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Objectives

• What is a Process?

• What are states of a process?

• How are they created?

• How are they represented inside OS?

• What’s OS’s process namespace?

• How can this be made faster?
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Operating System as Virtual Machine

• Virtualize processor

Interleave the execution of several processes to maximize 

processor utilization while providing reasonable response time

• Virtualize resources

Virtualize memory, devices

Allocate resources to processes

• Manage resource

Safety

Fairness

• What is core abstraction for virtualization?



What is a Process?

• Core OS abstraction for virtualization

Also called task

• Process = 

Unit of execution: follows an execution path that may be 

interleaved with other processes

Unit of scheduling

o CPU

o : I/O, File, Networking, Display and others 

Unit of Execution Context

o Address space: Memory abstraction for holding program executable, 

state and execution context
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What’s “in” a process?

• A process consists of (at least):
An address space, containing
o the code (instructions) for the running program
o the data for the running program

Thread state, consisting of
o The program counter (PC), indicating the next instruction
o The stack pointer register (implying the stack it points to)
o Other general purpose register values

A set of OS resources
o open files, network connections, sound channels, …

• In other words, it’s all the stuff you need to run 
the program

or to re-start it, if it’s interrupted at some point
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Address Space of Processes
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Memory Organization 

Kernel

Process A

Process B

Process c

Main Memory

2000

Program Counter
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OS Control Structures: Tables

• Memory table
Allocation of main memory to processes
Allocation of secondary memory to processes
Protection attributes for access to shared memory regions
Information needed to manage virtual memory

• I/O table:
Status of /O device
Status of I/O operation
Location in main memory being used as the source or 
destination of the I/O transfer

• File table:
Location on secondary memory
Current Status
Attributes

• Process table
Process ID
Process state
Location in memory
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• The OS maintains a data structure to keep track of a 
process’s state

Called the process control block (PCB)
Identified by the PID

• OS keeps all of a process’s hardware execution state in the 
PCB when the process isn’t running

PC, SP, registers, etc.
when a process is unscheduled, the state is transferred out of 
the hardware into the PCB
(when a process is running, its state is spread between the 
PCB and the CPU)

• Note:  It’s natural to think that there must be some 
esoteric techniques being used

fancy data structures that’d you’d never think of yourself
Wrong!  It’s pretty much just what you’d think of!

Representation of processes by the OS
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The OS’s process namespace

• (Like most things, the particulars depend on the specific OS, 

but the principles are general)

• The name for a process is called a process ID (PID)

An integer

• The PID namespace is global to the system

Only one process at a time has a particular PID

• Operations that create processes return a PID

E.g., fork(), clone()

• Operations on processes take PIDs as an argument

E.g., kill(), wait(), nice()
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The PCB

• The PCB is a data structure with many, many fields:
process ID (PID)
parent process ID
execution state
program counter, stack pointer, registers
address space info
UNIX user id, group id
scheduling priority
accounting info
pointers for state queues

• In Linux:
defined in task_struct (include/linux/sched.h)

over 95 fields!!!
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PCBs and hardware state

• When a process is running, its hardware state is inside the 
CPU

PC, SP, registers
CPU contains current values

• When a process is transitioned to the waiting state, the OS 
saves its CPU state in the PCB

when the OS returns the process to the running state, it loads 
the hardware registers with values from that process’s PCB

• The act of switching the CPU from one process to another is 
called a context switch

systems may do 100s or 1000s of switches/sec.
takes a few microseconds on today’s hardware

• Choosing which process to run next is called scheduling
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Process execution states

• Each process has an execution state, which indicates what it 
is currently doing

ready: waiting to be assigned to a CPU
o could run, but another process has the CPU

running: executing on a CPU
o is the process that currently controls the CPU
o pop quiz: how many processes can be running simultaneously?

waiting (aka “blocked”): waiting for an event, e.g., I/O 
completion
o cannot make progress until event happens

• As a process executes, it moves from state to state
UNIX: run ps, STAT column shows current state

which state is a process in most of the time?



Two-State Process Model

• States of processes:
Running
Not-running

• Representation of 
processes within OS

Not
Running Running

Enter Exit

Pause

Dispatch
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How are process created and terminated?

• Creation:
Submission of a batch job
User logs on
Created to provide a service such as printing
Process creates another process

• Termination:
Normal completion
Time limit exceeded
Memory unavailable
Bounds violation
Protection error
o example write to read-only file

Arithmetic error
Time overrun
o process waited longer than a specified maximum for an event
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A Five-State Model

• States: Running, Ready, Blocked, New, Exit

New Ready Running Exit

Blocked

Admit

Dispatch

Release

Event
Occurs

Timeout

Event
Wait
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Internal structure

Single Blocked Queue

Multiple Blocked Queue
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Suspended Processes

• Processor is faster than I/O so all processes could be waiting 

for I/O

• Reasons for suspension:

Swapping: Release main memory

Interactive user request: Suspend a program

Timing: Periodic execution

Parent process request

OS initiated: Block a process due to errors

• Swap these processes to disk to free up more memory

• Blocked state becomes suspend state when swapped to disk

Blocked, suspend

Ready, suspend
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One Suspend State

New Ready Running Exit

Blocked

Admit

Dispatch

Release

Event
Occurs

Timeout

Event
Wait

Suspend
suspend

activate
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Two Suspend States

New Ready Running Exit

Blocked

Admit

Dispatch

Release

Event
Occurs

Timeout

Event
Wait

Blocked
Suspend

suspend

activate

Ready
Suspend

Event
Occurs

Admit

suspend

activate

suspend
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State queues

• The OS maintains a collection of queues that represent the 

state of all processes in the system

typically one queue for each state

o e.g., ready, waiting, …

each PCB is queued onto a state queue according to the current 

state of the process it represents

as a process changes state, its PCB is unlinked from one 

queue, and linked onto another

• Once again, this is just as straightforward as it sounds! The 

PCBs are moved between queues, which are represented as 

linked lists.  There is no magic!
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State queues

• There may be many wait queues, one for each type of 
wait (particular device, timer, message, …)

head ptr
tail ptr

firefox (1365) emacs (948) ls (1470)

cat (1468) firefox (1207)head ptr
tail ptr

Wait queue header

Ready queue header

These are 
PCBs!
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PCBs and state queues

• PCBs are data structures

dynamically allocated inside OS memory

• When a process is created:

OS allocates a PCB for it

OS initializes PCB

OS puts PCB on the correct queue

• As a process computes:

OS moves its PCB from queue to queue

• When a process is terminated:

PCB may hang around for a while (exit code, etc.)

eventually, OS deallocates the PCB

ECS 150  (Operating Systems) Source: Gribble, Lazowska, Levy, 
Zahorjan

Processes and Threads 24



Process Creation

• Assign a unique process identifier

• Allocate space for the process

• Initialize process control block

• Set up appropriate linkages

Ex: add new process to linked list used for scheduling queue

• Create of expand other data structures

Ex: maintain an accounting file
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Process creation semantics

• (Depending on the OS) child processes inherit certain 

attributes of the parent

Examples:

o Open file table:  implies stdin/stdout/stderr

o On some systems, resource allocation to parent may be divided 

among children

• (In Unix) when a child is created, the parent may either wait 

for the child to finish, or continue in parallel
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UNIX process creation details

• UNIX process creation through fork() system call
creates and initializes a new PCB
creates a new address space
initializes new address space with a copy of the entire contents 
of the address space of the parent
initializes kernel resources of new process with resources of 
parent (e.g., open files)
places new PCB on the ready queue

• the fork() system call “returns twice”
once into the parent, and once into the child
returns the child’s PID to the parent
returns 0 to the child

• fork() = “clone me”
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Parent 
address 
space

(code, static 
data, heap, 
stack)

Parent 
PCB
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Parent 
address 
space

(code, static 
data, heap, 
stack)

Parent 
PCB

Child 
address 
space

(code, static 
data, heap, 
stack)

Child 
PCB

identica
l copy

similar, but 
different in key 
ways
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testparent – use of fork( )

#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>

int main(int argc, char **argv)
{

char *name = argv[0];
int pid = fork();
if (pid == 0) {

printf(“Child of %s is %d\n”, name, pid);
return 0;

} else {
printf(“My child is %d\n”, pid);
return 0;

} 
}
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testparent output

spinlock% gcc -o testparent testparent.c
spinlock% ./testparent
My child is 486
Child of testparent is 0
spinlock% ./testparent
Child of testparent is 0
My child is 571
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exec() vs. fork()

• Q:  So how do we start a new program, instead of just 
forking the old program?

• A:  First fork, then exec
int exec(char * prog, char * argv[])

• exec()
stops the current process
loads program ‘prog’ into the address space
o i.e., over-writes the existing process image

initializes hardware context, args for new program
places PCB onto ready queue
note: does not create a new process!
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• So, to run a new program:
fork()
Child process does an exec()
Parent either waits for the child to complete, or not
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Parent 
address 
space

(code, static 
data, heap, 
stack)

Parent 
PCB

Child 
address 
space

(code, static 
data, heap, 
stack)

Child 
PCB

identica
l copy

similar, but 
different in key 
ways
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Parent 
address 
space

(code, static 
data, heap, 
stack)

Parent 
PCB

Child 
address 
space

(code, static 
data, heap, 
stack)

Child 
PCB
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Making process creation faster

• The semantics of fork() say the child’s address space is a 

copy of the parent’s

• Implementing fork() that way is slow

Have to allocate physical memory for the new address space

Have to set up child’s page tables to map new address space

Have to copy parent’s address space contents into child’s 

address space (which you will immediately blow away with an 

exec())
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Method 1:  vfork()

• vfork() is the older of the two approaches we’ll talk about
• “Change the problem definition into something we can 

implement efficiently”
• Instead of “child’s address space is a copy of the parent’s,” 

the semantics are “child’s address space is the parent’s”
With a “promise” that the child won’t modify the address space 
before doing an exec()
o Unenforced!  You use vfork() at your own peril

When exec() is called, a new address space is created, new 
page tables set up for it, and it’s loaded with the new 
executable
Saves wasted effort of duplicating parent’s address space, just 
to blow it away
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Parent 
address 
space

(code, static 
data, heap, 
stack)

Parent 
PCB

Child 
PCB

similar, but 
different in key 
ways

Vfork()
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Method 2:  copy-on-write

• Retains the original semantics, but copies “only what is 
necessary” rather than the entire address space

• On fork():
Create a new address space
Initialize page tables with same mappings as the parent’s (i.e., 
they both point to the same physical memory)
o No copying of address space contents have occurred at this point

Set both parent and child page tables to make all pages read-
only
If either parent or child writes to memory, an exception occurs
When exception occurs, OS copies the page, adjusts page 
tables, etc.
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When to Switch a Process

• Clock interrupt
process has executed for the maximum allowable time slice

• I/O interrupt
• Memory fault

memory address is in virtual memory so it must be brought 
into main memory

• Trap
error occurred
may cause process to be moved to Exit state

• Supervisor call
such as file open
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Change of Process State

• Save context of processor including program counter and 

other registers

• Update the process control block of the process that is 

currently running

• Move process control block to appropriate queue - ready, 

blocked

• Select another process for execution

• Update the process control block of the process selected

• Update memory-management data structures

• Restore context of the selected process
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Inter-process communication via signals

Notification of events to process

Synchronous: results of program actions

o SIGFPE (floating point exception

o SIGSEGV (segmentation violation)

Asynchronous

• Processes can register event handlers
Feels a lot like event handlers in Java, which ..
Feel sort of like catch blocks in Java programs

• When the event occurs, process jumps to event handler 
routine

• Used to catch exceptions
• Also used for inter-process (process-to-process) 

communication
A process can trigger an event in another process using signal
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Signals
     Signal     Value     Action   Comment
     ---------------------------------------------------------------------
     SIGHUP        1       Term    Hangup detected on controlling terminal
                                   or death of controlling process
     SIGINT        2       Term    Interrupt from keyboard
     SIGQUIT       3       Core    Quit from keyboard
     SIGILL        4       Core    Illegal Instruction
     SIGABRT       6       Core    Abort signal from abort(3)
     SIGFPE        8       Core    Floating point exception
     SIGKILL       9       Term    Kill signal
     SIGSEGV      11       Core    Invalid memory reference
     SIGPIPE      13       Term    Broken pipe: write to pipe with no read
     SIGALRM      14       Term    Timer signal from alarm(2)
     SIGTERM      15       Term    Termination signal
     SIGUSR1   30,10,16    Term    User-defined signal 1
     SIGUSR2   31,12,17    Term    User-defined signal 2
     SIGCHLD   20,17,18    Ign     Child stopped or terminated
     SIGCONT   19,18,25            Continue if stopped
     SIGSTOP   17,19,23    Stop    Stop process
     SIGTSTP   18,20,24    Stop    Stop typed at tty
     SIGTTIN   21,21,26    Stop    tty input for background process
     SIGTTOU   22,22,27    Stop    tty output for background process
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Example use

• You're implementing Apache, a web server

• Apache reads a configuration file when it is launched
– Controls things like what the root directory of the web files 

is, what permissions there are on pieces of it, etc.

• Suppose you want to change the configuration while 
Apache is running
– If you restart the currently running Apache, you drop some 

unknown number of user connections

• Solution: send the running Apache process a signal
– It has registered an signal handler that gracefully re-reads 

the configuration file
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Signal Handling in multi-threaded applications

• Key issue:

Which thread receives a signal? Do all threads receive it?

How to control?

• Synchronous: deliver to thread that generates signal

Set up a handler for signal in each thread

• Asynchronous:

Currently executing thread or

Thread that did not mask signal

Another approach:

o Mask all signals in all threads

o Create a separate thread for handling signals
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