
Principles-Driven Forensic Analysis

Sean Peisert, Matt Bishop,
Sidney Karin, and Keith Marzullo

UC San Diego and UC Davis

New Security Paradigms Workshop (NSPW) 2005
Lake Arrowhead, CA

 September 20–23, 2005

1Monday, August 10, 2009

Re-Defining Forensic Analysis

forensic analysis: the process of answering the question:

 “What happened?”

2
2Monday, August 10, 2009

Tools Used For
Forensics Today

• Two Parts of Forensics: Lo!ing & Auditing (Gathering,
Processing, Examining, Analyzing)

• Logging
• syslog, TCPWrappers, IDS logs, firewall logs, process

accounting, keystroke logging, BSM, ReVirt

• Auditing
• grep/strings

• Both
• BackTracker, Plato, (Tripwire)

3
3Monday, August 10, 2009

What can’t we currently
(generally) detect forensically?

1. User functions and variables used
2. Changes in the user environment
3. Race conditions in memory
4. Buffer and numeric overflows
5. Code injected into the program instruction stream
6. Covert channels through memory reads/writes
7. Covert channels through raw disk device at points with unallocated

inodes
8. Interception of user input
9. Programmer backdoors exploited
10. Code written to the heap and executed dynamically at runtime

4
4Monday, August 10, 2009

Principles

1. Consider the entire system

2. Assumptions should not control what is logged.

3. Consider the effects of events, not just the actions that
caused them.

4. Context assists in interpreting the meaning of an event.

5. Actions and results must be presented in a way that can
be analyzed and understood by a human forensic
analyst.

5
5Monday, August 10, 2009

What about feasibility?
• Significant performance considerations are obvious.

• We have no desire to fundamentally change the system.

• Importance of logging is how well the data it captures enables
auditing.

• Currently concentrating on completeness and efficacy, rather
than efficiency and performance. Basis for this is two-fold:
• We advocate starting from a desired “end state.”
• Limited, special-purpose systems may tolerate inefficiency.

• Obvious approaches to future solutions include information
compression, co-processor-assisted logging, and dedicated
hardware.

6
6Monday, August 10, 2009

Implementation Goals

• Goal: Collect all data that a human analyst might need.
Do this irregardless of: intent of attacker, whether
attacker is an insider or outsider, & nature of activities.

• Goal: Automate processing and presentation of that data
in a way that makes it easier for a human to understand
and direct further processing of later.

• Goal: Automate search for certain activities to draw an
analyst’s attention, with limited “false flags.”

7
7Monday, August 10, 2009

Principles-Based Auditing:
The Data Model

• multi-resolution: “a correlated, layered perspective (state table),
encompassing all levels of a system’s software state, objects, and
events, including memory, network, kernel, disk, applications.”
• Example: Program is composed of functions, variables, etc....

• translate abstraction shortcuts
• Example: Memory location is 0x2231291

• actions and effects
• Example: Keystroke is ‘k’, the effect is ??

• context
• Example: When a command is executed, what is the path

searched?

8
8Monday, August 10, 2009

socket

httpd

sh

Auditing
Example of Desired Output

socket

httpd

sh

addr=X+10

return(Y)

sbrk(X)

X+10
program: sh

function: loop

X = ZY

9
9Monday, August 10, 2009

Auditing:
Validating Suspicions

10
10Monday, August 10, 2009

Auditing:
Validating Suspicions

• Not real-time intrusion detection, so we can do this repeatedly.

10
10Monday, August 10, 2009

Auditing:
Validating Suspicions

• Not real-time intrusion detection, so we can do this repeatedly.

• Example #1: Buffer or Integer Overflow

10
10Monday, August 10, 2009

Auditing:
Validating Suspicions

• Not real-time intrusion detection, so we can do this repeatedly.

• Example #1: Buffer or Integer Overflow
• Need to know the sizes of all memory allocations, both static and

dynamic, and all memory writes. Compare allocations to writes.

10
10Monday, August 10, 2009

Auditing:
Validating Suspicions

• Not real-time intrusion detection, so we can do this repeatedly.

• Example #1: Buffer or Integer Overflow
• Need to know the sizes of all memory allocations, both static and

dynamic, and all memory writes. Compare allocations to writes.

• Example #2

10
10Monday, August 10, 2009

Auditing:
Validating Suspicions

• Not real-time intrusion detection, so we can do this repeatedly.

• Example #1: Buffer or Integer Overflow
• Need to know the sizes of all memory allocations, both static and

dynamic, and all memory writes. Compare allocations to writes.

• Example #2
• Event Question: Is a location in memory being written to by a process

or thread which does not “own” that location?

10
10Monday, August 10, 2009

Auditing:
Validating Suspicions

• Not real-time intrusion detection, so we can do this repeatedly.

• Example #1: Buffer or Integer Overflow
• Need to know the sizes of all memory allocations, both static and

dynamic, and all memory writes. Compare allocations to writes.

• Example #2
• Event Question: Is a location in memory being written to by a process

or thread which does not “own” that location?
• Labelling Question: Is that a race condition? Run models.

10
10Monday, August 10, 2009

Auditing:
Validating Suspicions

• Not real-time intrusion detection, so we can do this repeatedly.

• Example #1: Buffer or Integer Overflow
• Need to know the sizes of all memory allocations, both static and

dynamic, and all memory writes. Compare allocations to writes.

• Example #2
• Event Question: Is a location in memory being written to by a process

or thread which does not “own” that location?
• Labelling Question: Is that a race condition? Run models.

• Example #3:

10
10Monday, August 10, 2009

Auditing:
Validating Suspicions

• Not real-time intrusion detection, so we can do this repeatedly.

• Example #1: Buffer or Integer Overflow
• Need to know the sizes of all memory allocations, both static and

dynamic, and all memory writes. Compare allocations to writes.

• Example #2
• Event Question: Is a location in memory being written to by a process

or thread which does not “own” that location?
• Labelling Question: Is that a race condition? Run models.

• Example #3:
• Event Question: Is a process jumping to unexpected places in memory,

such as non-word boundaries?

10
10Monday, August 10, 2009

Auditing:
Validating Suspicions

• Not real-time intrusion detection, so we can do this repeatedly.

• Example #1: Buffer or Integer Overflow
• Need to know the sizes of all memory allocations, both static and

dynamic, and all memory writes. Compare allocations to writes.

• Example #2
• Event Question: Is a location in memory being written to by a process

or thread which does not “own” that location?
• Labelling Question: Is that a race condition? Run models.

• Example #3:
• Event Question: Is a process jumping to unexpected places in memory,

such as non-word boundaries?
• Labelling Question: Are those covert channels? programming errors? Run

models.

10
10Monday, August 10, 2009

Principles-Based Logging:
Kernel and System Apps

• Start with existing tools: Instrument kernel to capture:
• traps & interrupts
• events involving the filesystem and network stack
• reads/writes directly to raw devices (disk, network)
• context

• Instrument shells and other applications (vi, emacs, X Windows)
• Application execution paths, library paths, user limits,

current working directory, keystroke mappings, command
aliases

11
11Monday, August 10, 2009

Principles-Based Logging:
User Space

• The mechanism is less relevant

• Can use several methods to gather memory traces:
• Virtual machine introspection (e.g. ReVirt/BackTracker)
• Binary rewriting (e.g. Eraser)
• Compiler instrumentation (e.g. LLVM “passes”)

• Symbol table, data types
• Arguably easier

12
12Monday, August 10, 2009

Summary

• Principles may lead to answers will be more easily proved correct, including
for the insider problem.

• Techniques based on the principles can enable improvements in forensics:
analysts can exhaustively and intelligently view data and validate their
suspicions, instead of inferring conclusions from insufficient data.

• Nothing wrong with inferring errors, except when it inhibits collecting data.

• Efficiency is a concern, though results can be valuable, even if not generally
or widely applicable.

• Proof of efficacy may lead to OS or hardware changes that could do the
same thing by using more predictable/computable data, and therefore less
recorded data.

• Open research areas remain about best presentation methods and ways of
automatically classifying actions

13
13Monday, August 10, 2009

How can we force the use of a particular
compiler on everything?

• NetBSD has verified exec feature.

• Future operating system could offer this
features as well, or may use hardware to
enforce it.

14
14Monday, August 10, 2009

