Process and Thread Scheduling

Raju Pandey
Department of Computer Sciences
University of California, Davis
Winter 2005

Scheduling

e Context switching
= an interrupt occurs (device completion, timer interrupt)
= a thread causes a trap or exception

= may need to choose a different thread/process to run
e We glossed over the choice of which process or thread is
chosen to be run next
= “some thread from the ready queue”
e This decision is called scheduling

0 scheduling is a policy

0 context switching is a mechanism

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy, Scheduling, 2
Zahorjan

Objectives

e After this lecture, you should understand:
» the goals of scheduling.
= preemptive vs. non-preemptive scheduling.
» the role of priorities in scheduling.
» scheduling criteria.

= common scheduling algorithms.

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 3

Basic Concepts

e Maximum CPU

utilization obtained
with
multiprogramming
CPU—-I1/0 Burst
Cycle — Process
execution consists
of a cycle of CPU
execution and 1/0
walt

CPU burst
distribution

load store
add store
read from file

wait for I/O

store increment
index
write to file

walit for I/O

load store
add store
read from file

wait for I/O

> CPU burst|

- 1/0O burst

} CPU burst}
N

j |/O burst

> CPU burst]

> 1/O burst

ECS 150A (Operating Systems)

Instructor: Raju Pandey

Scheduling, 4

Histogram of CPU-burst Times

Exponential/HyperExponential

160

140 \
120

100 \
80 \\
L
20 \

0 8 16 24 32 40
burst duration (milliseconds)

frequency

1/0 bound: Many short cpu bursts
CPU bound: few very long cpu bursts

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 5

Scheduling Criteria

e CPU utilization — keep the CPU as busy as possible

e Throughput — # of processes that complete their

execution per time unit

e Turnaround time — amount of time to execute a

particular process

e Waiting time — amount of time a process has been

waiting in the ready queue

e Response time — amount of time it takes from when a
request was submitted until the first response is produced,

not output (for time-sharing environment)

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 6

Scheduling Objectives

e Different objectives depending on system
= Maximize throughput

» Maximize number of interactive processes receiving acceptable
response times

= Minimize resource utilization
= Avoid indefinite postponement
= Enforce priorities
= Minimize overhead
» Ensure predictability
e Several goals common to most schedulers
= Fairness
* Predictability
= Scalability

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 7

Scheduling Objectives: Fairness

e No single, compelling definition of “fair”
= How to measure fairness?
o Equal CPU consumption? (over what time scale?)
= Fair per-user? per-process? per-thread?
» What if one process is CPU bound and one is I/0 bound?

e Sometimes the goal is to be unfair:
= Explicitly favor some particular class of requests (priority
system), but...
» avoid starvation (be sure everyone gets at least some
service)

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy, Scheduling, 8
Zahorjan

Preemptive vs. Nonpreemptive Scheduling

e Preemptive processes
= Can be removed from their current processor
= Can lead to improved response times
» |mportant for interactive environments

» Preempted processes remain in memory

e Nonpreemptive processes
= Run until completion or until they yield control of a processor

» Unimportant processes can block important ones indefinitely

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 9

Priorities

e Static priorities
* Priority assigned to a process does not change
= Easy to implement
= Low overhead
= Not responsive to changes in environment
e Dynamic priorities
= Responsive to change
* Promote smooth interactivity

* Incur more overhead than static priorities

o Justified by increased responsiveness

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 10

Multiple levels of scheduling decisions

e Long term
= Should a new “job” be “initiated,” or should it be held?
o typical of batch systems
o0 what might cause you to make a “hold” decision?
¢ Medium term
» Should a running program be temporarily marked as non-
runnable (e.g., swapped out)?
e Short term

= Which thread should be given the CPU next? For how
long?

= Which 1I/0 operation should be sent to the disk next?

= On a multiprocessor:

o should we attempt to coordinate the running of threads from
the same address space in some way?

o should we worry about cache state (processor affinity)?

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,

Scheduling, 11
Zahorjan

Scheduling and Process State Transition

Long-term
Long-term scheduling
scheduling

, Ready/

————p | Readly ———9p Runnin
s“’pe"d Medium- lerm(' Short-term (-
scheduling scheduling

Blocked/ "

scheduling

(Exit

ECS 150A (Operating Systems) Instructor: Raju Pandey

Scheduling, 12

Levels of scheduling

Short Term

Blocked,
Suspend

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 13

Queuing Diagram for Scheduling

Long-term Time-out
scheduling
Batch ' Ready Queue Short-term
jobs Vy L scheduling
— e

Interactive
users

Event

TA

Medium-term

' scheduling

Ready, Suspend Queue

Rl

Blocked, Suspend Queue
-

Blocked Queue

‘—\

-

I 4

Release

-
~
-

Medium-term
scheduling
,

,
,
,

Event Wait

Occurs

ECS 150A (Operating Systems)

Instructor: Raju Pandey

Scheduling, 14

Scheduling levels

e Long term scheduling:

» Determines which programs are admitted to the system for
processing

= Controls the degree of multiprogramming

= More processes, smaller percentage of time each process is
executed

e Midterm scheduling:
= Part of the swapping function
» Based on the need to manage the degree of multiprogramming

e Short term scheduling:
= Known as the dispatcher
» Executes most frequently
= Invoked when an event occurs
o Clock interrupts
o 1/0 interrupts

o0 Operating system calls
o Signals

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 15

Dispatcher

e Dispatcher module gives control of the CPU to the process
selected by the short-term scheduler; this involves:
= switching context
= switching to user mode
= jumping to the proper location in the user program to restart
that program
e Dispatch latency — time it takes for the dispatcher to stop
one process and start another running

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 16

Organization of Schedulers

e Embedded
= Called as function at end of
kernel call tee
= Runs as part of calling process
sz process
e Autonomous S: scheduler

= Separate process ®)

= May have dedicated CPU on a
multiprocessor

= On single-processor,
run at every quantum:
scheduler and other processes
alternate

(b)

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 17

Framework for Scheduling

e \When is scheduler invoked?
= Decision mode

o Preemptive: scheduler called periodically
(quantum-oriented) or when system state changes

o Nonpreemptive: scheduler called when process terminates or
blocks
e How does it select highest priority process?

= Priority function:
P = Priority(p)
= Arbitration rule: break ties
0 Random
o Chronological (First In First Out = FIFO)
o0 Cyclic (Round Robin = RR)

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 18

Priority function

e Different ways to determine priority

e Possible attributes of processes used to define priority:
» Attained service time (a): amount of CPU time allocated
» Real time in system (r): attained time + waiting time
= Total service time (t): total time between arrival and departure
» Periodicity (d): repetition of a computation
» Deadline (explicit or implied by periodicity): Point in real-time
by which process must be completed
= External priority (e)
= Memory requirements (mostly for batch)

= System load (not process-specific)

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 19

First-Come, First-Served (FCFS) Scheduling
First In Firtst Out

Process Burst Time

P, 24

P, 3

P, 3
Suppose that the processes arrive in the order: P, , P, ,
P3
The Gantt Chart for the schedule is:

P, P, P,
0 24 27 30

Waiting time for P, = 0; P, = 24; P;= 27
Average waiting time: (0 + 24 + 27)/3 = 17
Priority function = r (r = arrival time)
Decision mode: non-preemptive

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 20

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order
P,,P;,P;

e The Gantt chart for the schedule is:

P, P, P,

0 3 6 30

e Waiting time for P, =6;P, =0.P;=3
e Average waiting time: (6 + 0 + 3)/3 =3
e Much better than previous case

e Convoy effect short process behind long process

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 21

Shortest-Job-First (SJR) Scheduling

e Associate with each process the length of its next CPU burst.
Use lengths to schedule the process with the shortest time

e Two schemes:
* nonpreemptive — once CPU given to the process it cannot be
preempted until completes its CPU burst
o Priority Function = -total service time
= preemptive — if a new process arrives with CPU burst length
less than remaining time of current executing process,

preempt. This scheme is know as the
Shortest-Remaining-Time-First (SRTF)

o Priority function = -(t-a), t = total service time; a = total attained
service time

e SJF is optimal — gives minimum average waiting time for a
given set of processes

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 22

Example of Non-Preemptive SJF

Process Arrival Time Burst Time

P, 0.0 7
P, 2.0 4
Ps 4.0 1
P, 5.0 4
e SJF (non-preemptive)
P, P, P, P,
1 —t— —t—
0 3 7 8 12 16

e Average waiting time = (0 +6 +3 + 7)/4 -4

ECS 150A (Operating Systems) Instructor: Raju Pandey

Scheduling, 23

Example of Preemptive SJF

Process Arrival Time Burst Time

P, 0.0 7
P, 2.0 4
Ps 4.0 1
P, 5.0 4
e SJF (preemptive)
P, | P, [Py | P, P, P,
—— e
0 2 4 5 7 11 16

e Average waitingtime =9 + 1+ 0 +2)/4 -3

ECS 150A (Operating Systems) Instructor: Raju Pandey

Scheduling, 24

Determining Length of Next CPU Burst

e Can only estimate the length

e Can be done by using the length of previous CPU bursts,
using exponential averaging

1. t. = actuallenght of n" CPU burst

2. 7., =predicted value for the next CPU burst
3. a,0<a<1

4. Define: 7, =at +(1-a)r..

n

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 25

Prediction of the Length of the Next CPU Burst

T,i 10 /
8

4
2
time ——
CPU burst (t) 6 4 6 4 13 13 13
"guess” (1) 10 8 6 6 5 9 1 12

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 26

Priority Scheduling

e A priority number (integer) is associated with each process
e The CPU is allocated to the process with the highest priority
(smallest integer = highest priority)
* Preemptive
" nonpreemptive
e SJF is a priority scheduling where priority is the predicted

next CPU burst time

e Problem = Starvation — low priority processes may never
execute

e Solution = Aging — as time progresses increase the priority
of the process

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 27

Round Robin (RR)

e Each process gets a small unit of CPU time (time quantum),
usually 10-100 milliseconds. After this time has elapsed,
the process is preempted and added to the end of the ready
queue.

e If there are n processes in the ready queue and the time
quantum is g, then each process gets 1/n of the CPU time In
chunks of at most q time units at once. No process waits
more than (n-1)q time units.

e Performance
= (large = FIFO

= g small = g must be large with respect to context switch,
otherwise overhead is too high

Priority function

= All processes have same priority

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 28

Example of RR with Time Quantum = 20

Process Burst Time
P, 53
P, 17
Pj 68
P, 24

e The Gantt chart is:

O 20 37 57 77 97 117 121 134 154 162

o Typically, higher average turnaround than SJF, but better
response

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 29

Time Quantum and Context Switch Time

process time = 10 guantum context
switches
12 0
0 10
6 1
0 6 10
1 9
o 1. 2 3 4 5 6 7 8 9 10

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 30

Multilevel Queue

e Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

e Each queue has its own scheduling algorithm

= foreground — RR
» packground — FCFS

e Scheduling must be done between the queues
» Fixed priority scheduling; (i.e., serve all from foreground then
from background). Possibility of starvation.

» Time slice — each queue gets a certain amount of CPU time
which it can schedule amongst its processes; i.e., 80% to
foreground in RR

= 20% to background in FCFS

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 31

Multilevel Queue Scheduling

highest priority

interactive processes

interactive editing processes

— batch processes

— student processes

lowest priority

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 32

Multilevel Feedback Queue

e A process can move between the various queues; aging can
be implemented this way

e Multilevel-feedback-queue scheduler defined by the
following parameters:
» number of queues
» scheduling algorithms for each queue
» method used to determine when to upgrade a process
* method used to determine when to demote a process

» method used to determine which queue a process will enter
when that process needs service

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 33

Example of Multilevel Feedback Queue

e Three queues:

= Qy — time quantum 8 milliseconds
= Q, — time quantum 16 milliseconds
= Q, — FCFS

e Scheduling

= A new job enters queue Q, which is served FCFS. When it gains
CPU, job receives 8 milliseconds. If it does not finish in 8
milliseconds, job is moved to queue Q;.

= At Q, job is again served FCFS and receives 16 additional

milliseconds. If it still does not complete, it is preempted and
moved to queue Q..

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 34

Multilevel Feedback Queues

' >
quantum = 8 |
>
ﬁuantum =16 :
>
:>| FCFS ‘ :

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 35

Scheduling Algorithms: Real-time systems

e Real-time systems: Periodic in nature so that computations are
repeated at fixed intervals
e Typically: a process has a period of d, it is activated every d
seconds, and its computation (total service time) must be
completed before start of the next period
e Rate Monotonic (RM):
» d:periodicity
* Preemptive
= Highest priority: shortest period: P = —d

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 36

Scheduling Algorithms: Real-time systems

e Earliest Deadline First (EDF):

» Intended for periodic (real-time) processes

Preemptive

= r = time since the process first entered the system

d = Periodicity

Highest priority: shortest time to next deadline

or =d number of completed periods
or %o d time in current period
od—r%od time remaining in current period

oP=—(d—-r 2% d)

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 37

Scheduling algorithms

ECS 150A (Operating Systems)

Instructor: Raju Pandey

Name Decision Mode | Priority Arbitration
FIFO Nonpreemptive |P =r random
Shortest Job First Nonpreemptive | P = —t
(SJF)
Shortest Remaining Preemptive = —(t—a) Chronological
Time (SRT) random
Round Robin (RR) Preemptive P=0 Cyclic
Multi Level Priority Preemptive P=e cyclic
(MLF)
Non- P=e chronological
preemptive
Rate Monotonic Pre-emptive -d Chronological
Random
Earliest Deadline First | Pre-emptive -(d-r%od) Chronological

Random

Scheduling, 38

Comparison of Methods

e FIFO, SJF, SRT: Primarily for batch systems
» FIFO simplest, SJF & SRT have better average turnaround
times: (r1+r2+...+rn)/n
e Time-sharing systems
» Response time is critical
* RR or MLF with RR within each queue are suitable
» Choice of quantum determines overhead
o When q —» «, RR approaches FIFO
o When g — 0, context switch overhead —» 100%

o When g >> context switch overhead,

n processes run concurrently at 1/n CPU speed

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 39

Priority Inversion Problem

P

P

Block on enter
P(mutex) CS_1
L/// //! L7777/'77’ see
4 A
I
preempt : | preempt |
| Y |
A . e I
preempt | b ¢ end 0pr2 |
II Y :
(A
enler a d €
CS 3 leave CS 3
P(mutex) V(mutex)

Figure 5-10

Assume priority order pl>=>p2>p3

(Unrelated) p2 may delay pl indefinitely.

Naive “solution”: Always run CS at priority of highest process that
shares the CS.

Problem: pl1 cannot interrupt lower-priority process inside CS -- a
different form of priority inversion.

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 40

Priority Inversion Problem

71

Solution: Dynamic Priority Inheritance
= p3isinits CS
= pl attempts to enter its CS
= p3inherits pl’s (higher) priority for the duration of CS

Block on cnter
P(mutex) CS_1 end of p,
J: //////1 A/////////// //////Jl
| |
: : preecmpt : "r
A b | | e
I | |
| v |
cnter a c d
CS 3 inhcritance lcave CS_3
P(mautex) V(mutex) Fi gure 5-11

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 41

Summary

e Scheduling takes place at many levels

e It can make a huge difference in performance

» this difference increases with the variability in service

requirements
e Multiple goals, sometimes conflicting

e There are many “pure” algorithms, most with some

drawbacks in practice — FCFS, SPT, RR, Priority

e Real systems use hybrids that exploit observed program

behavior

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy, Scheduling, 42
Zahorjan

