
Processes

Raju Pandey
Department of Computer Sciences

University of California, Davis
Spring 2011

Objectives

• What is a Process?

• What are states of a process?

• How are they created?

• How are they represented inside OS?

• What’s OS’s process namespace?

• How can this be made faster?

ECS 150A (Operating Systems) Instructor: Raju Pandey Processes and Threads 2

ECS 150 (Operating Systems) Instructor: Raju Pandey Processes and Threads 3

Operating System as Virtual Machine

• Virtualize processor

Interleave the execution of several processes to maximize

processor utilization while providing reasonable response time

• Virtualize resources

Virtualize memory, devices

Allocate resources to processes

• Manage resource

Safety

Fairness

• What is core abstraction for virtualization?

What is a Process?

• Core OS abstraction for virtualization

Also called task

• Process =

Unit of execution: follows an execution path that may be

interleaved with other processes

Unit of scheduling

o CPU

o : I/O, File, Networking, Display and others

Unit of Execution Context

o Address space: Memory abstraction for holding program executable,

state and execution context

ECS 150 (Operating Systems) Instructor: Raju Pandey Processes and Threads 4

ECS 150 (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 5

What’s “in” a process?

• A process consists of (at least):
An address space, containing
o the code (instructions) for the running program
o the data for the running program

Thread state, consisting of
o The program counter (PC), indicating the next instruction
o The stack pointer register (implying the stack it points to)
o Other general purpose register values

A set of OS resources
o open files, network connections, sound channels, …

• In other words, it’s all the stuff you need to run
the program

or to re-start it, if it’s interrupted at some point

ECS 150 (Operating Systems) Instructor: Raju Pandey Processes and Threads 6

Address Space of Processes

ECS 150 (Operating Systems) Instructor: Raju Pandey Processes and Threads 7

Memory Organization

Kernel

Process A

Process B

Process c

Main Memory

2000

Program Counter

ECS 150 (Operating Systems) Instructor: Raju Pandey Processes and Threads 8

OS Control Structures: Tables

• Memory table
Allocation of main memory to processes
Allocation of secondary memory to processes
Protection attributes for access to shared memory regions
Information needed to manage virtual memory

• I/O table:
Status of /O device
Status of I/O operation
Location in main memory being used as the source or
destination of the I/O transfer

• File table:
Location on secondary memory
Current Status
Attributes

• Process table
Process ID
Process state
Location in memory

ECS 150A (Operating Systems) Instructor: Raju Pandey Winter 2005 UC Davis

OS Control Structures: Tables

ECS 150 (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 10

• The OS maintains a data structure to keep track of a
process’s state

Called the process control block (PCB)
Identified by the PID

• OS keeps all of a process’s hardware execution state in the
PCB when the process isn’t running

PC, SP, registers, etc.
when a process is unscheduled, the state is transferred out of
the hardware into the PCB
(when a process is running, its state is spread between the
PCB and the CPU)

• Note: It’s natural to think that there must be some
esoteric techniques being used

fancy data structures that’d you’d never think of yourself
Wrong! It’s pretty much just what you’d think of!

Representation of processes by the OS

ECS 150 (Operating Systems) Source: 2010 Gribble, Lazowska,
Levy, Zahorjan

Processes and Threads 11

The OS’s process namespace

• (Like most things, the particulars depend on the specific OS,

but the principles are general)

• The name for a process is called a process ID (PID)

An integer

• The PID namespace is global to the system

Only one process at a time has a particular PID

• Operations that create processes return a PID

E.g., fork(), clone()

• Operations on processes take PIDs as an argument

E.g., kill(), wait(), nice()

ECS 150 (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 12

The PCB

• The PCB is a data structure with many, many fields:
process ID (PID)
parent process ID
execution state
program counter, stack pointer, registers
address space info
UNIX user id, group id
scheduling priority
accounting info
pointers for state queues

• In Linux:
defined in task_struct (include/linux/sched.h)

over 95 fields!!!

ECS 150 (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 13

PCBs and hardware state

• When a process is running, its hardware state is inside the
CPU

PC, SP, registers
CPU contains current values

• When a process is transitioned to the waiting state, the OS
saves its CPU state in the PCB

when the OS returns the process to the running state, it loads
the hardware registers with values from that process’s PCB

• The act of switching the CPU from one process to another is
called a context switch

systems may do 100s or 1000s of switches/sec.
takes a few microseconds on today’s hardware

• Choosing which process to run next is called scheduling

ECS 150 (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 14

Process execution states

• Each process has an execution state, which indicates what it
is currently doing

ready: waiting to be assigned to a CPU
o could run, but another process has the CPU

running: executing on a CPU
o is the process that currently controls the CPU
o pop quiz: how many processes can be running simultaneously?

waiting (aka “blocked”): waiting for an event, e.g., I/O
completion
o cannot make progress until event happens

• As a process executes, it moves from state to state
UNIX: run ps, STAT column shows current state

which state is a process in most of the time?

Two-State Process Model

• States of processes:
Running
Not-running

• Representation of
processes within OS

Not
Running Running

Enter Exit

Pause

Dispatch

ECS 150 (Operating Systems) Instructor: Raju Pandey Processes and Threads 15

How are process created and terminated?

• Creation:
Submission of a batch job
User logs on
Created to provide a service such as printing
Process creates another process

• Termination:
Normal completion
Time limit exceeded
Memory unavailable
Bounds violation
Protection error
o example write to read-only file

Arithmetic error
Time overrun
o process waited longer than a specified maximum for an event

ECS 150 (Operating Systems) Instructor: Raju Pandey Processes and Threads 16

A Five-State Model

• States: Running, Ready, Blocked, New, Exit

New Ready Running Exit

Blocked

Admit

Dispatch

Release

Event
Occurs

Timeout

Event
Wait

ECS 150 (Operating Systems) Instructor: Raju Pandey Processes and Threads 17

Internal structure

Single Blocked Queue

Multiple Blocked Queue

ECS 150 (Operating Systems) Instructor: Raju Pandey Processes and Threads 18

Suspended Processes

• Processor is faster than I/O so all processes could be waiting

for I/O

• Reasons for suspension:

Swapping: Release main memory

Interactive user request: Suspend a program

Timing: Periodic execution

Parent process request

OS initiated: Block a process due to errors

• Swap these processes to disk to free up more memory

• Blocked state becomes suspend state when swapped to disk

Blocked, suspend

Ready, suspend

ECS 150 (Operating Systems) Instructor: Raju Pandey Processes and Threads 19

One Suspend State

New Ready Running Exit

Blocked

Admit

Dispatch

Release

Event
Occurs

Timeout

Event
Wait

Suspend
suspend

activate

ECS 150 (Operating Systems) Instructor: Raju Pandey Processes and Threads 20

Two Suspend States

New Ready Running Exit

Blocked

Admit

Dispatch

Release

Event
Occurs

Timeout

Event
Wait

Blocked
Suspend

suspend

activate

Ready
Suspend

Event
Occurs

Admit

suspend

activate

suspend

ECS 150 (Operating Systems) Instructor: Raju Pandey Processes and Threads 21

State queues

• The OS maintains a collection of queues that represent the

state of all processes in the system

typically one queue for each state

o e.g., ready, waiting, …

each PCB is queued onto a state queue according to the current

state of the process it represents

as a process changes state, its PCB is unlinked from one

queue, and linked onto another

• Once again, this is just as straightforward as it sounds! The

PCBs are moved between queues, which are represented as

linked lists. There is no magic!

ECS 150 (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 22

State queues

• There may be many wait queues, one for each type of
wait (particular device, timer, message, …)

head ptr
tail ptr

firefox (1365) emacs (948) ls (1470)

cat (1468) firefox (1207)head ptr
tail ptr

Wait queue header

Ready queue header

These are
PCBs!

ECS 150 (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 23

PCBs and state queues

• PCBs are data structures

dynamically allocated inside OS memory

• When a process is created:

OS allocates a PCB for it

OS initializes PCB

OS puts PCB on the correct queue

• As a process computes:

OS moves its PCB from queue to queue

• When a process is terminated:

PCB may hang around for a while (exit code, etc.)

eventually, OS deallocates the PCB

ECS 150 (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 24

Process Creation

• Assign a unique process identifier

• Allocate space for the process

• Initialize process control block

• Set up appropriate linkages

Ex: add new process to linked list used for scheduling queue

• Create of expand other data structures

Ex: maintain an accounting file

ECS 150 (Operating Systems) Instructor: Raju Pandey Processes and Threads 25

Process creation semantics

• (Depending on the OS) child processes inherit certain

attributes of the parent

Examples:

o Open file table: implies stdin/stdout/stderr

o On some systems, resource allocation to parent may be divided

among children

• (In Unix) when a child is created, the parent may either wait

for the child to finish, or continue in parallel

ECS 150 (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 26

UNIX process creation details

• UNIX process creation through fork() system call
creates and initializes a new PCB
creates a new address space
initializes new address space with a copy of the entire contents
of the address space of the parent
initializes kernel resources of new process with resources of
parent (e.g., open files)
places new PCB on the ready queue

• the fork() system call “returns twice”
once into the parent, and once into the child
returns the child’s PID to the parent
returns 0 to the child

• fork() = “clone me”

ECS 150 (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 27

Parent
address
space

(code, static
data, heap,
stack)

Parent
PCB

ECS 150 (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 28

Parent
address
space

(code, static
data, heap,
stack)

Parent
PCB

Child
address
space

(code, static
data, heap,
stack)

Child
PCB

identica
l copy

similar, but
different in key
ways

ECS 150 (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 29

testparent – use of fork()

#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>

int main(int argc, char **argv)
{

char *name = argv[0];
int pid = fork();
if (pid == 0) {

printf(“Child of %s is %d\n”, name, pid);
return 0;

} else {
printf(“My child is %d\n”, pid);
return 0;

}
}

ECS 150 (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 30

testparent output

spinlock% gcc -o testparent testparent.c
spinlock% ./testparent
My child is 486
Child of testparent is 0
spinlock% ./testparent
Child of testparent is 0
My child is 571

ECS 150 (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 31

exec() vs. fork()

• Q: So how do we start a new program, instead of just
forking the old program?

• A: First fork, then exec
int exec(char * prog, char * argv[])

• exec()
stops the current process
loads program ‘prog’ into the address space
o i.e., over-writes the existing process image

initializes hardware context, args for new program
places PCB onto ready queue
note: does not create a new process!

ECS 150 (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 32

• So, to run a new program:
fork()
Child process does an exec()
Parent either waits for the child to complete, or not

ECS 150 (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 33

Parent
address
space

(code, static
data, heap,
stack)

Parent
PCB

Child
address
space

(code, static
data, heap,
stack)

Child
PCB

identica
l copy

similar, but
different in key
ways

ECS 150 (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 34

Parent
address
space

(code, static
data, heap,
stack)

Parent
PCB

Child
address
space

(code, static
data, heap,
stack)

Child
PCB

ECS 150 (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 35

Making process creation faster

• The semantics of fork() say the child’s address space is a

copy of the parent’s

• Implementing fork() that way is slow

Have to allocate physical memory for the new address space

Have to set up child’s page tables to map new address space

Have to copy parent’s address space contents into child’s

address space (which you will immediately blow away with an

exec())

ECS 150 (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 36

Method 1: vfork()

• vfork() is the older of the two approaches we’ll talk about
• “Change the problem definition into something we can

implement efficiently”
• Instead of “child’s address space is a copy of the parent’s,”

the semantics are “child’s address space is the parent’s”
With a “promise” that the child won’t modify the address space
before doing an exec()
o Unenforced! You use vfork() at your own peril

When exec() is called, a new address space is created, new
page tables set up for it, and it’s loaded with the new
executable
Saves wasted effort of duplicating parent’s address space, just
to blow it away

ECS 150 (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 37

Parent
address
space

(code, static
data, heap,
stack)

Parent
PCB

Child
PCB

similar, but
different in key
ways

Vfork()

ECS 150 (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 38

Method 2: copy-on-write

• Retains the original semantics, but copies “only what is
necessary” rather than the entire address space

• On fork():
Create a new address space
Initialize page tables with same mappings as the parent’s (i.e.,
they both point to the same physical memory)
o No copying of address space contents have occurred at this point

Set both parent and child page tables to make all pages read-
only
If either parent or child writes to memory, an exception occurs
When exception occurs, OS copies the page, adjusts page
tables, etc.

ECS 150 (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 39

When to Switch a Process

• Clock interrupt
process has executed for the maximum allowable time slice

• I/O interrupt
• Memory fault

memory address is in virtual memory so it must be brought
into main memory

• Trap
error occurred
may cause process to be moved to Exit state

• Supervisor call
such as file open

ECS 150 (Operating Systems) Instructor: Raju Pandey Processes and Threads 40

Change of Process State

• Save context of processor including program counter and

other registers

• Update the process control block of the process that is

currently running

• Move process control block to appropriate queue - ready,

blocked

• Select another process for execution

• Update the process control block of the process selected

• Update memory-management data structures

• Restore context of the selected process

ECS 150 (Operating Systems) Instructor: Raju Pandey Processes and Threads 41

Inter-process communication via signals

Notification of events to process

Synchronous: results of program actions

o SIGFPE (floating point exception

o SIGSEGV (segmentation violation)

Asynchronous

• Processes can register event handlers
Feels a lot like event handlers in Java, which ..
Feel sort of like catch blocks in Java programs

• When the event occurs, process jumps to event handler
routine

• Used to catch exceptions
• Also used for inter-process (process-to-process)

communication
A process can trigger an event in another process using signal

ECS 150 (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 43

Signals
 Signal Value Action Comment

 SIGHUP 1 Term Hangup detected on controlling terminal
 or death of controlling process
 SIGINT 2 Term Interrupt from keyboard
 SIGQUIT 3 Core Quit from keyboard
 SIGILL 4 Core Illegal Instruction
 SIGABRT 6 Core Abort signal from abort(3)
 SIGFPE 8 Core Floating point exception
 SIGKILL 9 Term Kill signal
 SIGSEGV 11 Core Invalid memory reference
 SIGPIPE 13 Term Broken pipe: write to pipe with no read
 SIGALRM 14 Term Timer signal from alarm(2)
 SIGTERM 15 Term Termination signal
 SIGUSR1 30,10,16 Term User-defined signal 1
 SIGUSR2 31,12,17 Term User-defined signal 2
 SIGCHLD 20,17,18 Ign Child stopped or terminated
 SIGCONT 19,18,25 Continue if stopped
 SIGSTOP 17,19,23 Stop Stop process
 SIGTSTP 18,20,24 Stop Stop typed at tty
 SIGTTIN 21,21,26 Stop tty input for background process
 SIGTTOU 22,22,27 Stop tty output for background process

ECS 150 (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 44

Example use

• You're implementing Apache, a web server

• Apache reads a configuration file when it is launched
– Controls things like what the root directory of the web files

is, what permissions there are on pieces of it, etc.

• Suppose you want to change the configuration while
Apache is running
– If you restart the currently running Apache, you drop some

unknown number of user connections

• Solution: send the running Apache process a signal
– It has registered an signal handler that gracefully re-reads

the configuration file

ECS 150 (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 45

Signal Handling in multi-threaded applications

• Key issue:

Which thread receives a signal? Do all threads receive it?

How to control?

• Synchronous: deliver to thread that generates signal

Set up a handler for signal in each thread

• Asynchronous:

Currently executing thread or

Thread that did not mask signal

Another approach:

o Mask all signals in all threads

o Create a separate thread for handling signals

ECS 150A (Operating Systems) Instructor: Raju Pandey Processes and Threads 46

