
1

Synchronization

Raju Pandey
Department of Computer Sciences

University of California, Davis
Winter 2005

Concurrency

• Reasons for concurrency:

Multiple applications

o Multiprogramming

Structured application

o Application can be a set of concurrent processes

Operating-system structure

o Operating system is a set of processes or threads

• Difficulties due to concurrency:

Sharing of global resources

Operating system managing the allocation of resources

optimally

Difficult to locate programming errors

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 2

2

Temporal relations

• Instructions executed by a single thread are totally ordered
A < B < C < …

• Absent synchronization, instructions executed by distinct
threads must be considered unordered / simultaneous

Not A < A’, and not A’ < A

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Synchronization, 3

Example: In the beginning...
main()

A

B

pthread_create()

A'
foo()

C

B'

• A < B < C
• A' < B'
• A < A'
• C == A'
• C == B'

Y-axis is “time.”

Could be one CPU, could
be multiple CPUs (cores).

Example

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Synchronization, 4

3

Syntax for Process Creation

• cobegin/coend
syntax: cobegin C1 // C2 // … // Cn coend
meaning:
o All Ci may proceed concurrently
o When all terminate, the statement following cobegin/coend continues

cobegin
Time_Date //
Mail //
Edit; cobegin
(Compile; Load; Execute) //
Edit; cobegin

Print // Web
coend

coend
coend;

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 5

Process Interactions
• Competition: The Critical Problem

x = 0;
cobegin
p1: …

x = x + 1;
…
//

p2: …
x = x + 1;
…

coend
• x should be 2 after both processes execute
• Interleaved execution (due to parallel processing or context

switching):

p1: R1 = x; p2: …
R1 = R1 + 1; R2 = x;
x = R1 ; R2 = R2 + 1;
… x = R2;

• x has only been incremented once; The first update (x=R1) is
lost.

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 6

4

Critical Sections / Mutual Exclusion

• Sequences of instructions that may get incorrect results if

executed simultaneously are called critical sections

• (We also use the term race condition to refer to a situation in

which the results depend on timing)

• Mutual exclusion means “not simultaneous”

A < B or B < A

We don’t care which

• Forcing mutual exclusion between two critical section executions is

sufficient to ensure correct execution – guarantees ordering

• One way to guarantee mutually exclusive execution is using locks

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Synchronization, 7

Critical sections

Possibly incorrect Correct Correct

T1 T2 T1 T2 T1 T2

is the “happens-before” relation

Critical sections

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Synchronization, 8

5

When do critical sections arise?

• One common pattern: Read-modify-write of

A shared value (variable)

In code that can be executed concurrently

(Note: There may be only one copy of the code (e.g., a

procedure), but it can be executed by more than one thread at

a time)

• Shared variable:

Globals and heap-allocated variables

NOT local variables (which are on the stack)

(Note: Never give a reference to a stack-allocated (local)

variable to another thread, unless you’re superhumanly careful

…)
ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,

Zahorjan
Synchronization, 9

Example: buffer management

• Threads cooperate in multithreaded programs
to share resources, access shared data structures
o e.g., threads accessing a memory cache in a web server

also, to coordinate their execution
o e.g., a disk reader thread hands off blocks to a network writer

thread through a circular buffer

disk
reader
thread

network
writer
thread

circular
buffer

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Synchronization, 10

6

Example: shared bank account

• Suppose we have to implement a function to withdraw
money from a bank account:

int withdraw(account, amount) {
int balance = get_balance(account); // read
balance -= amount; // modify
put_balance(account, balance); // write
spit out cash;

}

• Now suppose that you and your S.O. share a bank account
with a balance of $100.00

what happens if you both go to separate ATM machines, and
simultaneously withdraw $10.00 from the account?

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Synchronization, 11

4/19/2011 © 2010 Gribble, Lazowska, Levy,
Zahorjan

12

• Assume the bank’s application is multi-threaded
• A random thread is assigned a transaction when that

transaction is submitted

int withdraw(account, amount) {

int balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

spit out cash;

}

int withdraw(account, amount) {

int balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

spit out cash;

}

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Synchronization, 12

7

Interleaved schedules

• The problem is that the execution of the two threads can be
interleaved, assuming preemptive scheduling:

• What’s the account balance after this sequence?
who’s happy, the bank or you?

• How often is this sequence likely to occur?

balance = get_balance(account);

balance -= amount;

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

spit out cash;

put_balance(account, balance);

spit out cash;

Execution sequence
as seen by CPU

context switch

context switch

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Synchronization, 13

• Which interleavings are ok? Which are not?

Other Execution Orders

int withdraw(account, amount) {

int balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

spit out cash;

}

int withdraw(account, amount) {

int balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

spit out cash;

}

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Synchronization, 14

8

int xfer(from, to, amt) {

withdraw(from, amt);

deposit(to, amt);

}

How About Now?

int xfer(from, to, amt) {

withdraw(from, amt);

deposit(to, amt);

}

• Morals:
Interleavings are hard to reason about
o We make lots of mistakes
o Control-flow analysis is hard for tools to get right

Identifying critical sections and ensuring mutually
exclusive access is … “easier”

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Synchronization, 15

Terms related to concurrency

• Critical section: Section of code within a program/process that
requires access to shared resource and which cannot be accessed
while another process is in a corresponding section of code

• Mutual Exclusion: Requirement that when a process is in a
critical section that accesses a shared resource, no other process
may be in a critical section that access any of those resources

• Race conditions: A situation in which multiple threads or
processes read or write a shared data item and the final result
depends on the relative timing of their execution

• Deadlock: Situation where two or more processes are unable to
proceed because each is waiting for other to do something

• Livelock: Situation where 2 or more processes continuously
change their state in response to changes in others without doing
any useful work

• Starvation: A situation in which a runnable process is overlooked
indefinitely by the sceduler; although it is able to proceed, it is
never chosen.

• Fairness: A constraint that ensures every process gets to run

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 16

9

Process Interaction

Degree of
Awareness

Relationship Influence the one
process has on another

Potential
control problem

Process
unaware of
each other

Competition •Results of one process
independent of the action
of others
•Timing of process may
be affected

• Mutual exclusion
•Deadlock
(renewable
resources)
•Starvation

Process
indirectly
unaware of
each other

Cooperation by
sharing

•Results of one process
may depend on
information obtained from
others
•Timing of process may
be affected

•Mutual exclusion
•Deadlock(renewa
ble resources)
•Starvation
•Data coherence

Processes
directly
aware of
each other

Cooperation by
communication

•Results of one process
may depend on
information obtained from
others
•Timing of process may
be affected

•Deadlock(consu
mable resources)
•Starvation

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 17

Requirements for Mutual Exclusion

• mutual exclusion
at most one thread is in the critical section

• progress
if thread T is outside the critical section, then T cannot prevent
thread S from entering the critical section

• bounded waiting (no starvation)
if thread T is waiting on the critical section, then T will
eventually enter the critical section
o assumes threads eventually leave critical sections

• performance
the overhead of entering and exiting the critical section is small
with respect to the work being done within it

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Synchronization, 18

10

Mutual Exclusion: Hardware Support

• Interrupt Disabling

Disabling interrupts guarantees
mutual exclusion

Processor is limited in its
ability to interleave programs

Disadvantages:

o Responsiveness of system
reduced

o May loose some important
interrupts

o Does not work on multi-
processing systems

disabling interrupts on one
processor will not guarantee
mutual exclusion

While (true) {
disable interrupts
critical section
enable interrupts
remainder

}

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 19

Mutual Exclusion: Hardware Support

• Special Machine Instructions
Performed in a single instruction cycle
Access to the memory location is blocked for any other instructions

Test and Set
boolean testset (int i) {

if (i == 0) {
i = 1;
return true;

} else return false;
}

Exchange Instruction
void exchange (int register,

int memory) {
int temp;
temp = memory;
memory = register;
register = temp;

}

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 20

11

Mutual Exclusion (Test and Set)

const int n = /* number of processes */
int bolt;
void P(int i) {

while (true) {
while (! test_and_set (bolt))

/* do nothing */
/* Critical Section */
bolt = 0;
/* Reminder */

}
}
void main ()
{

bolt = 0;
cobegin

P(1); P(2); …; P(n);
coend

}

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 21

Mutual Exclusion (Exchange)

const int n = /* number of processes */
int bolt;
void P(int i) {

int keyi;
while (true) {

keyi = 1;
while (keyi != 0)

exchange(keyi, bolt);
/* Critical Section */
exchange(keyi, bolt);
/* Reminder */

}
}
void main ()
{

bolt = 0;
cobegin P(1); P(2); …; P(n); coend

}

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 22

12

Mutual Exclusion Machine Instructions

• Advantages
Applicable to any number of processes on either a single
processor or multiple processors sharing main memory

It is simple and therefore easy to verify

It can be used to support multiple critical sections

• Disadvantages
Busy-waiting consumes processor time

Starvation is possible when a process leaves a critical
section and more than one process is waiting.

Deadlock

o If a low priority process has the critical region and a higher
priority process needs, the higher priority process will obtain
the processor to wait for the critical region

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 23

Software: Algorithm 1

• Use a single “turn” variable:
int turn = 1;
cobegin

p1: while (1) {
while (turn==2); /*wait*/

CS1; turn = 2; program1;
}

p2: while (1) {
while (turn==1); /*wait*/

CS1; turn = 1; program1;
}

// ...

• Violates blocking requirement;
• p1 can block p2 even if it is not inside critical section

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 24

13

Software Solutions: Algorithm 2

• Use two variables to indicate intent:

int c1 = 0, c2 = 0;
cobegin
p1: while (1) {

c1 = 1;
while (c2); /*wait*/

CS1; c1 = 0; program1;
}

p2: while (1) {
c2 = 1;
while (c2); /*wait*/

CS1; c2 = 0; program2;
}

• What if they access c1 and c2 at the same time?
Violates blocking requirement: deadlock. Processes wait
forever.

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 25

Software Solutions: Algorithm 3

• Similar to #2, but reset intent variable each time:

int c1 = 0, c2 = 0;
cobegin

p1: while (1) {
c1 = 1;
if (c2) c1 = 0;
else {CS1; c1 = 0; program1}
}

p2: while (1) {
c2 = 1;
if (c1) c2 = 0;
else {CS1; c2 = 0; program1}

}

• What if p1 and p2 operate at same speed: livelock
• What if p2 always checks c1 after c2 has been set to 1:

fairness

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 26

14

Software Solutions: Algorithm 4 (Peterson)

• Like #2 but use a “turn” variable to break a tie:
int c1 = 0, c2 = 0, WillWait;
cobegin

p1: while (1) {
c1 = 1;
willWait = 1;
while (c2 && (WillWait==1)); /*wait*/
CS1; c1 = 0; program1;

}
p2: while (1) {

c2 = 1;
willWait = 2;
while (c1 && (WillWait==2)); /*wait*/
CS1; c2 = 0; program2;

}

• Does it guarantee mutual exclusion?
• What about deadlock? What about livelock? Fairness?

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 27

Locks

• A lock is a memory object with two operations:
acquire(): obtain the right to enter the critical section
release(): give up the right to be in the critical section

• acquire() prevents progress of the thread until the lock
can be acquired

• (Note: terminology varies: acquire/release, lock/unlock)

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Synchronization, 28

15

Locks: Example execution

lock()

unlock()

lock()

unlock()

Two choices:
• Spin
• Block
• (Spin-then-block)

Locks: Example

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Synchronization, 29

Acquire/Release

• Threads pair up calls to acquire() and release()
between acquire()and release(), the thread holds the lock
acquire() does not return until the caller “owns” (holds) the
lock
o at most one thread can hold a lock at a time

What happens if the calls aren’t paired?
What happens if the two threads acquire different locks?
o (granularity of locking)

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Synchronization, 30

16

Using locks

• What happens when green tries to acquire the lock?

int withdraw(account, amount) {

acquire(lock);

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

release(lock);

spit out cash;

}

acquire(lock)

balance = get_balance(account);

balance -= amount;

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

release(lock);

spit out cash;

put_balance(account, balance);
release(lock);

acquire(lock)

cr
it
ic

al
se

ct
io

n
spit out cash;

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Synchronization, 31

Spinlocks

• How do we implement locks? Here’s one attempt:

• Why doesn’t this work?
where is the race condition?

struct lock_t {

int held = 0;

}

void acquire(lock) {

while (lock->held);

lock->held = 1;

}

void release(lock) {

lock->held = 0;

}

the caller “busy-waits”,
or spins, for lock to be
released ⇒ hence spinlock

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Synchronization, 32

17

Implementing locks (cont.)

• Problem is that implementation of locks has critical sections,
too!

the acquire/release must be atomic
o atomic == executes as though it could not be interrupted
o code that executes “all or nothing”

• Need help from the hardware
atomic instructions
o test-and-set, compare-and-swap, …

disable/reenable interrupts
o to prevent context switches

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Synchronization, 33

Spinlocks redux: Hardware Test-and-Set

• CPU provides the following as one atomic instruction:

• Remember, this is a single atomic instruction …

bool test_and_set(bool *flag) {

bool old = *flag;

*flag = True;

return old;

}

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Synchronization, 34

18

Implementing locks using Test-and-Set

• So, to fix our broken spinlocks:

mutual exclusion? (at most one thread in the critical section)
progress? (T outside cannot prevent S from entering)
bounded waiting? (waiting T will eventually enter)
performance? (low overhead)

struct lock {

int held = 0;

}

void acquire(lock) {

while(test_and_set(&lock->held));

}

void release(lock) {

lock->held = 0;

}

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Synchronization, 35

Reminder of use …

• How does a thread blocked on an “acquire” (that is,
stuck in a test-and-set loop) yield the CPU?

calls yield() (spin-then-block)
there’s an involuntary context switch

int withdraw(account, amount) {

acquire(lock);

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

release(lock);

spit out cash;

}

acquire(lock)

balance = get_balance(account);

balance -= amount;

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

release(lock);

spit out cash;

put_balance(account, balance);
release(lock);

acquire(lock)

cr
it
ic

al
se

ct
io

n

spit out cash;

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Synchronization, 36

19

Problems with spinlocks

• Spinlocks work, but are horribly wasteful!
if a thread is spinning on a lock, the thread holding the lock
cannot make progress
o You’ll spin for a scheduling quantum
(pthread_spin_t)

• Only want spinlocks as primitives to build higher-level
synchronization constructs

Why is this okay?

• We’ll see later how to build blocking locks
But there is overhead – can be cheaper to spin
(pthread_mutex_t)

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Synchronization, 37

Another approach: Disabling interrupts

struct lock {

}

void acquire(lock) {

cli(); // disable interrupts

}

void release(lock) {

sti(); // reenable interrupts

}

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Synchronization, 38

20

Problems with disabling interrupts

• Only available to the kernel
Can’t allow user-level to disable interrupts!

• Insufficient on a multiprocessor
Each processor has its own interrupt mechanism

• “Long” periods with interrupts disabled can wreak havoc
with devices

• Just as with spinlocks, you only want to use disabling of
interrupts to build higher-level synchronization constructs

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Synchronization, 39

Problems with suggested solution

• Difficult to understand and verify
• Solution is applicable only in cases when processes are

competing for resources
• Busy waiting

Slows down overall system

• Fairness is not guaranteed or enforced

• Solution: Language/System primitives
Semaphores
Event synchronization
Monitors and others

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 40

21

Dijkstra’s Semaphores

A Semaphore is a non-negative integer, s (how many tasks

can proceed simultaneously), and two indivisible operations:

P(s), often written Wait(s); think “Pause”:

“P” from “passaren” (“pass” in Dutch) or from “prolagan,”

combining “proberen” (“try”) and “verlagen” (“decrease”).

o while (s<1)/*wait*/; s=s-1

V(s), often written Signal(s);

think of the “V for Victory” 2-finger salute:

“V” from “vrigeven” (“release”) or “verhogen”

(“increase”).

o s=s+1;

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 41

Semaphore Primitives

struct semaphore {
int count;
queueType queue;

}
void semWait(semaphore s) {

s.count --;
if (s.count < 0) {

place this process in s.queue;
block this process;

}
}
void semSignal(semphore s) {

s.count++;
if (s.count <= 0) {

remove process P from s.queue;
place process P on ready list;

}
}

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 42

22

Binary Semaphore Primitives

struct binary_semaphore {
enum {zero, one} value;
queueType queue;

}
void semWaitB(binary_semaphore s) {

if (s.value == one) s.value == zero;
else {

place this process in s.queue;
block this process;

}
}
void semSignal(binary_semphore s) {

if (s.queue.is_empty())
s.value = one;

else {
remove process P from s.queue;
place process P on ready list;

}
}

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 43

Mutual Exclusion with Semaphores

semaphore s;
const int n = /* number of processes
void P(int i) {

while (true) {
semWait(s);
/* critical section */
semSignal(s);
/* remainder */

}
}
void main() {

s.count = 1; /* initialize the semaphore */
cobegin P(1); P(2); …; P(n); coend

}

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 44

23

Example

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 45

Producer/Consumer Problem

• Processes: producer and consumer
One or more producers are generating data and placing these
in a buffer
A single consumer is taking items out of the buffer one at time

• Sharing:
A common buffer

• Synchronization problem:
Only one producer or consumer may access the buffer at any
one time

Producer
while (true) {

/* produce item v */
b[in] = v;
in++;

}

Consumer
while (true) {

while (in <= out)
/*do nothing */;

w = b[out];
out++;
/* consume item w */

}
ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 46

24

Solution 1

int n; binary_semaphore s = 1; binary_semaphore delay = 0;

void producer() {
while (true) {

produce();
semWaitB(s);
append();
n++;
if (n == 1)

semSignalB(delay);
semSignalB(s);

}
}

void consumer() {
semWaitB(delay):
while (true) {

semWaitB(s);
take();
n--;
semSignalB(s);
consume();
if (n == 0)

semWaitB(delay);
}

}
void main() {

n = 0; cobegin producer(); consumer(); coend
}

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 47

Solution 2

int n; binary_semaphore s = 1; binary_semaphore delay = 0;

void producer() {
while (true) {

produce();
semWaitB(s);
append();
n++;
if (n == 1)

semSignalB(delay);
semSignalB(s);

}
}

void consumer() {
int m;
semWaitB(delay):
while (true) {

semWaitB(s);
take();
n--;
m = n;
semSignalB(s);
consume();
if (m == 0)

semWaitB(delay);
}

} void main() {
n = 0; cobegin producer(); consumer(); coend

}
ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 48

25

Solution 3

semaphore n = 0; semaphore s= 1;

void producer() {
while (true) {

produce();
semWait(s);
append();
semSignal(s);
semSignal(n);

}
}

void consumer() {
while (true) {

semWait(n);
semWait(s);
take();
semSignal(s);
consume();

}
}

void main() {
cobegin producer(); consumer(); coend

}

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 49

Solution to bounded buffer problem

const int sizeofbuffer = /* buffers size */
semaphore n = 0; semaphore s= 1;
semaphore e = sizeofbuffer;

void producer() {
while (true) {

produce();
semWait(e);
semWait(s);
append();
semSignal(s);
semSignal(n);

}
}

void consumer() {
while (true) {

semWait(n);
semWait(s);
take();
semSignal(s);
semSignal(e);
consume();

}
}

void main() {
cobegin producer(); consumer(); coend

}
ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 50

26

Motivation

• Semaphores are:
Powerful but low-level abstractions
o Programming with them is highly error prone
o Such programs are difficult to design, debug, and maintain

Not usable in distributed memory systems

• Need higher-level primitives: Based on
semaphores or messages

• Monitors (Hoare, 1974)
Follow principles of abstract data type
(object-oriented) programming:
o A data type is manipulated only by a set of predefined

operations
A monitor is
1.A collection of data representing the state of the resource

controlled by the monitor, and
2.Procedures to manipulate that resource data

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 51

Monitors

• Implementation must guarantee:
1. Resource accessible only by monitor procedures
2. Monitor procedures are mutually exclusive

• For coordination, monitors provide:
c.wait: Calling process is blocked and placed on
waiting queue associated with condition variable c
c.signal: Calling process wakes up first process on c
queue
“condition variable” c is not a conventional variable
o c has no value
o c is an arbitrary name chosen by programmer to

designate an event, state, or condition
o Each c has a waiting queue associated
o A process may “block” itself on c -- it waits until another

process issues a signal on c

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 52

27

Hoare Monitors

• After c.signal, there are 2 ready processes:
The calling process which did the c.signal
The process which the c.signal “woke up”

• Which should continue?
(Only one can be executing inside the monitor!)

• Hoare monitor:
Woken-up process continues
Calling process is placed on high-priority queue

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 53

Hoare Monitors

Effect of wait

Effect of signal

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 54

28

Monitor-based solution for Bounded buffers
monitor boundedbuffer;
char buffer[N]; int nextin, nextout; int count;
cond notfull, notempty;
void append(char x) {

if (count == N) notfull.wait(); /* buffer is full*/
buffer[nextin] = x; nextin = (nextin+1) mod N;
count++;
notempty.signal();

}
Void take(char x)
{

if (count == 0) notempty.wait(); /* emptt buffer */
x = buffer[nextout];
nextout = (nextout+1) mod N;
count--;
notfull.signal();

}
void init() {

nextin = 0; nextout = 0; count = 0;
}

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 55

Monitor-based solutin for Bounded buffers

void producer() {
char x;
while (true) {

produce(x);
append(x);

}
}

void consumer() {
char x;
while (true) {

take(x);
consume(x);

}
}

void main() {
cobegin producer(); consumer(); coend

}

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 56

29

Readers/Writers Problem

• Processes: reader and writers

Readers: read file

Writers: write to file

• Sharing: common file

• Synchronization constraints:

Any number of readers may simultaneously read the file

Only one writer at a time may write to the file

If a writer is writing to the file, no reader may read it

Prevent starvation of either process type (variation 1)

o If Rs are in CS, a new R must not enter if W is waiting

o If W is in CS, once it leaves,
all Rs waiting should enter
(even if they arrived after new Ws

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 57

Reader/Writer Solution

int readcount; semaphore x = 1, wsem = 1;

void reader() {
while (true) {

semWait(x);
readcount++;
if (readcount == 1)

semWait(wsem);
semSignal(x);
READUNIT();
semWait(x);
readcount--;
if (readcount == 0)

semSignal(wsem);
semSignal(x);

}
}

void writer() {
while (true) {

semWait(wsem);
WRITEUNIT();
semSignal(wsem);

}

void main() {
readcount = 0;cobegin producer(); consumer(); coend

}

Readers have priority

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 58

30

Reader/Writer Solution
int readcount, writecount;
semaphore x = 1, y=1, z=1, wsem = 1, rsem=1;

void reader() {
while (true) {

semWait(z);
semWait(rsem);

semWait(x);
readcount++;
if (readcount == 1)

semWait(wsem);
semSignal(x);

semSignal(rsem);
semSignal(z);
READUNIT();
semWait(x);

readcount--;
if (readcount == 0)

semSignal(wsem);
semSignal(x);

}
}

void writer() {
while (true) {

semWait(y);
writecount++;
if(writecount == 1)

semWait(rsem);
semSignal(y);
semWait(wsem);
WRITEUNIT();
semSignal(wsem);
semWait(y);

writecount--;
if (writecount == 0)

semSignal(rsem);
semSignal(y);

}
}

void main() {
readcount = writecount = 0;cobegin producer(); consumer(); coend

}

Writers have priority

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 59

Solution using monitor

monitor Readers_Writers {
int readCount=0, writing=0;
condition OK_R, OK_W;
start_read() {

if (writing || !empty(OK_W)) OK_R.wait;
readCount = readCount + 1;
OK_R.signal;

}
end_read() {

readCount = readCount - 1;
if (readCount == 0) OK_W.signal;

}
start_write() {

if ((readCount != 0)||writing) OK_W.wait;
writing = 1;

}
end_write() {

writing = 0;
if (!empty(OK_R)) OK_R.signal;
else OK_W.signal;

}
}

ECS 150A (Operating Systems) Instructor: Raju Pandey Synchronization, 60

