
Threads

Raju Pandey
Department of Computer Sciences

University of California, Davis
Spring 2011

ECS 150A (Operating Systems) Instructor: Raju Pandey Processes and Threads 2

Threads

• Effectiveness of parallel computing depends on the performance

of the primitives used to express and control parallelism

• Separate notion of execution from Process abstraction

• Useful for expressing intrinsic concurrency of a program

regardless of resulting performance

• Discuss three examples of threading:

User threads,

Kernel threads and

Lightweight processes

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 3

Concurrency/Parallelism

• Imagine a web server, which might like to handle multiple
requests concurrently

While waiting for the credit card server to approve a purchase
for one client, it could be retrieving the data requested by
another client from disk, and assembling the response for a
third client from cached information

• Imagine a web client (browser), which might like to initiate
multiple requests concurrently

The CSE home page has dozens of “src= …” html commands,
each of which is going to involve a lot of sitting around!
Wouldn’t it be nice to be able to launch these requests
concurrently?

• Imagine a parallel program running on a multiprocessor,
which might like to employ “physical concurrency”

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 4

What’s needed?

• In each of these examples of concurrency (web server, web
client, parallel program):

Everybody wants to run the same code
Everybody wants to access the same data
Everybody has the same privileges
Everybody uses the same resources (open files, network
connections, etc.)

• But you’d like to have multiple hardware execution states:
an execution stack and stack pointer (SP)
o traces state of procedure calls made

the program counter (PC), indicating the next instruction
a set of general-purpose processor registers and their values

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 5

How could we achieve this?

• Given the process abstraction as we know it:
fork several processes
cause each to map to the same physical memory to share
data
o see the shmget() system call for one way to do this (kind of)

• This is like making a pig fly – it’s really inefficient
space: PCB, page tables, etc.
time: creating OS structures, fork/copy address space, etc.

• Some equally bad alternatives for some of the
examples:

Entirely separate web servers
Manually programmed asynchronous programming (non-
blocking I/O) in the web client (browser)

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 6

Can we do better?

• Key idea:
separate the concept of a process (address space, OS
resources)
… from that of a minimal “thread of control” (execution state:
stack, stack pointer, program counter, registers)

• This execution state is usually called a thread, or
sometimes, a lightweight process

thread

Threads and processes

• Most modern OS’s (Mach (Mac OS), Chorus, Windows,
UNIX) therefore support two entities:

the process, which defines the address space and general
process attributes (such as open files, etc.)
the thread, which defines a sequential execution stream
within a process

• A thread is bound to a single process / address space
address spaces, however, can have multiple threads
executing within them
sharing data between threads is cheap: all see the same
address space
creating threads is cheap too!

• Threads become the unit of scheduling
processes / address spaces are just containers in which
threads execute

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 7

• Threads are concurrent executions sharing an address
space (and some OS resources)

• Address spaces provide isolation
If you can’t name it, you can’t read or write it

• Hence, communicating between processes is expensive
Must go through the OS to move data from one address space
to another

• Because threads are in the same address space,
communication is simple/cheap

Just update a shared variable!

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 8

The design space

address
space

thread

one thread per process
many processes

many threads per process
many processes

one thread per process
one process

many threads per process
one process

MS/DOS

Java

older
UNIXes

Mach, NT,
Chorus,
Linux, …

Key

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 9

Processes vs. Threads

Processes

• Poor communication

• Heavy-weight

• Poor performance

• Protection

• No Blocking

Threads

• Tight communication

• Light-weight

• Fast performance

• No protection

• Blocking

ECS 150A (Operating Systems) Instructor: Raju Pandey Processes and Threads 10

Threads- cont’d.

• Thread : Dynamic object representing an execution path and

computational state.

One or more threads per process, each having:

o Execution state (running, ready, etc.)

o Saved thread context when not running

o Execution stack

o Per-thread static storage for local variables

o Shared access to process resources

all threads of a process share a common address space.

ECS 150A (Operating Systems) Instructor: Raju Pandey Processes and Threads 11

Address space of a multi-threaded program

ECS 150A (Operating Systems) Instructor: Raju Pandey Processes and Threads 12

Process/thread separation

• Concurrency (multithreading) is useful for:
handling concurrent events (e.g., web servers and clients)
building parallel programs (e.g., matrix multiply, ray tracing)
improving program structure (the Java argument)

• Multithreading is useful even on a uniprocessor
even though only one thread can run at a time

• Supporting multithreading – that is, separating the concept
of a process (address space, files, etc.) from that of a
minimal thread of control (execution state), is a big win

creating concurrency does not require creating new processes
“faster / better / cheaper”

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 13

Terminology

• Just a note that there’s the potential for some confusion …
Old world: “process” == “address space + OS resources +
single thread”
New world: “process” typically refers to an address space +
system resources + all of its threads …
o When we mean the “address space” we need to be explicit

“thread” refers to a single thread of control within a process /
address space

• A bit like “kernel” and “operating system” …
Old world: “kernel” == “operating system” and runs in
“kernel mode”
New world: “kernel” typically refers to the microkernel; lots of
the operating system runs in user mode

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 14

“Where do threads come from?”

• Natural answer: the OS is responsible for
creating/managing threads

For example, the kernel call to create a new thread would
o allocate an execution stack within the process address space
o create and initialize a Thread Control Block

stack pointer, program counter, register values

o stick it on the ready queue

We call these kernel threads
There is a “thread name space”
o Thread id’s (TID’s)
o TID’s are integers (surprise!)

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 15

Kernel threads

• OS now manages threads and processes / address spaces
all thread operations are implemented in the kernel
OS schedules all of the threads in a system
o if one thread in a process blocks (e.g., on I/O), the OS knows about it,

and can run other threads from that process
o possible to overlap I/O and computation inside a process

• Kernel threads are cheaper than processes
less state to allocate and initialize

• But, they’re still pretty expensive for fine-grained use
orders of magnitude more expensive than a procedure call
thread operations are all system calls
o context switch
o argument checks

must maintain kernel state for each thread

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 16

Kernel level threads - drawbacks

• More expensive than user-level threads

Overhead of switching in and out of supervisory mode

Overhead of features not used by many applications

o e.g. application may not need to save all floating point registers

• Large kernel size

• Semantic inflexibility:

Different scheduling policies

Different relationship among threads (cooperative vs.

competitive)

• Hard to maintain

ECS 150A (Operating Systems) Instructor: Raju Pandey Processes and Threads 17

• There is an alternative to kernel threads
• Threads can also be managed at the user level (that is,

entirely from within the process)
a library linked into the program manages the threads
o because threads share the same address space, the thread

manager doesn’t need to manipulate address spaces (which only
the kernel can do)

o threads differ (roughly) only in hardware contexts (PC, SP,
registers), which can be manipulated by user-level code

o the thread package multiplexes user-level threads on top of kernel
thread(s)

o each kernel thread is treated as a “virtual processor”

we call these user-level threads

“Where do threads come from? – cont’d”

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 18

address
space

thread

os kernel

CPU

User-level threads

user-level
thread library

(thread create, destroy,
signal, wait, etc.)

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 19

4/4/2011 © 2010 Gribble, Lazowska, Levy,
Zahorjan

20

4/4/2011 204/4/2011 20

address
space

thread

os kernel

CPU

User-level threads: what the kernel sees

address
space

thread

Mach, NT,
Chorus,
Linux, …

os kernel

(kernel thread create, destroy,
signal, wait, etc.)

CPU

User-level threads: the full story

user-level
thread library

(thread create, destroy,
signal, wait, etc.)

kernel threads

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 21

User-level threads

• User-level threads are small and fast

managed entirely by user-level library

o E.g., pthreads (libpthreads.a)

each thread is represented simply by a PC, registers, a

stack, and a small thread control block (TCB)

creating a thread, switching between threads, and

synchronizing threads are done via procedure calls

o no kernel involvement is necessary!

user-level thread operations can be 10-100x faster than

kernel threads as a result

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 22

Performance example

• On a 700MHz Pentium running Linux 2.2.16 (only the
relative numbers matter; ignore the ancient CPU!):

Processes
o fork/exit: 251 μs

Kernel threads
o pthread_create()/pthread_join(): 94 μs (2.5x faster)

User-level threads
o pthread_create()/pthread_join: 4.5 μs (another 20x faster)

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 23

ECS 150A (Operating Systems) Processes and Threads 24 Winter 2005 UC Davis

Thread States

• Primary states:

Running, Ready and Blocked.

• Operations to change state:

Spawn: new thread provided register context and stack pointer.

Block: event wait, save user registers, PC and stack pointer

Unblock: moved to ready state

Finish: deallocate register context and stacks.

User-level thread implementation

• The OS schedules the kernel thread
• The kernel thread executes user code, including the thread

support library and its associated thread scheduler
• The thread scheduler determines when a user-level thread

runs
it uses queues to keep track of what threads are doing: run,
ready, wait
o just like the OS and processes
o but, implemented at user-level as a library

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 25

Thread context switch

• Save context of currently running thread

Push all machine state on its stack

• Restore context of next thread

Pop machine state from next thread’s stack

• Architectures may support techniques for saving states

efficiently

• Make next thread current thread

• Return called as new thread

Assembly as works at the level of procedure calling

• This is all done by assembly language

it works at the level of the procedure calling convention

o thus, it cannot be implemented using procedure calls

ECS 150A (Operating Systems) Instructor: Raju Pandey Processes and Threads 26

Thread interface

• This is taken from the POSIX pthreads API:

rcode = pthread_create(&t, attributes,
start_procedure)
o creates a new thread of control
o new thread begins executing at start_procedure
pthread_cond_wait(condition_variable, mutex)
o the calling thread blocks, sometimes called thread_block()
pthread_signal(condition_variable)
o starts a thread waiting on the condition variable
pthread_exit()
o terminates the calling thread
pthread_wait(t)
o waits for the named thread to terminate

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 27

User Level Threads: Benefits

• No modifications required to kernel

Development and maintenance easier

• Flexible

User defined schecduling, communication and process

management

• Low cost

No kernel cost of thread managment

ECS 150A (Operating Systems) Instructor: Raju Pandey Processes and Threads 28

User Level Threads: Drawbacks

• May block all thread during blocking system calls

Kernel may need to provide non-blocking system calls

Or implement through auxiliary processes

• Cannot exploit physical parallelism

• Lack of coordination between kernel-level scheduling and

thread-level synchronization

Kernel pre-empts a thread that other threads depend on

ECS 150A (Operating Systems) Instructor: Raju Pandey Processes and Threads 29

Multithreading Models

• Many-to-One

• One-to-One

• Many-to-Many

ECS 150A (Operating Systems) Instructor: Raju Pandey Processes and Threads 30

Many-to-One

• Many user-level threads
mapped to single kernel
thread.

• Used on systems that do
not support kernel
threads.

ECS 150A (Operating Systems) Instructor: Raju Pandey Processes and Threads 31

One-to-One

• Each user-level thread maps to kernel thread.

• Examples
- Windows 95/98/NT/2000
- OS/2

ECS 150A (Operating Systems) Instructor: Raju Pandey Processes and Threads 32

Many-to-Many Model

• Allows many user level

threads to be mapped to

many kernel threads.

• Allows the operating system

to create a sufficient number

of kernel threads.

Solaris 2

Windows NT/2000 with the

ThreadFiber package

ECS 150A (Operating Systems) Instructor: Raju Pandey Processes and Threads 33

Thread scheduling – cont’d.

• Non-preemptive scheduling: force everyone to cooperate
Threads give up CPU by calling yield
Yield calls into scheduler, which context switches to another
ready thread

• Pre-emptive Scheduling:
Regain control of processor asynchronously
Scheduler requests OS to deliver a timer signal
o Usually delivered as a UNIX signal (software interrupt)

At each interrupt, scheduler gains control and context switches
as appropriate

Thread ping() {
while (1) {

printf(“ping \n”);
yield();

}
}

Thread pong() {
while (1) {

printf(“pong \n”);
yield();

}
}

ECS 150A (Operating Systems) Instructor: Raju Pandey Processes and Threads 34

Thread scheduling

• Determines when a thread runs
Similar to OS and processes
Implemented at library level

• Queues:
Run queue
Ready queue
Wait queue
o Blocked for some reason

• Thread scheduling issues:
How to ensure threads share CPU fairly?
What if thread tries to do I/O?
What if a thread holding lock is pre-empted?

ECS 150A (Operating Systems) Instructor: Raju Pandey Processes and Threads 35

• Strategy 1: force everyone to cooperate
a thread willingly gives up the CPU by calling yield()
yield() calls into the scheduler, which context switches to
another ready thread
what happens if a thread never calls yield()?

• Strategy 2: use preemption
scheduler requests that a timer interrupt be delivered by
the OS periodically
o usually delivered as a UNIX signal (man signal)
o signals are just like software interrupts, but delivered to user-

level by the OS instead of delivered to OS by hardware
at each timer interrupt, scheduler gains control and
context switches as appropriate

How to keep a user-level thread from hogging the CPU?

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 36

What if a thread tries to do I/O?

• The kernel thread “powering” it is lost for the duration of the
(synchronous) I/O operation!

The kernel thread blocks in the OS, as always
It maroons with it the state of the user-level thread

• Could have one kernel thread “powering” each user-level
thread

“common case” operations (e.g., synchronization) would be
quick

• Could have a limited-size “pool” of kernel threads
“powering” all the user-level threads in the address space

the kernel will be scheduling these threads, obliviously to
what’s going on at user-level

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 37

address
space

thread

os kernel

user-level
thread library

(thread create, destroy,
signal, wait, etc.)

(kernel thread create, destroy,
signal, wait, etc.)

CPU

Multiple kernel threads “powering”
each address space

kernel threads

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 38

What if the kernel preempts a thread holding a lock?

• Other threads will be unable to enter the critical section and
will block (stall)

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 39

Addressing these problems

• Effective coordination of kernel decisions and user-level
threads requires OS-to-user-level communication

OS notifies user-level that it is about to suspend a kernel
thread

• This is called “scheduler activations”
o a research paper from UW with huge effect on practice
o each process can request one or more kernel threads

process is given responsibility for mapping user-level threads onto kernel
threads
kernel promises to notify user-level before it suspends or destroys a
kernel thread

o ACM TOCS 10,1

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Processes and Threads 40

Summary

• Processes:
Representation of a running program
States: ready, blocked, swapped, running, terminated…
How do these transitions take place? (I/O, timers, interrupts,
traps…)
How does operating system maintain this state? (PCB)
o What kind of information stored?

• Threads:
Lightweight version of process
User level and kernel level threads: how are they different?
Mapping of threads on machine resources

ECS 150A (Operating Systems) Instructor: Raju Pandey Processes and Threads 41

