClass will extend its behavior by adding things that are
specific for if-then-else statements.

I Once you have designed the hierarchy, you can then now start to push
information as well as computation up in the hierarchy.

5 / 7

Example

Grammar:

Expression ::= Expression ’*’ Expression

| Expression ’/’ Expression

| Expression ’+’ Expression

| Expression ’-’ Expression

| Expression ’&&’ Expression

| Expression ’||’ Expression

| Expression ’==’ Expression

| Expression ’!=’ Expression

| Expression ’<’ Expression

| Expression ’>’ Expression

| Expression ’<=’ Expression

| Expression ’>=’ Expression

| Assignment | ’-’ Expression

| ’+’ Expression | ’!’ Expression

| PrimitiveExpression

Hierarchy:

ExpressionClass

ArithemeticExpressionClass LogicalExpressionClass

UnaryExpressions BinaryExpressions UnaryExpressions BinaryExpressions

Additive Multiplicative

Addition Subtraction

6 / 7

How can parse tree be constructed from yacc?

I After every rule, add an action that will create tree and add nodes.
I A blind approach to creating parse tree:

Statement ::= IfThenStatement

| IfThenElseStatement

| ForStatement

| Block

| EmptyStatement

| ExpressionStatement

| ContinueStatement

| ReturnStatement

{ $$ = $1}

EmptyStatement ::= ’;’

{ $$ = new EmptyStatementClass(); }

ExpressionStatement ::= StatementExpression ’;’

{ $$ = new ExpressionStementClass($1);}

StatementExpression ::= Assignment

| AutoExpression

| MethodInvocation

| ClassInstanceCreationExpression

{ $$ = $1;}

IfThenStatement ::= if ’(’ Expression ’)’ Statement

{ $$ = new IfThenStatementClass($3, $5); }

IfThenElseStatement ::= if ’(’ Expression ’)’

Statement else Statement

{ $$ = new IfThenStatementClass($3, $5, $7); }

WhileStatement ::= while ’(’ Expression ’)’ Statement

{ $$ = new WhileStatementClass($3, $5); }

I Can perform many optimizations in terms of creating parse tree node.

7 / 7

