
Operating Systems (ECS 150)
Spring 2011

Raju Pandey
Department of Computer Science

University of California, Davis
CA 95616

pandey@cs.ucdavis.edu
http://www.cs.ucdavis.edu/~pandey

ECS 150A, Sping 2011 Introduction and Overview, 2 University of California, Davis

Course Objectives

• After completing this course, you should have

broad understanding of components of modern high performance
operating system, and theoretical issues associated with building
operating system;

Implemented fragments of operating system components, polices,

mechanisms, etc.; and

develop intuition for which system approaches work, and which don’t;

• This course ….

is not about specific OS, say Linux or Windows XP, etc.

is not about APIs, standards, …

is more about OS concepts and their realization

We will use BSD primarily as an example OS concept

• Organizing Theme: OS Components and Issues

Kinds of components

Characteristics

Issues in building them

ECS 150A, Winter 2005 Introduction and Overview, 3 University of California, Davis

Administrative Matters

• Instructor:

Raju Pandey, pandey@cs.ucdavis.edu

3041 Kemper Hall, 752-3584

Office Hrs: Tu/Th: 1:40 – 3:00 and with appointments

• TA:

Jesus Pulido (jpulido@ucdavis.edu)

Office hours: To be announced

• Details:

Lecture: T/Th 4:40 – �6:00 PM, 184 Young

• Communication

Discussion through smart site for the course

Course home page: accessible through
http://www.cs.ucdavis.edu/~pandey

ECS 150A, Spring 2011 Introduction and Overview, 4 University of California, Davis

Administrative Matters - cont'd

• Textbook:

"The Design and Implementation of the FreeBSD Operating Systems"

by Marshall Kirk, McKusick and George V. Neville-Neil (* Let’s wait a bit

on this *)

Check course home page for other reference books

• Reading material

Text book

Manuals, HOW-TOS

FreeBSD Source code

• Copies of transparencies: Pick it up from course web site.

• Computing Resources:

CSIF Machines; Personal machines

More details forthcoming

• Software: Modifying FreeBSD

ECS 150A, Spring 2011 Introduction and Overview, 5 University of California, Davis

Course work

• Course load: Very high

• Project (40-45%)

• Homeworks (10-15%)

• Tests (40-50%)

Midterm (15-20%)

Final (20-30%)

ECS 150A, Spring 2011 Introduction and Overview, 6 University of California, Davis

Course work: Projects

• Projects: Implement OS
concepts by

1. extending/modifying a real
operating system;

2. rebuilding operating system;

3. testing implementation by
running applications on
modified operating system

• Advice

Know C, if not brush up

Start to learn FreeBSD

• Submission details coming
soon…

Projects

I Operating System Intro

II
System Call and
Synchronization

III
Process management,
scheduling

IV Memory management

V File system and I/O

ECS 150A, Spring 2011 Introduction and Overview, 7 University of California, Davis

Course work: Homework

• About 4 – 6; due in one week.

• Two parts:

Read text book sections and answer questions

Solve assigned problems

• Solutions will be made available

• Homework due in class; must submit before class starts.

ECS 150A, Spring 2011 Introduction and Overview, 8 University of California, Davis

Policies

• Regrades on homework

Must be done within one week of grading; Talk with TA first,
followed by the instructor

• No makeup Midterm or Final examination.

• Final grade

Absolute grading.

Each homework, project, examinations given points that define
A, B, C, D for each activity.

Final A, B, C, D computed by weighted average of these points

Your final graded weighted in a similar manner

Your final grade depends on where you fall..

• All work must be original; NO CHEATING.

More on this later..

ECS 150A, Spring 2011 Introduction and Overview, 9 University of California, Davis

Background

• Brush up on all within the first two weeks.
• C language:

Source files, include files
Macros: #define, #ifdef, #include, etc. + Preprocessors
static, extern, local and global functions and variables
int, char, float, void
Pointers; function pointers; address, *, &
Arrays, multi-dimensionals arrays, pointers as arrays, etc.
Memory model

• Shell: csh, tcsh, bourne, korn
Scripts, Environment variables, Utilities

• Compilation, linking, object files, libraries, shared libraries,
dynamic libraries

• Tools: Editors, Compilers, linkers, make, gdb, tar/untar,
zip/unzip/gzip

• Common operations: format and create floppies, mount and
unmount directories, file permission, etc..

ECS 150A, Spring 2011 Introduction and Overview, 10 University of California, Davis

Scope of Course

• OS components

OS structures

Processes, threads

Memory management

File and I/O subsystems

Security

• Emphasis:

Core OS concepts

Design and implementation issues

Performance implications

Correctness and security implications

ECS 150A, Spring 2011 Introduction and Overview, 11 University of California, Davis

Syllabus

Date Topic

3/29 Introduction

3/31-4/5 Machine and OS Organization

4/7-4/12 Processes and Threads

4/14-4/19 Synchronization

4/21-2/26 Scheduling

4/28 Memory Management

5/3 *** Midterm*** (In class)

5/5-5/10 Virtual Memory

5/12-5/17 File System

5/19-5/24 I/O

5/26-/31 Security

6/2 Summary

6/4 (Saturday) Final Exam: 1:00 PM – 3:00 PM

Tentative schedule:

(* denote advanced topics that may be covered if there is time)

ECS 150A, Spring 2011 Introduction and Overview, 12 University of California, Davis

Overview

• What is an OS?
• What does an OS do?
• How is OS organized?
• How do we evaluate what an OS does?

ECS 150A, Spring 2011 Introduction and Overview, 13 University of California, Davis

Semantic Gaps

• Hardware capabilities at low level:
Low level operations on bits, bytes and words

Low level logical operations (gotos, conditional gotos)

Low level memory model (registers, raw memory words)

Asynchronous operation (timers, interrupts)

• Application semantics at a high level:
States represented as complex data structures

Units and collections of operations

Complex flow of operations

• Software used to provide mapping between high level and
low level:

Language processors, linkers and loaders.

Language execution environments

Operating Systems

ECS 150A, Spring 2011 Introduction and Overview, 14 University of California, Davis

Semantic Gap and Software Layers

Computer Hardware

Operating System

Utilities

Application Programs
Programmer

OS Designer

End User

ECS 150A, Spring 2011 Introduction and Overview, 15 University of California, Davis

• Machine instruction vs high level operation

Compiler

• Linear memory vs data structures

Compiler

• Limited Resources (CPU & memory) vs more needed

OS

Virtualization

• Secondary memory devices vs files

OS

• I/O devices vs high level I/O commands

OS

Semantic Gaps – cont’d.

ECS 150A, Spring 2011 Introduction and Overview, 16 University of California, Davis

Introduction: Views of OSs

• An extended machine

Principle of abstraction hides complexity

OS provides high level operations using lower level operations

o An interface between applications and hardware

o Almost like a library, except that sometimes it intervenes without being explicitly called.

• A virtual machine

Principle of virtualization supports sharing

OS provides virtual CPU, memory, devices

• A resource manager: Abstract hardware resources (CPU, memory, persistent

storage, network, etc.)

Control access to resources

Balance overall performance with individual needs (response time, deadlines)

ECS 150A, Spring 2011 Introduction and Overview, 17 University of California, Davis

Why OS? Objectives

• Programming simplicity

High Level API ->

Programming Model

Utilities

• Portability across different machine architectures

• User Benefits:

Safety

Fairness

Efficiency

• Ability to evolve

Major OS Issues

• Software engineering Issue:

How is OS organized? How are different components defined?
What do they do? How do they talk with each other?

How can new features be added to it?

• Abstraction/Modeling Issues:

How are resources named?

How do OS and application components discover each other?
How do they talk with each other?

How are parallel activities created and controlled?

How do we make data last longer than program executions?

How do multiple computers interact with each other?

ECS 150A, Spring 2011 Introduction and Overview, 18 University of California, Davis

*UW

Major OS Issues

• Resource Management issues:

How are resources shared?

How do we make things go faster?

What happens as demands and resources increase?

Accounting

• Security/Protection/Reliability issues:

What if something goes wrong?

How to protect one program from another?

How to ensure integrity of OS and its resources?

How to ensure access control?
ECS 150A, Spring 2011 Introduction and Overview, 19 University of California, Davis

*UW

ECS 150A, Spring 2011 Introduction and Overview, 20 University of California, Davis

Services Provided by OS

• Program development

Editors and debuggers

• Program execution

• Access to I/O devices

• Controlled access to files

• System access

ECS 150A, Spring 2011 Introduction and Overview, 21 University of California, Davis

Services Provided by OS – cont’d.

• Error detection and response

internal and external hardware errors

o memory error

o device failure

software errors

o arithmetic overflow

o access forbidden memory locations

operating system cannot grant request of application

• Accounting

collect statistics

monitor performance

used to anticipate future enhancements

used for billing users

ECS 150A, Spring 2011 Introduction and Overview, 22 University of California, Davis

Some things operating systems do

• Program management (Processes)

• Memory Management

• Scheduling / Resource management

• Communication

• Protection and Security

• File Management - I/O

• Naming

• Synchronization

• User Interface

ECS 150A, Spring 2011 Introduction and Overview, 23 University of California, Davis

Processes

• A unit of activity characterized by a single sequential thread of
execution, a current state, and an associated set of system
resources

• Three components:

Program

Associated data needed by the program

Execution context of the program

• Basis for

Scheduling

Resource management

Protection, access control

Accounting

• Variations:

Threads, Events

ECS 150A, Spring 2011 Introduction and Overview, 24 University of California, Davis

Process: Issues

• Mechanisms
Processes, Lightweight process, threads, events

System-Level, User-Level?

Machine-specific, Portable

Interaction with OS, User and Machine abstractions

• Cost
Context switching

Management cost

Concurrency

• Scheduling
Fairness

Guarantees

Real-time and software real-time constraints

ECS 150A, Spring 2011 Introduction and Overview, 25 University of California, Davis

Memory Management

• Process isolation

Safety

• Automatic allocation and management

Virtual Memory

Distributed shared memory

• Protection and access control

• Long-term storage

• Support for modular programming

ECS 150A, Spring 2011 Introduction and Overview, 26 University of California, Davis

Memory Management

• Mechanisms:

Memory Hierarchy

Single and mult-host memory models:

o consistency, synchronization

Applications

Interaction with hardware

Recovery, Persistence

• Cost:

Page faults

Caching and replacement

ECS 150A, Spring 2011 Introduction and Overview, 27 University of California, Davis

Communication

• Interaction between processes

at local or remote nodes

• Information transfer

• Mechanisms

Shared memory, sockets, pipes, files, signals, interrupts

RPC, RMI

Group communications (One-one, one-many, many-one, many-

many

Protocols

• Cost and performance

Latency, Scalability, Quality of Service

ECS 150A, Spring 2011 Introduction and Overview, 28 University of California, Davis

File and I/O Systems

• Long term archival

• Mechanisms and characteristics
File and I/O system models

Transparency

Consistency

• Algorithms:
Buffering

Data partitioning and placement

Scalability

• Performance:
Latency

Resource usage

Accessibility

ECS 150A, Spring 2011 Introduction and Overview, 29 University of California, Davis

Evolution of Operating Systems

• Dedicated machines

• Batch Processing

• Time Sharing

• Workstations and PC’s

• Distributed Systems

ECS 150A, Spring 2011 Introduction and Overview, 30 University of California, Davis

Evolution of OS Concepts and Features

ECS 150A, Spring 2011 Introduction and Overview, 31 University of California, Davis

Evolution of OSs

• Serial Processing

No operating system

Machines run from a console with display lights and toggle switches,

input device, and printer

Setup included loading the compiler, source program, saving compiled

program, and loading and linking

• Simple Batch System:

Monitor: software that controls the running programs

o Batch jobs together

o Program branches back to monitor when finished

o Resident monitor is in main memory and available for execution

o Job control language for instruction to the monitor

Memory protection: do not allow the memory area containing the

monitor to be altered

Timer: prevents a job from monopolizing the system

ECS 150A, Spring 2011 Introduction and Overview, 32 University of California, Davis

Evolution of OSs

• Multiprogramming Systems

Overlap CPU and I/O

Protection

Synchronization and Communication

Dynamic Memory Management (swapping and paging)

• Interactive OSs

Guaranteed response time

Time-sharing (quantum)

ECS 150A, Spring 2011 Introduction and Overview, 33 University of California, Davis

OS Evolution and Concepts

• PC and workstation OSs

GUI

• Real-time OSs

Deadlines (scheduling)

• Distributed OSs

Loosely coupled/tightly coupled

Consistent timeline (logical clocks, time stamps)

• Special Purpose OSs

Real-time OS

Embedded systems

Active routers

