Synchronization

Raju Pandey
Department of Computer Sciences
University of California, Davis
Winter 2005

Concurrency

e Reasons for concurrency:
= Multiple applications
0 Multiprogramming
= Structured application
o Application can be a set of concurrent processes
= Operating-system structure
o0 Operating system is a set of processes or threads
¢ Difficulties due to concurrency:
= Sharing of global resources
= Operating system managing the allocation of resources
optimally

= Difficult to locate programming errors

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 2

Temporal relations

e Instructions executed by a single thread are totally ordered
" A<B<C<..

e Absent synchronization, instructions executed by distinct
threads must be considered unordered / simultaneous
= NotA<A’,andnotA’< A

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,

Synchronization, 3
Zahorjan

Example

main() — -
20 Y-axis is ““time.

Could be one CPU, could
pthread_create()

.)\»@moo be multiple CPUs (cores).
A

*A<B<C
© B- *A'<B
cA<A
sC==A'
*C==PB

cO

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,

Synchronization, 4
Zahorjan

Syntax for Process Creation

e cobegin/coend

= syntax: cobegin C1 // C2 // ... // Cn coend
= meaning:

o All Ci may proceed concurrently

o When all terminate, the statement following cobegin/coend continues

cobegin
Time_Date //
Mail 7/
Edit; cobegin
(Compile; Load; Execute) //

Edit; cobegin
Print // Web

Time_Date
coend
coend
coend;
/;_-\Inili.iliac N _Terminale ("?.\I
k_’_/ Fxccute .
Edit
ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 5

Process Interactions

e Competition: The Critical Problem

X = 0;
cobegin
pl: ..
X =X + 1;
7/
p2: ..
X =X + 1;
coena

e x should be 2 after both processes execute
¢ Interleaved execution (due to parallel processing or context

switching):

pl: Rl = x; p2: ..
R1 = R1 + 1; R2 = x;
X = R1 ; R2 = R2 + 1;
. X = R2;

. f(has only been incremented once; The first update (x=R1) is
ost.

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 6

Critical Sections / Mutual Exclusion

e Sequences of instructions that may get incorrect results if
executed simultaneously are called critical sections
o (We also use the term race condition to refer to a situation in
which the results depend on timing)
e Mutual exclusion means “not simultaneous”
= A<BorB<A
= We don’t care which
e Forcing mutual exclusion between two critical section executions is

sufficient to ensure correct execution — guarantees ordering

e One way to guarantee mutually exclusive execution is using locks

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy, Synchronization, 7
Zahorjan

Critical sections
Critical sections
— Is the “happens-before” relation
T T2 T T2 T T2

el

Possibly incorrect Correct

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy, Synchronization, 8
Zahorjan

When do critical sections arise?

¢ One common pattern: Read-modify-write of
= A shared value (variable)
* In code that can be executed concurrently
(Note: There may be only one copy of the code (e.g., a
procedure), but it can be executed by more than one thread at
a time)
e Shared variable:
» Globals and heap-allocated variables
= NOT local variables (which are on the stack)

(Note: Never give a reference to a stack-allocated (local)
variable to another thread, unless you’re superhumanly careful

)

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy, Synchronization, 9
Zahorjan

Example: buffer management

e Threads cooperate in multithreaded programs
= to share resources, access shared data structures
0 e.g., threads accessing a memory cache in a web server
= also, to coordinate their execution

0 e.g., a disk reader thread hands off blocks to a network writer
thread through a circular buffer

writer
thread '

circular
buffer

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy, Synchronization, 10
Zahorjan

Example: shared bank account

e Suppose we have to implement a function to withdraw
money from a bank account:

int withdraw(account, amount) {
int balance = get_balance(account); // read
balance -= amount; // modify
put_balance(account, balance); // write
spit out cash;

¥

¢ Now suppose that you and your S.O. share a bank account

with a balance of $100.00

= what happens if you both go to separate ATM machines, and
simultaneously withdraw $10.00 from the account?

Source: Gribble, Lazowska, Levy, Synchronization, 11

ECS 150A (Operating Systems)
Zahorjan

e Assume the bank’s application is multi-threaded
¢ A random thread is assigned a transaction when that
transaction is submitted

int withdraw(account, amount) {

int withdraw(account, amount) {
int balance = get_balance(account);

int balance = get_balance(account);
balance -= amount;

put_balance(account, balance);

balance -= amount;

put_balance(account, balance);

spit out cash; spit out cash;

© 2010 Gribble, Lazowska, Levy, 12
Source: Gdbbhtrjamazowska, Levy,
Zahorjan

4/19/2011

ECS 150A (Operating Systems) Synchronization, 12

Interleaved schedules

e The problem is that the execution of the two threads can be
interleaved, assuming preemptive scheduling:

Execution sequence
as seen by CPU

balance = get_balance(account);

balance -= amount;

context switch
balance = get_balance(account);

balance -= amount;
put_balance(account, balance);

spit out cash; X
context switch

put_balance(account, balance);

spit out cash;

¢ What's the account balance after this sequence?
= who’s happy, the bank or you?
e How often is this sequence likely to occur?

ECS 150A (Operating Systems)

Source: Gribble, Lazowska, Levy, Synchronization, 13
Zahorjan

Other Execution Orders

e Which interleavings are ok? Which are not?

spit out cash;

int withdraw(account, amount) { int withdraw(account, amount) {
int balance = get_balance(account); int balance = get_balance(account);
balance -= amount; balance -= amount;
put_balance(account, balance); put_balance(account, balance);

spit out cash;

ECS 150A (Operating Systems)

Source: Gribble, Lazowska, Levy, Synchronization, 14
Zahorjan

How About Now?

int xfer(from, to, amt) { int xfer(from, to, amt) {
withdraw(from, amt); withdraw(from, amt);
deposit(to, amt); deposit(to, amt);
3 3
e Morals:

= Interleavings are hard to reason about
0 We make lots of mistakes
o Control-flow analysis is hard for tools to get right

= ldentifying critical sections and ensuring mutually
exclusive access is ... “easier”

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy, Synchronization, 15
Zahorjan

Terms related to concurrency

e Critical section: Section of code within a program/process that
requires access to shared resource and which cannot be accessed
while another process is in a corresponding section of code

o Mutual Exclusion: Requirement that when a process is in a
critical section that accesses a shared resource, no other process
may be in a critical section that access any of those resources

e Race conditions: A situation in which multiple threads or
processes read or write a shared data item and the final result
depends on the relative timing of their execution

o Deadlock: Situation where two or more processes are unable to
proceed because each is waiting for other to do something

e Livelock: Situation where 2 or more processes continuously
change their state in response to changes in others without doing
any useful work

e Starvation: A situation in which a runnable process is overlooked
indefinitely by the sceduler; although it is able to proceed, it is
never chosen.

e Fairness: A constraint that ensures every process gets to run

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 16

Process Interaction

Degree of | Relationship Influence the one Potential
Awareness process has on another | control problem
Process Competition eResults of one process e Mutual exclusion
unaware of independent of the action | e¢peadlock
each other of others (renewable
eTiming of process may resources)
be affected eStarvation
Process Cooperation by | eResults of one process eMutual exclusion
indirectly sharing may depend on eDeadlock(renewa
unaware of information obtained from | ple resources)
each other others «Starvation
eTiming of process may eData coherence
be affected
Processes Cooperation by | eResults of one process eDeadlock(consu
directly communication | may depend on mable resources)
aware of information obtained from | ¢Starvation
each other others
eTiming of process may
be affected

ECS 150A (Operating Systems)

Instructor: Raju Pandey

Synchronization, 17

Requirements for Mutual Exclusion

e mutual exclusion
= at most one thread is in the critical section

e progress

= if thread T is outside the critical section, then T cannot prevent
thread S from entering the critical section

e bounded waiting (no starvation)

= if thread T is waiting on the critical section, then T will
eventually enter the critical section

0 assumes threads eventually leave critical sections

e performance

= the overhead of entering and exiting the critical section is small
with respect to the work being done within it

ECS 150A (Operating Systems)

Source: Gribble, Lazowska, Levy,

Zahorjan

Synchronization, 18

Mutual Exclusion: Hardware Support

e Interrupt Disabling
= Disabling interrupts guarantees
mutual exclusion
= Processor is limited in its
ability to interleave programs While (true) {

= Disadvantages: disable interrupts
critical section
enable interrupts
remainder

0 Responsiveness of system
reduced

0 May loose some important 3}
interrupts

o Does not work on multi-
processing systems
A disabling interrupts on one
processor will not guarantee
mutual exclusion

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 19

Mutual Exclusion: Hardware Support

e Special Machine Instructions
= Performed in a single instruction cycle
= Access to the memory location is blocked for any other instructions

Test and Set Exchange Instruction
boolean testset (inti) { void exchange (int register,
int memory) {
if(i==0){ int temp;
i=1; temp = memory;
return true; memory = register;
} else return false; register = temp;
¥ X
ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 20

10

Mutual Exclusion (Test and Set)

const int n = /* number of processes */
int bolt;
void P(int i) {
while (true) {
while (! test_and_set (bolt))
/* do nothing */
/* Critical Section */
bolt = 0O;
/* Reminder */

by
void main ()
{
bolt = 0O;
cobegin
P(1); P(2); ...; P(n);
coend
by
ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 21

Mutual Exclusion (Exchange)

const int n = /* number of processes */

int bolt;
void P(inti) {
int keyi;
while (true) {
keyi = 1;
while (keyi '= 0)
exchange(keyi, bolt):
/* Critical Section */
exchange(keyi, bolt);
/* Reminder */
3
void main ()
{
bolt = 0O;
cobegin P(1); P(2); ...; P(n); coend
¥
ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 22

11

Mutual Exclusion Machine Instructions

e Advantages

= Applicable to any number of processes on either a single
processor or multiple processors sharing main memory

= |t is simple and therefore easy to verify
= |t can be used to support multiple critical sections

e Disadvantages
= Busy-waiting consumes processor time
= Starvation is possible when a process leaves a critical
section and more than one process is waiting.
= Deadlock

o If a low priority process has the critical region and a higher
priority process needs, the higher priority process will obtain
the processor to wait for the critical region

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 23

Software: Algorithm 1

e Use a single “turn” variable:
int turn = 1;
cobegin
pl: while (1) {
while (turn==2); /*wait*/
CS1; turn = 2; programl;

}
p2: while (1) {
while (turn==1); /*wait*/
CS1; turn = 1; programl;
}
// ..

¢ Violates blocking requirement;
e pl can block p2 even if it is not inside critical section

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 24

12

Software Solutions: Algorithm 2

e Use two variables to indicate intent:
int cl =0, c2 = 0;

cobegin
pl: while (1) {
cl =1;

while (c2); /*wait*/
CS1; cl1 = 0; programl;
3

p2: while (1) {
c2 =1;
while (c2); /*wait*/
CS1; c2 = 0; program2;
3

e What if they access cl and c2 at the same time?

= Violates blocking requirement: deadlock. Processes wait
forever.

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 25

Software Solutions: Algorithm 3

e Similar to #2, but reset intent variable each time:

int cl =0, c2 = 0;

cobegin
pl: while (1) {
cl =1;

if (c2) cl1 = 0;
else {CS1; c1 = 0; programl}

}
p2: while (1) {
c2 = 1;

if (cl) c2 = 0;
else {CS1; c2 = 0; programl}
}
e What if pl and p2 operate at same speed: livelock

e What if p2 always checks cl after c2 has been set to 1:
fairness

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 26

13

Software Solutions: Algorithm 4 (Peterson)

e Like #2 but use a “turn” variable to break a tie:
int cl1 =0, c2 =0, Willwait;

cobegin
pl: while (1) {
cl = 1;

WiIIWait = 1;
while (c2 && (WillWait==1)); /*wait*/
CS1; cl1 = 0; programl;

p2: while (1) {
c2 = 1;
willWait = 2;
while (cl && (WillWait==2)); /*wait*/
CS1; c2 = 0; program2;
s

e Does it guarantee mutual exclusion?
¢ What about deadlock? What about livelock? Fairness?

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 27

Locks

e A lock is a memory object with two operations:
= acquire(): obtain the right to enter the critical section
= release(): give up the right to be in the critical section
e acquire() prevents progress of the thread until the lock
can be acquired
e (Note: terminology varies: acquire/release, lock/unlock)

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy, Synchronization, 28
Zahorjan

14

Locks: Example

lock()
%% lockQ)
unlock()
T
unloTk()
ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy, Synchronization, 29
Zahorjan

Acquire/Release

e Threads pair up calls to acquire() and release()
= between acquire()and release(), the thread holds the lock
= acquire() does not return until the caller “owns” (holds) the

lock
0 at most one thread can hold a lock at a time

= What happens if the calls aren’t paired?
= What happens if the two threads acquire different locks?
o (granularity of locking)

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy, Synchronization, 30
Zahorjan

15

Using locks

- - balance = get_balance(account);
int withdraw(account, amount) { get_ ¢)

balance -= amount;
balance = get_balance(account); = g
_ . o5
balance -= amount; k=] g put_balance(account, balance);
S
put_balance(account, balance); o n

balance = get_balance(account);
spit out cash; balance -= amount;

put_balance(account, balance);

spit out cash;

|spit out cash;

¢ What happens when green tries to acquire the lock?

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy, Synchronization, 31
Zahorjan

Spinlocks

e How do we implement locks? Here’s one attempt:

struct lock_t {
int held = 0;

H

void acquire(fock) { the caller “busy-waits”,
while (lock->held); <«———————or spins, for lock to be
lock->held = 1; released = hence spinlock

H

void release(lock) {
lock->held = 0;

H

e Why doesn’t this work?
= where is the race condition?

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy, Synchronization, 32
Zahorjan

Implementing locks (cont.)

e Problem is that implementation of locks has critical sections,
too!
= the acquire/release must be atomic
0 atomic == executes as though it could not be interrupted
o code that executes “all or nothing”
e Need help from the hardware
= atomic instructions
o test-and-set, compare-and-swap, ...
= disable/reenable interrupts
o to prevent context switches

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy, Synchronization, 33
Zahorjan

Spinlocks redux: Hardware Test-and-Set

e CPU provides the following as one atomic instruction:

bool test_and_set(bool *flag) {
bool old = *flag;
*flag = True;
return old;

}

¢ Remember, this is a single atomic instruction ...

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy, Synchronization, 34
Zahorjan

17

Implementing locks using Test-and-Set

e So, to fix our broken spinlocks:

struct lock {
int held = 0;
3
void acquire(lock) {
while(test_and_set(&lock->held));
3
void release(lock) {
lock->held = 0;

}

= mutual exclusion? (at most one thread in the critical section)
= progress? (T outside cannot prevent S from entering)

= bounded waiting? (waiting T will eventually enter)

= performance? (low overhead)

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy, Synchronization, 35
Zahorjan

Reminder of use ...

- - balance = get_balance(account);
int withdraw(account, amount) { get! (¢)

balance -= amount;
balance = get_balance(account); = g
_ - o5
balance -= amount; = E put_balance(account, balance);
=
put_balance(account, balance); o n

balance = get_balance(account);

spit out cash; balance -= amount;

¥

put_balance(account, balance);

spit out cash;

|spit out cash;
e How does a thread blocked on an “acquire” (that is,
stuck in a test-and-set loop) yield the CPU?
= calls yield() (spin-then-block)
=_there’s an involuntary context switch

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy, Synchronization, 36
Zahorjan

18

Problems with spinlocks

e Spinlocks work, but are horribly wasteful!

= if a thread is spinning on a lock, the thread holding the lock
cannot make progress
o You'll spin for a scheduling quantum
= (pthread_spin_t)

e Only want spinlocks as primitives to build higher-level
synchronization constructs
= Why is this okay?

e We'll see later how to build blocking locks
= But there is overhead — can be cheaper to spin
= (pthread_mutex_t)

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy, Synchronization, 37
Zahorjan

Another approach: Disabling interrupts

struct lock {
3
void acquire(lock) {

cli(Q; // disable interrupts

s
void release(lock) {
stiQ); // reenable interrupts
3
ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy, Synchronization, 38

Zahorjan

19

Problems with disabling interrupts

e Only available to the kernel
= Can’t allow user-level to disable interrupts!
¢ Insufficient on a multiprocessor
= Each processor has its own interrupt mechanism

e “Long” periods with interrupts disabled can wreak havoc
with devices

e Just as with spinlocks, you only want to use disabling of
interrupts to build higher-level synchronization constructs

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy, Synchronization, 39
Zahorjan

Problems with suggested solution

¢ Difficult to understand and verify

e Solution is applicable only in cases when processes are
competing for resources

e Busy waiting
= Slows down overall system
e Fairness is not guaranteed or enforced

e Solution: Language/System primitives
= Semaphores
= Event synchronization
= Monitors and others

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 40

20

Dijkstra’s Semaphores

A Semaphore is a non-negative integer, s (how many tasks
can proceed simultaneously), and two indivisible operations:

= P(s), often written Wait(s); think “Pause”:
“P” from “passaren” (“pass” in Dutch) or from “prolagan,”
combining “proberen” (“try”) and “verlagen” (“decrease”).
owhile (s<l)/*wait*/; s=s-1

= V(s), often written Signal (s);
think of the “V for Victory” 2-finger salute:
“V” from “vrigeven” (“release™) or “verhogen”
(“increase”).

0 s=s+1;

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 41

Semaphore Primitives

struct semaphore {
int count;
queueType queue;

¥
void semWait(semaphore s) {
s.count --;
if (s.count<0) {
place this process in s.queue;
block this process;
3
¥
void semSignal(semphore s) {
s.count+++;
if (s.count<=0) {
remove process P from s.queue;
place process P on ready list;
¥
bs

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 42

Binary Semaphore Primitives

struct binary_semaphore {
enum {zero, one} value;
queueType queue;

void semWaitB(binary _semaphore s) {
if (s.value == one) s.value == zero;
else {
place this process in s.queue;
block this process;

¥

void semsSignal(binary_semphore s) {
if (s.queue.is_empty())
s.value = one;
else {
remove process P from s.queue;
place process P on ready list;

}
}

ECS 150A (Operating Systems) Instructor: Raju Pandey

Synchronization, 43

Mutual Exclusion with Semaphores

semaphore s;
const int n = /* number of processes
void P(int i) {
while (true) {
semWait(s);
/> critical section */
semSignal(s);
/* remainder */
¥
3
void main() {
s.count = 1; /* initialize the semaphore */
cobegin P(1); P(2); ...; P(n); coend
¥

ECS 150A (Operating Systems) Instructor: Raju Pandey

Synchronization, 44

22

Queue for Value of

elock semaphore lock A B C
Critical
[region
Normal
,,,,,,,,,,,,,,,,,,,,,,,,,,,, semWaittock) _ _| _ _ _ _ _ | _ ___ execution
111 [o] .
| Blocked on
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA maWatled) | . i semaphore
m : L=
"
________________________ P semWaittlock)
[CT5] b3 .
A J " "
"
semSignaldock) ¢ '
........ B e e EEE P PR r L TR P
|_|C] b1 :
H
.
.
SN S s-:sm--_uanr.q-i_--__
.................................... \> - . semSignalilock)

IT1] [Vo
execution can
proceed in paraliel
but that critical
regions are secialized

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 45

Producer/Consumer Problem

e Processes: producer and consumer

= One or more producers are generating data and placing these
in a buffer

= A single consumer is taking items out of the buffer one at time
e Sharing:

= A common buffer
e Synchronization problem:

= Only one producer or consumer may access the buffer at any

one time
Producer Consumer
while (true) { while (true) {

/* produce item v */

while (in <= out)

b[in] = v; /*do nothing */;
in++; w = b[out];
} out++;
/* consume item w */
a1
ECS 150A (Operating Systems) Instructor:B!liu Pandey Synchronization, 46

23

Solution 1

int n; binary_semaphore s = 1; binary_semaphore delay = 0;

void producer() {
while (true) {
produce();
semWaitB(s);
append();
n+-+;
if (n==1)
semSignalB(delay);

semSignalB(s);

void consumer() {
semWaitB(delay):
while (true) {
semWaitB(s);
take();
n--;
semSignalB(s);
consume();
if (n ==0)

3} semWaitB(delay);
by }
+
void main() {
n = 0; cobegin producer(); consumer(); coend
3+
ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 47
Solution 2

int n; binary_semaphore s = 1; binary_semaphore delay = O;

void producer() {
while (true) {

void consumer() {
int m;

produce(); semWaitB(delay):
semWaitB(s); while (true) {
append(); semWaitB(s);
n++; take();
if (n==1) n--;
semSignalB(delay); m = n;
semSignalB(s); semSignalB(s);
3} consume();
} if (m==0)
semWaitB(delay);
|
void main() { d
n = 0; cobegin producer();consumer(); coend
bs

ECS 150A (Operating Systems)

Instructor: Raju Pandey Synchronization, 48

24

Solution 3

semaphore n = 0; semaphore s= 1;

void producer() { void consumer() {
while (true) { while (true) {
produce(); semWait(n);
semWait(s); semWait(s);
append(); take();
semSignal(s); semSignal(s);
semSignal(n); consume();
by ¥
bs bs
void main() {
cobegin producer(); consumer(); coend
by
ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 49

Solution to bounded buffer problem

const int sizeofbuffer = /* buffers size */
semaphore n = 0; semaphore s= 1;

semaphore e = sizeofbuffer;

void producer() {
while (true) {
produce();
semWait(e);
semWait(s);
append();
semSignal(s);
semSignal(n);
3
by

void consumer() {
while (true) {
semWait(n);
semWait(s);
take();
semSignal(s);
semSignal(e);
consume();
}
by

void main() {

cobegin producer(); consumer(); coend

bs

ECS 150A (Operating Systems) Instructor: Raju Pandey

Synchronization, 50

25

Motivation

e Semaphores are:
= Powerful but low-level abstractions
o Programming with them is highly error prone
0 Such programs are difficult to design, debug, and maintain
= Not usable in distributed memory systems

e Need higher-level primitives: Based on
semaphores or messages

e Monitors (Hoare, 1974)
= Follow principles of abstract data type
(object-oriented) programming:
0 A data type is manipulated only by a set of predefined
operations
= A monitor is

1.A collection of data representing the state of the resource
controlled by the monitor, and

2.Procedures to manipulate that resource data

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 51

Monitors

¢ Implementation must guarantee:
1. Resource accessible only by monitor procedures
2. Monitor procedures are mutually exclusive

e For coordination, monitors provide:

= c.wait: Calling process is blocked and placed on
waiting queue associated with condition variable c

= c.signal: Calling process wakes up first process on c
queue

= “condition variable” c is not a conventional variable
0 ¢ has no value
0 c is an arbitrary name chosen by programmer to

designate an event, state, or condition

o Each c has a waiting queue associated

0 A process may “block” itself on c -- it waits until another
process issues a signal on ¢

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 52

26

Hoare Monitors

After c.signal, there are 2 ready processes:

= The calling process which did the c.signal

= The process which the c.signal “woke up”

e Which should continue?

(Only one can be executing inside the monitor!)

e Hoare monitor:

= Woken-up process continues
= Calling process is placed on high-priority queue

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 53

Hoare Monitors

Monitor Monilor
prealls f()| Procedure f() Procedure /i)
(<) if(x<o pyisblocked

X_Is_positive.wait

e

X_is_positive.wait | =

s

X is positive X_iS_positive

Procedure g) Procedure gl)

Effect of signal
- Monilor Monitor
Effect of wait
Procedure f() Procedure f{)
pymay
recnter
| T o .o
k X_is_pasitive X_is_posinive
|
1
pycallsg()| Procedure gi) ! Procedure ¢)
e ! o
X=5 _ ‘1’ :> X=5
X_is_positivesignal X is_positive.signal

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 54

Monitor-based solution for Bounded buffers

monitor boundedbuffer;
char buffer[N]; int nextin, nextout; int count;
cond notfull, notempty;
void append(char x) {
if (count == N) notfull.wait(); /* buffer is full*/
buffer[nextin] = x; nextin = (nextin+1) mod N;
count++;
notempty.signal();
by
Void take(char x)
{
if (count == 0) notempty.wait(); /7* emptt buffer */
x = buffer[nextout];
nextout = (nextout+1) mod N;
count--;
notfull.signal();
¥
void init() {
nextin = 0; nextout = O; count = O;

b

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 55

Monitor-based solutin for Bounded buffers

void producer() { void consumer() {
char x; char x;
while (true) { while (true) {
produce(Xx); take(X);
append(x); consume(x);
by
by by

void main() {

b5

cobegin producer(); consumer(); coend

ECS 150A (Operating Systems)

Instructor: Raju Pandey

Synchronization, 56

28

Readers/Writers Problem

e Processes: reader and writers
= Readers: read file
= Writers: write to file
e Sharing: common file
e Synchronization constraints:
= Any number of readers may simultaneously read the file
= Only one writer at a time may write to the file
= If a writer is writing to the file, no reader may read it
= Prevent starvation of either process type (variation 1)

o If Rs are in CS, a new R must not enter if W is waiting

o If Wis in CS, once it leaves,
all Rs waiting should enter
(even if they arrived after new Ws

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 57

Reader/Writer Solution

int readcount; semaphore x = 1, wsem = 1;

void reader() { void writer() {
while (trqe) { while (true) {
semWait(x); semWait(wsem);
readcount—++; WRITEUNITQ;
if (readcount == 1) semSignal(wsem);
semWait(wsem); ¥
semSignal(x);
READUNITQ;
semWait(x);
readcount--;
if (readcount == 0) Readers have priority
semSignal(wsem);
semSignal(x);
¥
2

\70|d main() {
readcount = O;cobegin producer(); consumer(); coend

b5

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 58

29

Reader/Writer Solution

int readcount, writecount; . P
semaphore x = 1, y=1, z=1, wsem = 1, rsem=1; Writers have priority
void reader() { void writer() {
while (true) { while (true) {
semWait(z); semWait(y);
semWait(rsem); writecount++;
semWait(x); if(writecount == 1)
readcount++; semWait(rsem);
if (readcount == 1) semSignal(y);
semWait(wsem); semWait(wsem);
semSignal(x); WRITEUNITQ);
semSignal(rsem); semSignal(wsem);
semSignal(z); semWait(y);
READUNITQ); writecount--;
semWait(x); if (writecount == 0)
readcount--; semsSignal(rsem);
if (readcount == 0) semSignal(y);
semSignal(wsem); ¥
semSignal(x); 3
¥
3

void main() {
readcount = writecount = O;cobegin producer(); consumer(); coend

3

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 59

Solution using monitor

monitor Readers_Writers {
int readCount=0, writing=0;
condition OK_R, OK_W;
start_read() {
if (writing || 'empty(OK_W)) OK_R.wait;
readCount = readCount + 1;
OK_R.signal;

}
end_read() {
readCount = readCount - 1;
if (readCount == 0) OK_W.signal;
}
start_write() {
if ((readCount != 0)]|writing) OK_W.wait;
writing = 1;

¥
end_write(Q) {
writing = O;
if (lempty(OK_R)) OK_R.signal;
else OK_W.signal;
¥
¥

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 60

30

