
Process and Thread Scheduling

Raju Pandey
Department of Computer Sciences

University of California, Davis
Winter 2005

Scheduling

• Context switching

an interrupt occurs (device completion, timer interrupt)

a thread causes a trap or exception

may need to choose a different thread/process to run

• We glossed over the choice of which process or thread is

chosen to be run next

“some thread from the ready queue”

• This decision is called scheduling

o scheduling is a policy

o context switching is a mechanism

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Scheduling, 2

Objectives

• After this lecture, you should understand:

the goals of scheduling.

preemptive vs. non-preemptive scheduling.

the role of priorities in scheduling.

scheduling criteria.

common scheduling algorithms.

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 3

Basic Concepts

• Maximum CPU
utilization obtained
with
multiprogramming

• CPU–I/O Burst
Cycle – Process
execution consists
of a cycle of CPU
execution and I/O
wait

• CPU burst
distribution

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 4

Histogram of CPU-burst Times
Exponential/HyperExponential

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 5

I/O bound: Many short cpu bursts
CPU bound: few very long cpu bursts

Scheduling Criteria

• CPU utilization – keep the CPU as busy as possible

• Throughput – # of processes that complete their

execution per time unit

• Turnaround time – amount of time to execute a

particular process

• Waiting time – amount of time a process has been

waiting in the ready queue

• Response time – amount of time it takes from when a

request was submitted until the first response is produced,

not output (for time-sharing environment)

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 6

Scheduling Objectives

• Different objectives depending on system

Maximize throughput

Maximize number of interactive processes receiving acceptable
response times

Minimize resource utilization

Avoid indefinite postponement

Enforce priorities

Minimize overhead

Ensure predictability

• Several goals common to most schedulers

Fairness

Predictability

Scalability

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 7

Scheduling Objectives: Fairness

• No single, compelling definition of “fair”
How to measure fairness?
o Equal CPU consumption? (over what time scale?)

Fair per-user? per-process? per-thread?
What if one process is CPU bound and one is I/O bound?

• Sometimes the goal is to be unfair:
Explicitly favor some particular class of requests (priority
system), but…
avoid starvation (be sure everyone gets at least some
service)

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Scheduling, 8

Preemptive vs. Nonpreemptive Scheduling

• Preemptive processes

Can be removed from their current processor

Can lead to improved response times

Important for interactive environments

Preempted processes remain in memory

• Nonpreemptive processes

Run until completion or until they yield control of a processor

Unimportant processes can block important ones indefinitely

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 9

Priorities

• Static priorities

Priority assigned to a process does not change

Easy to implement

Low overhead

Not responsive to changes in environment

• Dynamic priorities

Responsive to change

Promote smooth interactivity

Incur more overhead than static priorities

o Justified by increased responsiveness

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 10

Multiple levels of scheduling decisions

• Long term
Should a new “job” be “initiated,” or should it be held?
o typical of batch systems
o what might cause you to make a “hold” decision?

• Medium term
Should a running program be temporarily marked as non-
runnable (e.g., swapped out)?

• Short term
Which thread should be given the CPU next? For how
long?
Which I/O operation should be sent to the disk next?
On a multiprocessor:
o should we attempt to coordinate the running of threads from

the same address space in some way?
o should we worry about cache state (processor affinity)?

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Scheduling, 11

Scheduling and Process State Transition

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 12

Levels of scheduling

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 13

Queuing Diagram for Scheduling

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 14

Scheduling levels

• Long term scheduling:
Determines which programs are admitted to the system for
processing
Controls the degree of multiprogramming
More processes, smaller percentage of time each process is
executed

• Midterm scheduling:
Part of the swapping function
Based on the need to manage the degree of multiprogramming

• Short term scheduling:
Known as the dispatcher
Executes most frequently
Invoked when an event occurs
o Clock interrupts
o I/O interrupts
o Operating system calls
o Signals

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 15

Dispatcher

• Dispatcher module gives control of the CPU to the process
selected by the short-term scheduler; this involves:

switching context
switching to user mode
jumping to the proper location in the user program to restart
that program

• Dispatch latency – time it takes for the dispatcher to stop
one process and start another running

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 16

Organization of Schedulers

• Embedded

Called as function at end of
kernel call

Runs as part of calling process

• Autonomous

Separate process

May have dedicated CPU on a
multiprocessor

On single-processor,
run at every quantum:
scheduler and other processes
alternate

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 17

Framework for Scheduling

• When is scheduler invoked?

Decision mode

o Preemptive: scheduler called periodically

(quantum-oriented) or when system state changes

o Nonpreemptive: scheduler called when process terminates or

blocks

• How does it select highest priority process?

Priority function:

P = Priority(p)

Arbitration rule: break ties

o Random

o Chronological (First In First Out = FIFO)

o Cyclic (Round Robin = RR)

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 18

Priority function

• Different ways to determine priority

• Possible attributes of processes used to define priority:

Attained service time (a): amount of CPU time allocated

Real time in system (r): attained time + waiting time

Total service time (t): total time between arrival and departure

Periodicity (d): repetition of a computation

Deadline (explicit or implied by periodicity): Point in real-time

by which process must be completed

External priority (e)

Memory requirements (mostly for batch)

System load (not process-specific)

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 19

First-Come, First-Served (FCFS) Scheduling
First In Firtst Out

Process Burst Time
P1 24
P2 3
P3 3

• Suppose that the processes arrive in the order: P1 , P2 ,
P3
The Gantt Chart for the schedule is:

• Waiting time for P1 = 0; P2 = 24; P3 = 27
• Average waiting time: (0 + 24 + 27)/3 = 17
• Priority function = r (r = arrival time)
• Decision mode: non-preemptive

P1 P2 P3

24 27 300

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 20

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order

P2 , P3 , P1

• The Gantt chart for the schedule is:

• Waiting time for P1 = 6; P2 = 0; P3 = 3

• Average waiting time: (6 + 0 + 3)/3 = 3

• Much better than previous case

• Convoy effect short process behind long process

P1P3P2

63 300

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 21

Shortest-Job-First (SJR) Scheduling

• Associate with each process the length of its next CPU burst.

Use lengths to schedule the process with the shortest time

• Two schemes:

nonpreemptive – once CPU given to the process it cannot be

preempted until completes its CPU burst

o Priority Function = -total service time

preemptive – if a new process arrives with CPU burst length

less than remaining time of current executing process,

preempt. This scheme is know as the

Shortest-Remaining-Time-First (SRTF)

o Priority function = -(t-a), t = total service time; a = total attained

service time

• SJF is optimal – gives minimum average waiting time for a

given set of processes
ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 22

Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

• SJF (non-preemptive)

• Average waiting time = (0 + 6 + 3 + 7)/4 - 4

Example of Non-Preemptive SJF

P1 P3 P2

73 160

P4

8 12

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 23

Example of Preemptive SJF

Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

• SJF (preemptive)

• Average waiting time = (9 + 1 + 0 +2)/4 - 3

P1 P3P2

42 110

P4

5 7

P2 P1

16

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 24

Determining Length of Next CPU Burst

• Can only estimate the length

• Can be done by using the length of previous CPU bursts,

using exponential averaging

:Define 4.
10 , 3.

burst CPU next the for value predicted 2.
burst CPU of lenght actual 1.

1

≤≤
=

=

+

αα
τ n

th
n nt

() .11 nnn t ταατ −+==

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 25

Prediction of the Length of the Next CPU Burst

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 26

Priority Scheduling

• A priority number (integer) is associated with each process

• The CPU is allocated to the process with the highest priority

(smallest integer ≡ highest priority)

Preemptive

nonpreemptive

• SJF is a priority scheduling where priority is the predicted

next CPU burst time

• Problem ≡ Starvation – low priority processes may never

execute

• Solution ≡ Aging – as time progresses increase the priority

of the process

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 27

Round Robin (RR)

• Each process gets a small unit of CPU time (time quantum),
usually 10-100 milliseconds. After this time has elapsed,
the process is preempted and added to the end of the ready
queue.

• If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time in
chunks of at most q time units at once. No process waits
more than (n-1)q time units.

• Performance

q large ⇒ FIFO

q small ⇒ q must be large with respect to context switch,
otherwise overhead is too high

• Priority function

All processes have same priority

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 28

Example of RR with Time Quantum = 20
Process Burst Time

P1 53
P2 17
P3 68
P4 24

• The Gantt chart is:

• Typically, higher average turnaround than SJF, but better
response

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 29

Time Quantum and Context Switch Time

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 30

Multilevel Queue

• Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

• Each queue has its own scheduling algorithm
foreground – RR
background – FCFS

• Scheduling must be done between the queues
Fixed priority scheduling; (i.e., serve all from foreground then
from background). Possibility of starvation.
Time slice – each queue gets a certain amount of CPU time
which it can schedule amongst its processes; i.e., 80% to
foreground in RR
20% to background in FCFS

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 31

Multilevel Queue Scheduling

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 32

Multilevel Feedback Queue

• A process can move between the various queues; aging can
be implemented this way

• Multilevel-feedback-queue scheduler defined by the
following parameters:

number of queues
scheduling algorithms for each queue
method used to determine when to upgrade a process
method used to determine when to demote a process
method used to determine which queue a process will enter
when that process needs service

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 33

Example of Multilevel Feedback Queue

• Three queues:
Q0 – time quantum 8 milliseconds
Q1 – time quantum 16 milliseconds
Q2 – FCFS

• Scheduling
A new job enters queue Q0 which is served FCFS. When it gains
CPU, job receives 8 milliseconds. If it does not finish in 8
milliseconds, job is moved to queue Q1.
At Q1 job is again served FCFS and receives 16 additional
milliseconds. If it still does not complete, it is preempted and
moved to queue Q2.

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 34

Multilevel Feedback Queues

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 35

Scheduling Algorithms: Real-time systems

• Real-time systems: Periodic in nature so that computations are

repeated at fixed intervals

• Typically: a process has a period of d, it is activated every d

seconds, and its computation (total service time) must be

completed before start of the next period

• Rate Monotonic (RM):

d:periodicity

Preemptive

Highest priority: shortest period: P = –d

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 36

Scheduling Algorithms: Real-time systems

• Earliest Deadline First (EDF):

Intended for periodic (real-time) processes

Preemptive

r = time since the process first entered the system

d = Periodicity

Highest priority: shortest time to next deadline

o r ÷ d number of completed periods

o r % d time in current period

o d – r % d time remaining in current period

o P = –(d – r % d)

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 37

Scheduling algorithms

Name Decision Mode Priority Arbitration

FIFO Nonpreemptive P = r random

Shortest Job First
(SJF)

Nonpreemptive P = –t

Shortest Remaining
Time (SRT)

Preemptive P = –(t–a) Chronological
random

Round Robin (RR) Preemptive P=0 Cyclic

Multi Level Priority
(MLF)

Preemptive P = e cyclic

Non-
preemptive

P = e chronological

Rate Monotonic Pre-emptive -d Chronological
Random

Earliest Deadline First Pre-emptive -(d-r%d) Chronological
Random

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 38

Comparison of Methods

• FIFO, SJF, SRT: Primarily for batch systems

FIFO simplest, SJF & SRT have better average turnaround

times: (r1+r2+…+rn)/n

• Time-sharing systems

Response time is critical

RR or MLF with RR within each queue are suitable

Choice of quantum determines overhead

o When q → ∞, RR approaches FIFO

o When q → 0, context switch overhead → 100%

o When q >> context switch overhead,

n processes run concurrently at 1/n CPU speed

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 39

Priority Inversion Problem

• Assume priority order p1>p2>p3
• (Unrelated) p2 may delay p1 indefinitely.
• Naïve “solution”: Always run CS at priority of highest process that

shares the CS.
Problem: p1 cannot interrupt lower-priority process inside CS -- a
different form of priority inversion.

Figure 5-10

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 40

Priority Inversion Problem

• Solution: Dynamic Priority Inheritance
p3 is in its CS
p1 attempts to enter its CS
p3 inherits p1’s (higher) priority for the duration of CS

Figure 5-11

ECS 150A (Operating Systems) Instructor: Raju Pandey Scheduling, 41

Summary

• Scheduling takes place at many levels

• It can make a huge difference in performance

this difference increases with the variability in service

requirements

• Multiple goals, sometimes conflicting

• There are many “pure” algorithms, most with some

drawbacks in practice – FCFS, SPT, RR, Priority

• Real systems use hybrids that exploit observed program

behavior

ECS 150A (Operating Systems) Source: Gribble, Lazowska, Levy,
Zahorjan

Scheduling, 42

