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Overview

• Goals of memory management:
Subdividing memory to accommodate multiple processes
Memory needs to be allocated to ensure a reasonable supply of 
ready processes to consume available processor time

• Preparing a Program for Execution 
Program Transformations  
Logical-to-Physical Address Binding

• Memory Partitioning Schemes
Fixed Partitions 
Variable Partitions

• Allocation Strategies for Variable Partitions
• Dealing with Insufficient Memory   
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The External View of the Memory Manager
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Memory Management Requirements

• Relocation

Programmer does not know 

where the program will be 

placed in memory when it is 

executed

While the program is 

executing, it may be swapped 

to disk and returned to main 

memory at a different location 

(relocated)

Memory references must be 

translated in the code to 

actual physical memory 

address
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Memory Management Requirements

• Protection

Processes should not be able to reference memory locations in another 

process without permission

Impossible to check absolute addresses at compile time

Must be checked at run time

Memory protection requirement must be satisfied by the processor 

(hardware) rather than the operating system (software)

o Operating system cannot anticipate all of the memory references a program 

will make

• Sharing

Allow several processes to access the same portion of memory

Better to allow each process access to the same copy of the program 

rather than have their own separate copy
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Memory Management Requirements

• Logical Organization

Programs are written in modules

Modules can be written and compiled independently

Different degrees of protection given to modules (read-only, 

execute-only)

Share modules among processes

• Physical Organization

Memory available for a program plus its data may be 

insufficient

o Overlaying allows various modules to be assigned the same region 

of memory

Programmer does not know how much space will be available

ECS 150  (Operating Systems) Memory Management, 6



Preparing Program for Execution

• Program Transformations
Translation (Compilation)
Linking
Loading
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A Sample Code Segment

...
static int gVar;
...
int proc_a(int arg){

...
gVar = 7;
put_record(gVar);
...

}
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The Relocatable Object module

Code Segment
Relative
Address Generated Code
0000 ...
...
0008 entry proc_a
...
0220 load =7, R1
0224 store R1, 0036
0228 push 0036
0232 call ‘put_record’
...
0400 External reference table
...
0404 ‘put_record’ 0232
...
0500 External definition table
...
0540 ‘proc_a’ 0008
...
0600 (symbol table)
...
0799 (last location in the code segment)

Data Segment
Relative
Address Generated variable space
...
0036 [Space for gVar variable]
...
0049 (last location in the data segment)
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The Absolute Program

Code Segment
Relative
Address Generated Code
0000 (Other modules)
...
1008 entry proc_a
...
1220 load =7, R1
1224 store R1, 0136
1228 push 1036
1232 call 2334
...
1399 (End of proc_a)
... (Other modules)
2334 entry put_record
...
2670 (optional symbol table)
...
2999 (last location in the code segment)

Data Segment
Relative
Address Generated variable space
...
0136 [Space for gVar variable]
...
1000 (last location in the data segment)
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The Program Loaded at Location 4000

Relative
Address Generated Code
0000 (Other process’s programs)
4000 (Other modules)
...
5008 entry proc_a
...
5036 [Space for gVar variable]
...
5220 load =7, R1
5224 store R1, 7136
5228 push 5036
5232 call 6334
...
5399 (End of proc_a)
... (Other modules)
6334 entry put_record
...
6670 (optional symbol table)
...
6999 (last location in the code segment)
7000 (first location in the data segment)
...
7136 [Space for gVar variable]
...
8000 (Other process’s programs) 
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Address Binding

• Assign Physical Addresses = Relocation

• Static binding

Programming time

Compilation time

Linking time

Loading time

• Dynamic binding

Execution time
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Static Address Binding

Static Binding = At Programming, Compilation, Linking, 
and/or Loading Time
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Dynamic Address Binding

Dynamic Binding = At Execution Time
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Address Binding

• How to implement dynamic binding
Perform for each address at run time:

pa = address_map(la)

Simplest form of  address_map:
Relocation Register:   pa = la + RR

More general form:
Page/Segment Table  
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Fundamental Memory Management Problem

• How do we manage applications whose size may be larger 
than the size of memory available?

Partition in blocks and load as necessary

• How do we share memory resources among different 
processes?

• Achieved by partitioning memory
Look at several schemes
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Memory Partitioning Schemes

• Memory sharing schemes:

Single-program systems: 2 partitions (OS/user) 

Multi-programmed: 

o Divide memory into partitions of different sizes

• Fixed partitions: size of partition determined at the time of OS 

initialization and cannot be changed

• Limitations of fixed partitions

Program size limited to largest partition

Internal fragmentation (unused space within partitions)

• How to assign processes to partitions

FIFO for each partition: Some partitions may be unused

Single FIFO: More complex, but more flexible

Choose the one that fits the best
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Fixed Partitioning

Fixed partitions:
1 queue per partition vs 1 queue for all partitions
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Example: Fixed Partitioning
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Variable Partitions

• Memory not partitioned a priori
• Each request is allocated portion of free space
• Memory = Sequence of variable-size blocks

Some are occupied, some are free (holes)
External fragmentation occurs

• Adjacent holes (right, left, or both) must be coalesced to 
prevent increasing fragmentation

• Major part of memory management: manage 
available partitions
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Variable Partitions:
Linked List Implementation 1

• All available space tied together through a linked list
• Type/Size tags at the start of each Block
• Holes (must be sorted by physical address)

contain links to predecessor hole and to next hole
• Checking neighbors of released block b (=C below):

Right neighbor (easy): Use size of b
Left neighbor (clever): Use sizes to find first hole to b’s right, follow 
its predecessor link to first hole on b’s left, and check if it is adjacent 
to b.

ECS 150  (Operating Systems) Memory Management, 21



Variable Partitions:
Linked List Implementation 2

• Better solution:
Replicate tags at end of blocks (need not be sorted)

• Checking neighbors of released block b:
Right neighbor: Use size of b as before
Left neighbor: Check its (adjacent) type/size tags
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Bitmap Implementation

• Memory divided into fix-size blocks
• Each block represented by a 0/1 bit in a binary string: the 

“bitmap”
• Can be implemented as char or int array
• Operations use bit masks

Release: B[i] = B[i] & '11011111'
Allocate: B[i] = B[i] | '11000000'
Search: Repeatedly, Check left-most bit and
Shift mask right: TEST = B[i] & '10000000'
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The Buddy System

• Compromise between fixed and variable partitions
• Fixed number of possible hole sizes; typically, 2i

Each hole can be divided (equally) into 2 buddies.
Track holes by size on separate lists

• When n bytes requested, find smallest i so that  n≤2i

If hole of this size available, allocate it;
otherwise, consider larger holes.
Recursively split each hole into two buddies

until smallest adequate hole is created
.Allocate it and place other holes on appropriate lists

• On release, recursively coalesce buddies
Buddy searching for coalescing can be inefficient 
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The Buddy System

Sizes: 1, 2, 4, 8, 16

a) 3 blocks allocated
& 3 holes left

b) Block of size 1 
allocated

c) Block 12-13 released

• Assume: Memory of 16 
allocation units 
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Allocation Strategies

• Problem: Given a request for n bytes, find hole ≥ n
• Constraints: 

Maximize memory utilization 
(minimize “external fragmentation”)
Minimize search time

• Search Strategies:
First-fit: Always start at same place.  Simplest.
Next-fit: Resume search.  Improves distribution of holes.
Best-fit: Closest fit. Avoid breaking up large holes.
Worst-fit: Largest fit. Avoid leaving tiny hole fragments

• First Fit is generally the best choice
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Dealing with Insufficient Memory

• Memory compaction
How much and what to move?

• Swapping
Temporarily move process to disk
Requires dynamic relocation

• Overlays
Allow programs large than physical memory
Programs loaded as needed according to calling structure.
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Dealing with Insufficient Memory

Memory compaction

Initial               Complete              Partial        Minimal Movement
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Dealing with Insufficient Memory

Overlays
Allow programs large than physical memory
Programs loaded as needed
according to calling structure
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Paging

• Logical address space of a process can be noncontiguous; 
process is allocated physical memory whenever the latter is 
available

• Divide physical memory into fixed-sized blocks called 
frames (size is power of 2, between 512 bytes and 8192 
bytes)

• Divide logical memory into blocks of same size called 
pages.

• Keep track of all free frames
• To run a program of size n pages, need to find n free 

frames and load program
• Set up a page table to translate logical to physical 

addresses
• Internal fragmentation
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Address Translation Scheme

• Address generated by CPU is divided into:

Page number (p) – used as an index into a page table
which contains base address of each page in physical 
memory

Page offset (d) – combined with base address to define 
the physical memory address that is sent to the 
memory unit
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Paging Example 
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Paging Example

ECS 150  (Operating Systems) Memory Management, 33



Free Frames

Before allocation After allocation
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Implementation of Page Table

• Page table is kept in main memory
• Page-table base register (PTBR) points to the page 

table
• Page-table length register (PRLR) indicates size of 

the page table
• In this scheme every data/instruction access 

requires two memory accesses.  One for the page 
table and one for the data/instruction.

• The two memory access problem can be solved by 
the use of a special fast-lookup hardware cache 
called associative memory or translation look-
aside buffers (TLBs)
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Associative Memory

• Associative memory – parallel search 

Address translation (A´, A´´)
If A´ is in associative register, get frame # out
Otherwise get frame # from page table in memory

Page # Frame #
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Paging Hardware With TLB
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Effective Access Time

• Associative Lookup = ε time unit
• Assume memory cycle time is 1 microsecond
• Hit ratio – percentage of times that a page number is found 

in the associative registers; ration related to number of 
associative registers

• Hit ratio = α
• Effective Access Time (EAT)

EAT = (1 + ε) α + (2 + ε)(1 – α)
= 2 + ε – α
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Memory Protection

• Memory protection implemented by associating 
protection bit with each frame

• Valid-invalid bit attached to each entry in the page 
table:

“valid” indicates that the associated page is in the 
process’ logical address space, and is thus a legal page
“invalid” indicates that the page is not in the process’ 
logical address space
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Valid (v) or Invalid (i) Bit In A Page Table
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Page Table Structure

• Hierarchical Paging

• Hashed Page Tables

• Inverted Page Tables
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Hierarchical Page Tables

• Break up the logical address space into multiple 
page tables

• A simple technique is a two-level page table
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Two-Level Paging Example

• A logical address (on 32-bit machine with 4K page size) 
is divided into:

a page number consisting of 20 bits
a page offset consisting of 12 bits

• Since the page table is paged, the page number is 
further divided into:

a 10-bit page number 
a 10-bit page offset

• Thus, a logical address is as follows:

where pi is an index into the outer page table, and p2 is the 
displacement within the page of the outer page table

page number page offset

pi p2 d

10 10 12
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Two-Level Page-Table Scheme
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Address-Translation Scheme

• Address-translation scheme for a two-level 32-bit 
paging architecture
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Hashed Page Tables

• Common in address spaces > 32 bits

• The virtual page number is hashed into a page table. 
This page table contains a chain of elements hashing 
to the same location.

• Virtual page numbers are compared in this chain 
searching for a match. If a match is found, the 
corresponding physical frame is extracted.

ECS 150  (Operating Systems) Spring 2011       UC Davis



Hashed Page Table
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Inverted Page Table

• One entry for each real page of memory
• Entry consists of the virtual address of the page 

stored in that real memory location, with information 
about the process that owns that page

• Decreases memory needed to store each page table, 
but increases time needed to search the table when 
a page reference occurs

• Use hash table to limit the search to one — or at 
most a few — page-table entries
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Inverted Page Table Architecture
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Shared Pages

• Shared code
One copy of read-only (reentrant) code shared among 
processes (i.e., text editors, compilers, window 
systems).
Shared code must appear in same location in the 
logical address space of all processes

• Private code and data
Each process keeps a separate copy of the code and 
data
The pages for the private code and data can appear 
anywhere in the logical address space
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Shared Pages Example
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Segmentation

• Memory-management scheme that supports user 
view of memory 

• A program is a collection of segments.  A segment is 
a logical unit such as:

main program,
procedure, 
function,
method,
object,
local variables, global variables,
common block,
stack,
symbol table, arrays
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User’s View of a Program
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Logical View of Segmentation
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Segmentation Architecture 

• Logical address consists of a two tuple:
<segment-number, offset>,

• Segment table – maps two-dimensional physical 
addresses; each table entry has:

base – contains the starting physical address where 
the segments reside in memory
limit – specifies the length of the segment

• Segment-table base register (STBR) points to the 
segment table’s location in memory

• Segment-table length register (STLR) indicates 
number of segments used by a program;

segment number s is legal if s < STLR
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Segmentation Architecture (Cont.)

• Relocation.
dynamic
by segment table 

• Sharing.
shared segments
same segment number 

• Allocation.
first fit/best fit
external fragmentation
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Segmentation Architecture (Cont.)

• Protection.  With each entry in segment table 
associate:

validation bit = 0 ⇒ illegal segment
read/write/execute privileges

• Protection bits associated with segments; code 
sharing occurs at segment level

• Since segments vary in length, memory allocation is 
a dynamic storage-allocation problem

• A segmentation example is shown in the following 
diagram
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Segmentation Hardware
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Example of Segmentation

ECS 150  (Operating Systems) Spring 2011 UC Davis



Sharing of Segments
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Virtual Memory



Virtual Memory

• Background
• Demand Paging
• Process Creation
• Page Replacement
• Allocation of Frames 
• Thrashing
• Demand Segmentation
• Operating System Examples
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Background

• Virtual memory – separation of user logical memory from 
physical memory.

Only part of the program needs to be in memory for execution.
Logical address space can therefore be much larger than 
physical address space.
Allows address spaces to be shared by several processes.
Allows for more efficient process creation.

• Virtual memory can be implemented via:
Demand paging 
Demand segmentation
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Virtual Memory That is Larger Than Physical Memory

⇒
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Virtual-address Space
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Virtual Memory has Many Uses

• It can enable processes to share memory
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Demand Paging

• Bring a page into memory only when it is needed
Less I/O needed
Less memory needed 
Faster response
More users

• Page is needed ⇒ reference to it
invalid reference ⇒ abort
not-in-memory ⇒ bring to memory
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Transfer of a Paged Memory to Contiguous Disk Space
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Valid-Invalid Bit

• With each page table entry a valid–invalid bit is 
associated
(1 ⇒ in-memory, 0 ⇒ not-in-memory)

• Initially valid–invalid but is set to 0 on all entries
• Example of a page table snapshot:

• During address translation, if valid–invalid bit in page 
table entry is 0 ⇒ page fault

1
1
1
1
0

0
0

M

Frame # valid-invalid bit

page table
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Page Table When Some Pages Are Not in Main Memory
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Page Fault

• If there is ever a reference to a page, first reference will 
trap to 
OS ⇒ page fault

• OS looks at another table to decide:
Invalid reference ⇒ abort.
Just not in memory.

• Get empty frame.
• Swap page into frame.
• Reset tables, validation bit = 1.
• Restart instruction:  Least Recently Used 

block move

auto increment/decrement location
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Steps in Handling a Page Fault
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What happens if there is no free frame?

• Page replacement – find some page in memory, but not 
really in use, swap it out

algorithm
performance – want an algorithm which will result in minimum 
number of page faults

• Same page may be brought into memory several times
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Performance of Demand Paging

• Page Fault Rate 0 ≤ p ≤ 1.0
if p = 0 no page faults 
if p = 1, every reference is a fault

• Effective Access Time (EAT)
EAT = (1 – p) x memory access

+ p (page fault overhead
+ [swap page out ]
+ swap page in
+ restart overhead)
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Demand Paging Example

• Memory access time = 1 microsecond

• 50% of the time the page that is being replaced has been 
modified and therefore needs to be swapped out

• Swap Page Time = 10 msec = 10,000 msec
EAT = (1 – p) x 1 + p (15000)

1 + 15000P      (in msec)
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Process Creation

• Virtual memory allows other benefits during process 
creation:

- Copy-on-Write

- Memory-Mapped Files (later)
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Copy-on-Write

• Copy-on-Write (COW) allows both parent and child 
processes to initially share the same pages in memory

If either process modifies a shared page, only then is the 
page copied

• COW allows more efficient process creation as only modified 
pages are copied

• Free pages are allocated from a pool of zeroed-out pages
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Page Replacement

• Prevent over-allocation of memory by modifying page-fault 
service routine to include page replacement

• Use modify (dirty) bit to reduce overhead of page 
transfers – only modified pages are written to disk

• Page replacement completes separation between logical 
memory and physical memory – large virtual memory can 
be provided on a smaller physical memory
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Need For Page Replacement
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Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page replacement 
algorithm to select a victim frame

3. Read the desired page into the (newly) free frame. Update 
the page and frame tables.

4. Restart the process
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Page Replacement
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Page Replacement Algorithms

• Want lowest page-fault rate
• Evaluate algorithm by running it on a particular string of 

memory references (reference string) and computing the 
number of page faults on that string

• In all our examples, the reference string is 
1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
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Graph of Page Faults Versus The Number of Frames
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First-In-First-Out (FIFO) Algorithm
• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• 3 frames (3 pages can be in memory at a time per 

process)

• 4 frames

• FIFO Replacement – Belady’s Anomaly
more frames leads to more page faults

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3
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FIFO Page Replacement
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FIFO Illustrating Belady’s Anomaly
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Optimal Algorithm

• Replace page that will not be used for longest period of time
• 4 frames example

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• How do you know this?
• Used for measuring how well your algorithm performs

1

2

3

4

6 page faults

4 5
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Optimal Page Replacement
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Least Recently Used (LRU) Algorithm

• Replace the page that has used least recently
• Reference string:  1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• Counter implementation
Every page entry has a counter; every time page is referenced through this 
entry, copy the clock into the counter
When a page needs to be changed, look at the counters to determine which are 
to change

• Stack implementation – keep a stack of page numbers in a double link 
form:

Page referenced:
o move it to the top
o requires 6 pointers to be changed

No search for replacement

1

2

3

5

4

4 3

5
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LRU Page Replacement
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Use Of A Stack to Record The Most Recent Page References
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LRU Approximation Algorithms

• Reference bit
With each page associate a bit, initially = 0
When page is referenced bit set to 1
Replace the one which is 0 (if one exists).  We do not know the 
order, however.

• Second chance
Need reference bit
Clock replacement
If page to be replaced (in clock order) has reference bit = 1 
then:
o set reference bit 0
o leave page in memory
o replace next page (in clock order), subject to same rules
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Second-Chance (clock) Page-Replacement Algorithm
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Counting Algorithms

• Keep a counter of the number of references that have been 
made to each page

• LFU Algorithm:  replaces page with smallest count

• MFU Algorithm: based on the argument that the page with 
the smallest count was probably just brought in and has yet 
to be used
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Allocation of Frames

• Problem:
Given a set of frames and processes, how does one allocate 
frames to pages?

• Each process needs minimum number of pages
• Two major allocation schemes

fixed allocation
priority allocation
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Fixed Allocation

• Equal allocation – e.g., if 100 frames and 5 
processes, give each 20 pages

• Proportional allocation – Allocate according to the 
size of process
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Priority Allocation

• Use a proportional allocation scheme using priorities rather 
than size

• If process Pi generates a page fault,
select for replacement one of its frames
select for replacement a frame from a process with lower 
priority number
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Global vs. Local Allocation

• Global replacement – process selects a replacement 
frame from the set of all frames; one process can take a 
frame from another

• Local replacement – each process selects from only its 
own set of allocated frames
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Thrashing

• If a process does not have “enough” pages, the page-fault 
rate is very high.  This leads to:

low CPU utilization
operating system thinks that it needs to increase the degree of 
multiprogramming
another process added to the system

• Thrashing ≡ a process is busy swapping pages in and out
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Thrashing 

• Why does paging work?
Locality model

Process migrates from one locality to another
Localities may overlap

• Why does thrashing occur?
Σ size of locality > total memory size

ECS 150  (Operating Systems) Spring 2011       UC Davis



Locality In A Memory-Reference Pattern
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Working-Set Model

• Δ ≡ working-set window ≡ a fixed number of page references 
Example:  10,000 instruction

• WSSi (working set of Process Pi) =
total number of pages referenced in the most recent Δ
(varies in time)

if Δ too small will not encompass entire locality
if Δ too large will encompass several localities
if Δ = ∞ ⇒ will encompass entire program

• D = Σ WSSi ≡ total demand frames 
• if D > m ⇒ Thrashing (m = available frames)
• Policy if D > m, then suspend one of the processes
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Keeping Track of the Working Set

• Approximate with interval timer + a reference bit
• Example: Δ = 10,000

Timer interrupts after every 5000 time units
Keep in memory 2 bits for each page
Whenever a timer interrupts copy and sets the values of all 
reference bits to 0
If one of the bits in memory = 1 ⇒ page in working set

• Why is this not completely accurate?
• Improvement = 10 bits and interrupt every 1000 time units
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Page-Fault Frequency Scheme

• Establish “acceptable” page-fault rate
If actual rate too low, process loses frame
If actual rate too high, process gains frame
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Memory-Mapped Files

• Memory-mapped file I/O allows file I/O to be treated as 
routine memory access by mapping a disk block to a page in 
memory

• A file is initially read using demand paging. A page-sized 
portion of the file is read from the file system into a physical 
page. Subsequent reads/writes to/from the file are treated 
as ordinary memory accesses.

• Simplifies file access by treating file I/O through memory 
rather than read() write() system calls

• Also allows several processes to map the same file allowing 
the pages in memory to be shared

ECS 150  (Operating Systems) Spring 2011       UC Davis



Memory Mapped Files
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Other Issues 

• Prepaging 
To reduce the large number of page faults that occurs at process 
startup
Prepage all or some of the pages a process will need, before they are 
referenced
But if prepaged pages are unused, I/O and memory was wasted
Assume s pages are prepaged and α of the pages is used
o Is cost of s * α save pages faults > or < than the cost of prepaging

s * (1- α) unnecessary pages?  
o α near zero ⇒ prepaging loses

• Page size selection must take into consideration:
Fragmentation
o Smaller the size, better the utilization

table size:
o Smaller the page size, larger  the page table size

I/O overhead
o Larger the page, longer it takes to load the page, however latency time and 

seek time dominate the overall time.
Locality
o Larger page size => lesser # of page faults
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Other Issues (Cont.)

• TLB Reach - The amount of memory accessible from the 
TLB

• TLB Reach = (TLB Size) X (Page Size)

• Ideally, the working set of each process is stored in the TLB. 
Otherwise there is a high degree of page faults.
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Other Issues (Cont.)

• Increase the Page Size. This may lead to an increase in 
fragmentation as not all applications require a large page 
size.

• Provide Multiple Page Sizes. This allows applications that 
require larger page sizes the opportunity to use them 
without an increase in fragmentation.
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Other Issues (Cont.)

• Program structure
int A[][] = new int[1024][1024];
Each row is stored in one page 
Program 1 for (j = 0; j < A.length; j++)

for (i = 0; i < A.length; i++)
A[i,j] = 0;

1024 x 1024 page faults 

Program 2 for (i = 0; i < A.length; i++)
for (j = 0; j < A.length; j++)

A[i,j] = 0;

1024 page faults
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Other Considerations (Cont.)

• I/O Interlock – Pages must sometimes be locked into 
memory

• Consider I/O. Pages that are used for copying a file from a 
device must be locked from being selected for eviction by a 
page replacement algorithm.
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Reason Why Frames Used For I/O Must Be In Memory
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Demand Segmentation

• Used when insufficient hardware to implement demand 
paging.

• OS/2 allocates memory in segments, which it keeps track of 
through segment descriptors

• Segment descriptor contains a valid bit to indicate whether 
the segment is currently in memory.

If segment is in main memory, access continues,
If not in memory, segment fault.

ECS 150  (Operating Systems) Spring 2011       UC Davis


