
Multiclass Classification of Distributed Memory
Parallel Computations

Sean Whalena,∗, Sean Peisertb,c, Matt Bishopc

aComputer Science Department, Columbia University, New York NY 10027
b Lawrence Berkeley National Laboratory, Berkeley CA 94720

cComputer Science Department, University of California at Davis, Davis CA 95616

Abstract

High Performance Computing (HPC) is a field concerned with solving large-scale

problems in science and engineering. However, the computational infrastructure

of HPC systems can also be misused as demonstrated by the recent commodi-

tization of cloud computing resources on the black market. As a first step

towards addressing this, we introduce a machine learning approach for classify-

ing distributed parallel computations based on communication patterns between

compute nodes. We first provide relevant background on message passing and

computational equivalence classes called dwarfs and describe our exploratory

data analysis using Self Organizing Maps. We then present our classification

results across 29 scientific codes using Bayesian networks and compare their

performance against Random Forest classifiers. These models, trained with

hundreds of gigabytes of communication logs collected at Lawrence Berkeley

National Laboratory, perform well without any a priori information and ad-

dress several shortcomings of previous approaches.

Keywords: Multiclass classification, Bayesian networks, Random forests,

Self-organizing maps, High performance computing, Communication patterns

∗Corresponding author. Phone: 1 212 939 7078.
Email addresses: swhalen@cs.columbia.edu (Sean Whalen), sppeisert@lbl.gov (Sean

Peisert), bishop@cs.ucdavis.edu (Matt Bishop)

Preprint submitted to Pattern Recognition Letters December 14, 2012

1. Introduction

U.S. Government laboratories operate 4 of the 10 most powerful known High

Performance Computing (HPC) systems in the world according the TOP500

supercomputer ranking website. The massive computational power of these re-

sources makes them potential targets for attackers as evidenced by the growing

black market for encryption and password cracking services. For example, var-

ious websites offer to crack WPA-PSK or ZIP passwords in 20 minutes for $17

using a cloud computing infrastructure. Knowing what codes and algorithms

are running on these systems is thus extremely important, yet this poses a

deceptively difficult problem.

There are also more benign reasons for fingerprinting HPC programs. Com-

pute time on such systems is at a premium and users are often granted access for

a specific purpose. Running unauthorized codes, or running classified codes on

unclassified systems, may be against policy. Determining what is running may

not be a trivial task: codes are often compiled with default compiler names such

as a.out and can simply be renamed to appear as another binary. There are

also performance reasons. Certain algorithms may be inefficient on a particular

platform and have tuned implementations available. Identifying the underly-

ing algorithm could enable automatic algorithm replacement [1, 2] and save

researchers valuable compute time.

Though we are not primarily concerned with security applications here, our

work is motivated by anomaly detection: given some unknown communication

pattern, we compute the likelihood it was generated by each of a set of models

constructed from authorized programs. The pattern is labeled anomalous if its

posterior likelihood is not above a certain threshold for at least one of these

models. Fingerprinting these communications is the more general problem of

structural pattern recognition, where an unknown distributed computation re-

2

veals itself indirectly via messages exchanged by a network of compute nodes.

The topology of the network and properties of these messages are typically well

structured.

Identifying the computation underlying some pattern of distributed commu-

nication is thus a type of latent class analysis where a “hidden” algorithm must

be identified only from observable information flows on the network. In this

paper we continue previous work based on graph theory, network theory, and

hypothesis testing [3] by using machine learning to identify the unknown algo-

rithm most likely underlying these observed patterns of communication. We first

review message passing and computational equivalence classes called dwarfs and

discuss how dynamic communications are captured from running applications.

We then present our exploratory data analysis using a non-linear generaliza-

tion of Principal Component Analysis called Self-Organizing Maps. Finally, we

present the classification results for 29 scientific codes from Lawrence Berke-

ley National Laboratory using Näıve Bayes, Tree-Augmented Näıve Bayes, and

Random Forest classifiers. For many applications of this work, identification

of the computational dwarf may be of more interest than identifying individ-

ual codes. This should lead to even higher classification performance and is

discussed in Section 6.

2. Related Work

Communication patterns have previously been used to study the perfor-

mance of distributed memory applications, though the application of machine

learning to the area has likely been limited by the difficulty of data collection.

Fürlinger et al. [4] provide a general introduction to communication logging and

discuss several concepts related to this work including visualization of adjacency

matrices and examining the distribution of aggregate communications. Shalf et

3

al. [5] perform similar analysis to evaluate the communication requirements of

parallel programs for improving processor interconnect designs. The adjacency

matrices of several parallel benchmark applications, augmented by number of

messages and message size, are presented by Riesen [6].

Ma et al. [7] introduce a communication correlation coefficient to character-

ize the similarity of parallel programs using several metrics. The first compares

the average transmission rate, message size, and unique neighbor count for each

rank, while the second computes the maximum common subgraph. Their evalu-

ation was limited to 4 parallel benchmark applications. Similar in scope, Florez

et al. [8] trained neural network and Hidden Markov Model classifiers on com-

munications and system calls to flag anomalous behavior in 2 parallel programs.

We present elsewhere classification approaches using graph theory, network

theory, and statistical hypothesis testing [3] operating on attributed relational

graphs where nodes are ranks and edges are MPI calls. These methods are more

computationally efficient but less accurate than the machine learning approaches

presented here.

Our work examines applications using the Message Passing Interface (MPI)

standard for distributed memory programming. Other parallel programming

standards such as OpenMP are based on a shared, as opposed to distributed,

memory model. In an effort to increase the portability of parallel software,

recent work uses compiler techniques to translate OpenMP into MPI source

code [9, 10], and our approach should apply when such techniques are used.

While we focus on latent analysis using only runtime communications, source

code translation has also been used to replace inefficient computations [1, 2].

The classification of distributed computation patterns thus has strong ties to

compilers, static analysis, and code optimization.

4

3. High Performance Computing

3.1. Message Passing Interface

Message Passing Interface (MPI) is a communications protocol standard

used by many parallel programs to exchange data using a distributed memory

model. There are several implementations such as OpenMPI and MPICH, each

based on the idea of logical processors with unique labels called ranks placed in

groups called communicators. MPI programs have an initialization phase where

each processor joins a communicator and is assigned a rank, and a finalization

phase to gracefully terminate after computation.

The Integrated Performance Monitoring (IPM) library [11] provides low over-

head performance and resource profiling for parallel programs. It logs features

of MPI calls such as the call name, the source and destination rank, the number

of bytes sent, and aggregate performance counters such as the number of integer

and floating point operations. The library is enabled at compile time and uses

library interposition to intercept MPI calls at runtime.

Consider the following abbreviated IPM log entry:

<hent call=“MPI Isend” bytes=“599136” orank=“1” count=“26” />

These entries become rows in a two dimensional feature matrix where rows are

individual calls and columns are call features. Call names are mapped to unique

integers so the contents of the feature matrix are purely numerical. The above

entry then becomes:

(
int(MPI Isend) 599136 1 26

)

The result is a matrix of features for each run of a parallel program. By varying

datasets, parameters, the number of compute nodes, and other factors, we obtain

multiple matrices for each program. The task at hand, then, is to differentiate

5

patterns of parallel computation while recognizing how the same program may

express multiple patterns under different conditions.

3.2. Computational Dwarfs

A computational dwarf is “a pattern of communication and computation

common across a set of applications” [12]. Each dwarf is an equivalence class of

computation independent of the programming language or numerical methods

used for a particular implementation. The common use of shared libraries such

as BLAS and LAPACK provides some evidence of these equivalence classes,

though dwarfs imply a level of algorithmic equivalence beyond code reuse.

Colella et al. identified seven dwarfs in HPC applications [13]: dense linear

algebra, sparse linear algebra, spectral methods, n-body methods, structured

grids, unstructured grids, and monte carlo methods. Asanovi et al. asked if

these seven also captured patterns from areas outside of HPC [12]. They found

six additional dwarfs were needed to capture the distinct patterns of compu-

tation outside HPC including combinational logic, graph traversal, dynamic

programming, backtrack and branch/bound, graphical models, and finite state

machines.

Distributed memory parallel programs, then, will fall into one or more of

these 13 dwarf classes. If the variance of the expressed patterns is bounded,

identification of the dwarf class should be possible solely from observed commu-

nications.

4. Exploratory Data Analysis

4.1. Adjacency Matrices

Consider a three node communicator where rank 0 sends messages to ranks 1

and 2, rank 1 sends a message to rank 2, and ranks 1 and 2 send messages back

6

Destination Rank

So
ur

ce
 R

an
k

Destination Rank

S
o
u
rc
e
R
an

k

Destination Rank

So
ur

ce
 R

an
k

Destination Rank

S
ou

rc
e
R
an

k

Destination Rank

So
ur

ce
 R

an
k

Destination Rank

S
ou

rc
e
R
an

k

Figure 1: Adjacency matrices for individual runs of astrophysics benchmark madbench (256
nodes), atmospheric dynamics simulator fvcam (64 nodes), and linear equation solver superlu
(64 nodes). The number of bytes sent between ranks is linearly mapped from dark blue (lowest)
to red (highest), with white indicating an absence of communication.

7

Destination Rank

So
ur

ce
 R

an
k

Destination Rank

S
ou

rc
e
R
a
n
k

Destination Rank

So
ur

ce
 R

an
k

Destination Rank

S
ou

rc
e
R
a
n
k

Figure 2: Data dependent topology demonstrated by molecular dynamics simulator namd
under different molecular arrangements. The number of bytes sent between ranks is linearly
mapped from dark blue (lowest) to red (highest), with white indicating an absence of com-
munication.

8

to 0. These messages have the following adjacency matrix representation:


0 1 1

1 0 1

1 0 0


Adjacency matrices are commonly visualized as a grid where the axes are rank

numbers and filled pixels denote ranks that exchanged one or more messages.

Different communication features such as the number of messages exchanged

or their total size can be stored in the matrix and color-mapped to provide

additional insight. Such visualizations are commonly used to examine commu-

nication patterns and have been offered as evidence for the existence of compu-

tational dwarfs. The adjacency matrices for single runs of three different parallel

programs are shown in Figure 1.

Communication patterns are strongly tied to distributed memory access

within a parallel program. To see this, examine the diagonal of Figure 1’s center

panel and note the communication between a rank and its immediate neighbors.

Such a pattern is generated by finite difference equations and is found across

many HPC applications. Another type of equation will have a different visual

signature unless its pattern of distributed memory access is similar.

The structure seen in Figure 1 is typical of MPI applications and suggests

that classification is possible. By the same argument, however, distinguishing

applications within the same dwarf class may be difficult due to their topolog-

ical similarity. Complicating matters, the same program may alter its commu-

nications given different parameter values, datasets, or communicator sizes (see

Figure 2). As a result, we cannot simply compare adjacency matrices to classify

the underlying computation.

9

4.2. Self-Organizing Maps

To explore relationships between features we perform unsupervised cluster-

ing using a type of neural net called a Self-Organizing Map (SOM) [14]. In

contrast to more common clustering algorithms such as k-means which require

specifying the number of clusters (k) a priori, SOMs infer the number of clusters

directly from the data. These clusters are visualized by projecting high dimen-

sional inputs onto a two dimensional grid while simultaneously preserving the

topological properties of the input space. Thus, they provide both clustering

and dimensionality reduction and are a non-linear generalization of Principal

Component Analysis [15].

The two dimensional grid consists of randomly valued n-dimensional vectors

of weights where n is the dimension of the input space. The weights are trained

iteratively using a competitive learning algorithm: A random input vector is

selected, the closest vector on the grid (the “winner”) is computed, and both

the winner and its neighbors adjust their values towards the input vector. Both

the number of neighbors selected and the amount they change decrease each

iteration until training converges.

If the input space is three dimensional then the weights of each trained

vector in the grid can be visualized as the red, green, and blue components of

a pixel. For input spaces beyond three dimensions there is no such convenient

mapping. Instead, the U-matrix [14] stores the average L2 distance between

each trained vector and its nearest neighbors. When the U-matrix is viewed as

a color mapped grid, clusters emerge as high contrast curves.

SOMs may only provide a qualitative view of clustering depending on data

complexity, properties of the grid, and training parameters. Such is the case

for the U-matrix of cactus shown in Figure 3a where small values are mapped

to blue and large values to red. While clustering structure is visible, the exact

10

(a) U-matrix (b) Source Rank

(c) Destination Rank (d) MPI Call

(e) Bytes Sent (f) Repeat Count

Figure 3: U-matrix and feature layers of a self organizing map trained on data from general
relativity simulator cactus. Clusters emerge as high contrast curves in the U-matrix; feature
layers show correlations due to the topology-preserving projection of the SOM. Small values
are mapped to blue and large values to red.

11

number of clusters is subject to interpretation.

In such instances, viewing the correlations between features can be more

informative. This is accomplished by viewing individual “layers” of the trained

grid corresponding to particular input dimensions. For example, the fourth

component of each 5-dimensional input vector is the number of bytes sent be-

tween two ranks for a particular MPI call. Viewing only the fourth dimension

of the trained vectors demonstrates how the inputs cluster with respect to the

number of bytes sent.

These per-feature layers are shown in panels (b) through (f) of Figure 3

(again with small values mapped to blue and large values to red). The south-

west corner of the “repeat count” layer reveals a red region corresponding to

frequently repeated messages. Since the 2-dimensional projection preserves the

topology of the input space, the low intensity of the same region in the “bytes

sent” layer tells us that frequently repeated messages are also very small. In

concert with the U-matrix, these feature layers make SOMs a powerful tool

for discovering the structure and relationships hidden away in high dimensional

data.

Models that account for the feature correlations observed above should per-

form better than those that assume independence. Along with the computa-

tional tradeoffs necessitated by the size of our dataset, this motivates our chosen

model class introduced in the next section.

5. Bayesian Networks

In previous work [3] we found the distribution of MPI calls relative to each

source rank were sufficient for accurate classification using goodness-of-fit tests.

This approach has two potential downsides. First, the chosen test generates

conservative p-values when used with discrete distributions. Second and more

12

significantly, without incorporating correlations between features it becomes less

likely that codes will remain distinguishable as the number of codes increases.

This section reviews models called Bayesian networks that better approx-

imate the joint communication feature distribution. We later evaluate these

models and compare their classification performance to independent feature

models as well as ensembles of decision trees called Random Forests [16]. The

latter are state-of-the-art in many classification tasks and so serve as a useful

reference point to compare against Bayesian networks in this setting.

Bayesian networks are widely used graphical models that allow efficient fac-

toring of joint probability distributions by using directed acyclic graphs to repre-

sent conditional dependencies (the edges) between random variables or features

(the nodes) [17, 18]. The joint probability of random variables X1, . . . , Xv can

be factored using the Markov property that limits the conditional dependencies

of variable Xi to its parent nodes ΠXi
[19]:

P (X1, . . . , Xv) =

v∏
i=1

P (Xi|ΠXi
)

The simplest Bayesian network, the Näıve Bayes [20] model, assumes all nodes

are conditionally independent given a common parent node representing the

class label. It is sometimes called an independent feature model as a result.

In contrast, the full joint distribution is represented as a completely connected

graph. Between these extremes one can learn only the dependencies deemed

relevant by some statistical test, as well as estimate conditional probabilities

using Maximum Likelihood Estimation or smoothing techniques such as Dirich-

let priors [18].

Structural learning algorithms for Bayesian networks are broadly categorized

into traditional heuristic searches optimizing some scoring function and special-

ized constraint-based searches that restrict the space of dependence relations.

13

Examples of the latter include Chow-Liu (CL) trees [21] and Tree-Augmented

Näıve Bayes (TAN) networks [22]. These are optimal tree-structured approxi-

mations of the joint distribution and can be learned in O(n2) time. Both CL

and TAN perform similarly in practice [22] though TAN generally performs bet-

ter for classification tasks. We briefly review the TAN learning algorithm here

due to its superior performance detailed in the next section.

Näıve Bayes assumes conditional independence between nodes given a parent

node representing the class label. For example, 5 features are represented by

a graph with 6 nodes (1 per feature plus 1 for the class label) and 5 edges (1

from the class node to each feature node). The only correlations captured are

between the class label and individual features; no correlations between features

are accounted for though they often exist in practice.

Edges may be added to account for these correlations and improve model ac-

curacy, but we often want to minimize the number of added edges for efficiency.

The TAN algorithm finds the most informative edges to add given some training

data by first computing the conditional mutual information [23] between each

pair of features X and Y and the class label Z:

I(X;Y |Z) =
∑
x,y,z

P (x, y, z) log2

P (x, y|z)
P (x|z)P (y|z)

It then constructs a complete undirected graph G with the conditional mutual

information labeling the edge between X and Y . The maximum weight spanning

tree is computed to retain only the most informative edges from the space of

possible tree topologies. Edges not in the tree are dropped from G. A root is

arbitrarily selected and undirected edges are given an outward direction from

this root to convert G into a Bayesian network. Finally, a node for the class

label is added as well as outward edges from this new label node to each feature

node. Thus TAN “augments” the Näıve Bayes dependency graph by overlaying

14

an optimal set of tree-structured edges.

We now have a Bayesian network whose structure incorporates a set of ad-

ditional dependencies that more accurately represents the joint distribution of

the data with a limited increase in the number of parameters. TAN modifies

the Chow-Liu algorithm by using conditional instead of unconditional mutual

information, as well as adding a node and edges for the class label.

6. Evaluation

All models were constructed and evaluated using the WEKA machine learn-

ing toolkit v3.7.5 [24] trained on IPM logs. As described in Section 3.1, logs

are converted into feature matrices with each row corresponding to an MPI call

made between a source and destination machine during the execution of a par-

ticular code. Broadcast messages are supported by IPM via use of a negative

destination rank number.

Hundreds of gigabytes of logs proved problematic for the non-distributed

nature of WEKA, so some preprocessing was required. In addition, the data

has class imbalances due to the disparate number of logs available for each code.

To address these issues we use WEKA’s supervised instance resampling filter to

both up- and down-sample classes, creating a feature matrix containing 5% of

the original data and with a uniform class distribution.

Many structural learning algorithms including TAN require discrete features.

While our features are already discrete, the message size feature can take on

millions of values. Applying WEKA’s supervised discretization filter based on

Fayyad et al. [25] greatly reduces the number of unique values and makes com-

puting conditional probabilities feasible.

Having balanced and discretized data, we evaluate the algorithms by gen-

erating a confusion matrix using WEKA. The confusion matrix is a table that

15

shows the actual versus predicted labels for a supervised learning algorithm.

Evaluating the performance of a classifier using the confusion matrix is often

straightforward, but is more involved if there are more than 2 classes or if

the classes are unevenly distributed. The latter scenario is handled by the re-

sampling method described in the previous section as well as the use of the

evaluation method outlined below. To handle more than two classes, WEKA

converts the multi-class confusion matrix into a set of binary matrices using the

one-versus-rest approach [26].

The 2-by-2 matrix for some program α shows the number of instances cor-

rectly and incorrectly classified as α versus all programs except α. A true

positive (tp) occurs when an MPI call from program α is classified as program

“not α”; a false positive (fp) occurs when a call from “not α” is misclassified

as α. Similarly, a true negative (tn) occurs when a call from “not α” correctly

fails to be classified as α, and a false negative (fn) occurs when a call from α is

incorrectly classified as “not α”. Two common statistics for evaluating classifiers

using these quantities are the precision P and recall R:

P =
tp

tp+ fp

R =
tp

tp+ fn

Their harmonic mean is called the F1 score and is used to summarize perfor-

mance with a single number:

F1 = 2
PR

P +R

The F1 scores for Näıve Bayes, Tree-Augmented Näıve Bayes, and Random For-

est classifiers are shown in Table 1. These are 80.7%, 88.1%, and 88.3%, respec-

tively. Each score is obtained from 5-fold stratified cross validation [26]. This

16

process builds multiple classifiers using different training and test sets (folds)

and averages their scores to increase confidence that the measured performance

will generalize to unseen data. It is clear from the cross-validated F1 scores

that feature correlations are important for discriminating between classes, as

evidenced by the comparatively poor performance of Näıve Bayes.

A total of 1681 logs for 29 scientific applications were collected for Lawrence

Berkeley National Laboratory by the National Energy Research Scientific Com-

puting Center. Though a single dwarf class for each node is listed for compact-

ness, many codes belong to more than one class. Multiple logs exist for each

code with varying ranks, parameters, architectures, and datasets when possi-

ble. Several simpler codes were logged by us; codes requiring significant domain

knowledge or private datasets were logged from willing specialists on produc-

tion systems. As a result, the inputs and parameters for some codes were not

under our control. However, this dataset is several orders of magnitude larger

than related efforts and contains a representative sample of the dwarfs found in

scientific computing.

Examining the confusion matrix (ommitted for size) reveals that most clas-

sification errors are due to codes within the same dwarf class, or multi-dwarf

codes that make use of the same library such as fftw [27], superlu [28], or

scalapack [29]. For example, both the paratec [30] and vasp [31] are mate-

rials science codes. paratec is the hardest code to classify, having a recall of

63.1%. We can attribute 11% of its false negatives to vasp and another 11% to

linear algebra operations in 2 other programs: 22% of its false negatives are due

to only 3 other codes. Thus, if one wanted to infer the computational class of

some unknown program rather than the exact code, classifcation performance

would be substantially higher. This coarser-grained information would still be

very useful for an anomaly detection system.

17

T
a
b

le
1
:

M
u

lt
i-

cl
a
ss

p
er

fo
rm

a
n

ce
o
f

N
ä
ıv

e
B

a
y
es

,
T

re
e-

A
u

g
m

en
te

d
N

ä
ıv

e
B

a
y
es

,
a
n

d
R

a
n

d
o
m

F
o
re

st
cl

a
ss

ifi
er

s.
A

h
ig

h
er

F
1

sc
o
re

in
d

ic
a
te

s
b

et
te

r
cl

a
ss

ifi
ca

ti
o
n

p
er

fo
rm

a
n

ce
.

E
a
ch

sc
o
re

is
a
v
er

a
g
ed

o
v
er

a
5
-f

o
ld

st
ra

ti
fi

ed
cr

o
ss

-v
a
li
d

a
ti

o
n

u
si

n
g

a
cl

a
ss

-b
a
la

n
ce

d
sa

m
p

li
n

g
fr

o
m

5
%

o
f

th
e

o
ri

g
in

a
l

d
a
ta

se
t.

T
h

e
in

cr
ea

se
d

co
m

p
le

x
it

y
o
f

th
e

tr
ee

-s
tr

u
ct

u
re

d
n

et
w

o
rk

p
ro

v
id

es
si

g
n

ifi
ca

n
t

im
p

ro
v
em

en
t

o
v
er

th
e

in
d

ep
en

d
en

ce
a
ss

u
m

p
ti

o
n

o
f

N
ä
ıv

e
B

a
y
es

.

R
a
n

k
s

F
1

S
co

re

C
o
d

e
A

re
a

/
L

ib
ra

ry
P

ri
m

a
ry

D
w

a
rf

M
in

M
a
x

N
B

T
A

N
R

F

c
a
c
t
u
s

A
st

ro
p

h
y
si

cs
S

tr
u

ct
u

re
d

G
ri

d
s

6
4

2
5
6

0
.9

2
8

0
.9

3
2

0
.9

4
4

f
v
c
a
m

A
tm

os
p

h
er

ic
D

y
n

a
m

ic
s

S
tr

u
ct

u
re

d
G

ri
d

s
6
4

6
4

0
.8

7
2

0
.9

2
3

0
.9

5
7

g
t
c

M
ag

n
et

ic
F

u
si

on
U

n
st

ru
ct

u
re

d
G

ri
d

s
6
4

25
6

0
.9

6
4

0
.9

6
4

0
.9

7
6

g
t
s

M
ag

n
et

ic
F

u
si

on
U

n
st

ru
ct

u
re

d
G

ri
d

s
6
4

2
04

8
0
.8

8
4

0
.9

2
4

0
.9

4
3

g
r
a
p
h
5
0
0

G
ra

p
h

T
h

eo
ry

G
ra

p
h

T
ra

ve
rs

a
l

2
5
6

48
4

0
.8

4
5

0
.9

5
0
.9

4
4

h
y
p
e
r
c
l
a
w

G
as

D
y
n

am
ic

s
S

tr
u

ct
u

re
d

G
ri

d
s

2
5
6

25
6

0
.8

5
6

0
.9

2
7

0
.9

1
8

ij
h
y
p
r
e

S
p

a
rs

e
L

in
ea

r
A

lg
eb

ra
6
4

4
09

6
0
.7

4
9

0
.8

1
2

0
.8

5
5

im
pa

c
t
-t

A
cc

el
er

a
to

r
P

h
y
si

cs
S

tr
u

ct
u

re
d

G
ri

d
s

2
5
6

1
0
2
4

0
.8

9
8

0
.9

2
7

0
.9

5
1

l
b
m
h
d

H
y
d

ro
d

y
n

am
ic

s
S

tr
u

ct
u

re
d

G
ri

d
s

6
4

25
6

0
.8

7
5

0
.9

5
7

0
.9

6
2

m
a
d
b
e
n
c
h

A
st

ro
p

h
y
si

cs
D

en
se

L
in

ea
r

A
lg

eb
ra

2
5
6

2
5
6

0
.8

8
8

0
.9

4
4

0
.9

6
2

m
a
e
st

r
o

H
y
d

ro
d

y
n

am
ic

s
S

tr
u

ct
u

re
d

G
ri

d
s

8
2
0
4
8

0
.7

7
7

0
.8

6
1

0
.8

6
6

m
f
d
n

N
u

cl
ea

r
P

h
y
si

cs
n

-B
o
d

y
M

et
h

o
d

s
1

6
44

1
0
.7

2
5

0
.8

7
0
.8

7
1

m
h
d
c
a
r

P
la

sm
a

P
h
y
si

cs
S

tr
u

ct
u

re
d

G
ri

d
s

1
2
04

8
0
.7

5
3

0
.8

2
9

0
.8

3
m
il
c

L
at

ti
ce

G
au

ge
T

h
eo

ry
S

tr
u

ct
u

re
d

G
ri

d
s

6
4

1
0
2
4

0
.8

5
9

0
.9

2
2

0
.9

4
n
a
m
d

M
ol

ec
u

la
r

D
y
n

am
ic

s
n

-B
o
d

y
M

et
h

o
d

s
3
2

1
2
8

0
.9

2
8

0
.9

3
2

0
.9

4
4

pa
r
a
t
e
c

M
at

er
ia

ls
S

ci
en

ce
S

p
ec

tr
a
l

M
et

h
o
d
s

1
25

6
0
.6

2
0
.7

2
3

0
.7

2
8

p
d
d
r
iv
e

su
p
e
r
l
u

S
p

a
rs

e
L

in
ea

r
A

lg
eb

ra
6
4

6
4

0
.6

9
7

0
.8

0
5

0
.8

1
9

p
d
g
e
m
m

sc
a
l
a
pa

c
k

D
en

se
L

in
ea

r
A

lg
eb

ra
6
4

6
4

0
.9

0
6

0
.9

4
5

0
.9

6
3

p
d
sy

e
v

sc
a
l
a
pa

c
k

D
en

se
L

in
ea

r
A

lg
eb

ra
6
4

6
4

0
.7

5
4

0
.8

8
8

0
.9

4
2

p
f
2

A
to

m
ic

P
h
y
si

cs
D

en
se

L
in

ea
r

A
lg

eb
ra

1
4
09

6
0
.6

7
0
.7

9
9

0
.8

1
1

p
m
e
m
d

M
ol

ec
u

la
r

D
y
n

am
ic

s
n

-B
o
d

y
M

et
h

o
d

s
6
4

2
5
6

0
.7

2
1

0
.8

0
1

0
.7

7
3

p
si
-t
e
t

F
lu

id
D

y
n

am
ic

s
U

n
st

ru
ct

u
re

d
G

ri
d

s
2

1
2
8

0
.8

1
3

0
.8

6
4

0
.8

5
2

p
st

g
3
r

A
to

m
ic

P
h
y
si

cs
D

en
se

L
in

ea
r

A
lg

eb
ra

4
8

96
0

0
.7

9
1

0
.9

0
1

0
.8

3
7

t
g
y
r
o

M
ag

n
et

ic
F

u
si

on
U

n
st

ru
ct

u
re

d
G

ri
d

s
1
6

1
6
38

4
0
.7

9
2

0
.9

0
9

0
.9

1
7

t
r
is
t
a
n
-m

p
P

la
sm

a
P

h
y
si

cs
S

tr
u

ct
u

re
d

G
ri

d
s

1
6

4
0
9
6

0
.9

3
2

0
.9

4
6

0
.9

4
1

v
a
sp

M
at

er
ia

ls
S

ci
en

ce
S

p
ec

tr
a
l

M
et

h
o
d
s

1
25

6
0
.7

0
2

0
.7

6
0
.7

8
3

v
o
r
pa

l
P

la
sm

a
P

h
y
si

cs
U

n
st

ru
ct

u
re

d
G

ri
d

s
1

3
07

2
0
.8

1
4

0
.8

7
8

0
.8

9
6

w
a
v
e

H
y
d

ro
d

y
n

am
ic

s
S

tr
u

ct
u

re
d

G
ri

d
s

6
4

1
02

4
0
.6

3
2

0
.8

1
6

0
.7

5
6

x
d
l
u

su
p
e
r
l
u

S
p

a
rs

e
L

in
ea

r
A

lg
eb

ra
6
4

6
4

0
.7

2
4

0
.8

2
1

0
.8

0
2

W
ei

gh
te

d
A

ve
ra

ge
0
.8

0
7

0
.8

8
1

0
.8

8
3

18

Classifier error can be understood as a tradeoff between bias and variance.

A high bias, low variance algorithm produces consistent classification across

different datasets (low variance) at the cost of having consistently worse labeling

(high bias) due to more general decision boundaries. In contrast, a low bias

algorithm may perform well on certain datasets and worse on others: it finds

better decision boundaries at the risk of overfitting the training data. In general,

bias and variance cannot be simultaneously optimized and thus the choice of

learning algorithm depends on the complexity and size of the data as well as

the requirements of the task.

To better understand the performance of our classifiers, we measure the bias-

variance tradeoff using the technique of Kohavi and Wolpert [32] implemented in

WEKA. Specifically, the data is first divided in two. The latter half of the data

is held constant for testing while 25 training sets are generated from the first

half by resampling without replacement. The bias and variance are estimated

by evaluating classifiers trained on these separate training sets against the same

test set. These estimates are shown in Table 2. As one would expect from

the F1 scores, Näıve Bayes has the highest bias and the lowest variance due

to its simple decision boundaries. Tree-Augmented Näıve Bayes trades a large

decrease in bias for a slight increase in variance, while Random Forests slightly

improve this bias for a larger increase in variance. This too is consistent with

the F1 scores: when the two classifiers differ, Random Forests tend to perform

much better or much worse for particular classes.

These results are quite positive and are comparable with our previous work

using graph theory, network theory, and hypothesis testing. However, machine

learning is computationally more efficient than our graph- and network-theoretic

approaches, resolves several shortcomings with the hypothesis testing approach,

and achieves these results with a much larger and diverse dataset. We expect

19

Table 2: Bias-variance decomposition for Näıve Bayes, Tree-Augmented Näıve Bayes, and
Random Forest classifiers. Numbers were obtained using the approach of Kohavi and
Wolpert [32] implemented in WEKA. The data is first divided in two and the latter half held
constant for testing. The first half is resampled without replacement to generate 25 training
sets. Bias and variance is estimated by evaluating classifiers trained on these separate sets
against the same test set.

Classifier Bias2 Variance

Näıve Bayes 0.1944 0.0103
Tree-Augmented Näıve Bayes 0.1233 0.0118
Random Forest 0.0935 0.0476

more difficulty when distinguishing codes sharing a dwarf class such as paratec

and vasp, and these bring the average F1 score down considerably. Training

with larger subsets of the original data, using search-based structural learning

algorithms, or constructing Bayesian multi-nets [22] could increase performance

in these circumstances. We leave these investigations for future work.

7. Conclusion

This work applies methods from machine learning to identify the latent class

of a parallel computation from the observable information passed between nodes

in a computational network: given logs of MPI messages from an unknown

program, our job is to infer the program most likely to have generated those

logs. Our motivation is the detection of anomalous behavior on HPC systems,

though additional applications such as performance profiling are possible.

As initially postulated by work on computational dwarfs [12, 13], communi-

cation patterns tend to be highly structured and reflect the distributed memory

access patterns of the underlying algorithm. When dealing with algorithm im-

plementations, however, many other factors affect the communication patterns

of theoretical algorithms. Different implementations of the same computation,

shared libraries, compiler optimizations, architecture differences, software flaws,

debug flags, and numerous MPI implementations all make this task more dif-

20

ficult. Further, some parallel programs have data-dependent communication

topologies (see Figure 2), varying both slightly and greatly as with multi-use

(“swiss-army”) libraries or interpreters such as Matlab.

We trained Näıve Bayes, Tree-Augmented Näıve Bayes, and Random Forest

classifiers on hundreds of gigabytes of runtime communication logs covering 29

distributed memory scientific codes from Lawrence Berkeley National Lab. This

required both up- and down-sampling the data to correct for class imbalance and

allow processing by a single computer using WEKA, as well as discretization of

numeric features to feasibly compute conditional probability tables. TAN and

Random Forest classifiers achieved 88.1% and 88.3% F1 scores averaged over 5-

fold stratified cross-validation, while using only 5% of the original dataset. These

results are encouraging and improve upon several weaknesses in our previous

work [3] testing the goodness-of-fit of call distributions as well as the distribution

of over-represented subgraphs called motifs [33, 34]. In addition, classification

of computational dwarfs instead of individual codes should have substantially

higher performance, as most errors in the confusion matrix are due to codes

within the same dwarf class. In fact, the latter may be more relevant than

focusing on individual codes for many potential applications of this work. In

either case, we believe these results demonstrate machine learning is practical

for identifying latent classes of distributed computation from communication

patterns, without the computational overhead required for static analysis and

without using a priori information.

8. Acknowledgements

Thanks to Scott Campbell and David Skinner for capturing IPM data at

NERSC and to members of the high performance computing security project

at LBNL for helpful discussions. This research was supported in part by the

21

Director, Office of Computational and Technology Research, Division of Math-

ematical, Information, and Computational Sciences of the U.S. Department of

Energy, under contract number DE-AC02-05CH11231, and also by the U.S. De-

partment of Homeland Security under grant award number 2006-CS-001-000001

under the auspices of the Institute for Information Infrastructure Protection

(I3P) research program. The I3P is managed by Dartmouth College. This

research used resources of the National Energy Research Scientific Computing

Center, which is supported by the Office of Science of the U.S. Department of

Energy under contract number DE-AC02-05CH11231. The views and conclu-

sions contained in this document are those of the authors and not necessarily

those of its sponsors.

References

[1] R. Metzger and Z. Wen, Automatic Algorithm Recognition and Replace-

ment: A New Approach to Program Optimization. MIT Press, 2000.

[2] R. Preissl, M. Schulz, D. Kranzlmüller, B. R. de Supinski, and D. J. Quin-

lan, “Transforming MPI Source Code Based On Communication Patterns,”

Future Generation Computer Systems, vol. 26, no. 1, pp. 147–154, 2010.

[3] S. Whalen, S. Peisert, and M. Bishop, “Network-Theoretic Classification

of Parallel Computation Patterns,” in Proceedings of the 1st International

Workshop on Characterizing Applications for Heterogeneous Exascale Sys-

tems, 2011.

[4] K. Fürlinger, N. J. Wright, and D. Skinner, “Effective Performance Mea-

surement at Petascale Using IPM,” in Proceedings of the 16th IEEE In-

ternational Conference on Parallel and Distributed Systems, pp. 373–380,

2010.

22

[5] J. Shalf, S. Kamil, L. Oliker, and D. Skinner, “Analyzing Ultra-Scale Ap-

plication Communication Requirements for a Reconfigurable Hybrid Inter-

connect,” in Proceedings of the 2005 ACM/IEEE Conference on Supercom-

puting, 2005.

[6] R. Riesen, “Communication Patterns,” in Proceedings of the 20th Inter-

national Conference on Parallel and Distributed Processing, pp. 275–282,

2006.

[7] C. Ma, Y. M. Teo, V. March, N. Xiong, I. R. Pop, Y. X. He, and S. See, “An

Approach for Matching Communication Patterns in Parallel Applications,”

in Proceedings of the 2009 IEEE International Symposium on Parallel and

Distributed Processing, pp. 1–12, 2009.

[8] G. Florez-Larrahondo, Z. Liu, S. M. Bridges, A. Skjellum, and R. B.

Vaughn, “Lightweight Monitoring of MPI Programs in Real Time,” Con-

currency and Computation: Practice & Experience, vol. 17, no. 13,

pp. 1547–1578, 2005.

[9] A. Basumallik and R. Eigenmann, “Towards Automatic Translation of

OpenMP to MPI,” in Proceedings of the 19th International Conference on

Supercomputing, pp. 189–198, 2005.

[10] A. Basumallik, S. Min, and R. Eigenmann, “Programming Distributed

Memory Sytems Using OpenMP,” in Proceedings of the 2007 IEEE In-

ternational Parallel and Distributed Processing Symposium, pp. 207–214,

2007.

[11] J. Borrill, J. Carter, L. Oliker, D. Skinner, and R. Biswas, “Integrated Per-

formance Monitoring of a Cosmology Application on Leading HEC Plat-

forms,” in Proceedings of the 2005 International Conference on Parallel

Processing, pp. 119–128, 2005.

23

[12] K. Asanović, R. Bodik, B. Catanzaro, J. Gebis, P. Husbands, K. Keutzer,

D. Patterson, W. Plishker, J. Shalf, S. Williams, and K. Yelick, “The Land-

scape of Parallel Computing Research: A View From Berkeley,” Tech. Rep.

UCB/EECS-2006-183, University of California, Berkeley, 2006.

[13] P. Colella, “Defining Software Requirements for Scientific Computing,”

tech. rep., DARPA High Productivity Computing Systems, 2004.

[14] T. Kohonen, “Self-Organized Formation of Topologically Correct Feature

Maps,” Biological Cybernetics, vol. 43, no. 1, pp. 59–69, 1982.

[15] T. Kohonen, Self-Organizing Maps. Springer, 2000.

[16] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp. 5–32,

2001.

[17] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plau-

sible Inference. Morgan Kaufmann, 1988.

[18] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and

Techniques. MIT Press, 2009.

[19] K. Korb and A. Nicholson, Bayesian Artificial Intelligence. Chapman and

Hall, 2004.

[20] T. M. Mitchell, Machine Learning. McGraw-Hill, 1997.

[21] C. K. Chow and C. N. Liu, “Approximating Discrete Probability Distribu-

tions with Dependence Trees,” IEEE Transactions on Information Theory,

vol. 14, no. 3, pp. 462–467, 1968.

[22] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian Network Classi-

fiers,” Machine Learning, vol. 29, no. 2, pp. 131–163, 1997.

24

[23] T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley-

Interscience, 1991.

[24] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.

Witten, “The WEKA Data Mining Software: An Update,” SIGKDD Ex-

plorations, vol. 11, no. 1, pp. 10–18, 2009.

[25] U. M. Fayyad and K. B. Irani, “Multi-Interval Discretization of Continuous-

Valued Attributes for Classification Learning,” in Proceedings of the 13th

International Joint Conference on Artificial Intelligence, pp. 1022–1027,

1993.

[26] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools

and Techniques. Morgan Kaufmann, 3rd ed., 2011.

[27] M. Frigo and S. G. Johnson, “FFTW: An Adaptive Software Architec-

ture for the FFT,” in Proceedings of the 23rd International Conference on

Acoustics, Speech, and Signal Processing, vol. 3, pp. 1381–1384, 1998.

[28] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu,

“A Supernodal Approach to Sparse Partial Pivoting,” SIAM Journal on

Matrix Analysis and Applications, vol. 20, no. 3, pp. 720–755, 1999.

[29] S. Blackford, J. Choi, A. Cleary, E. D’Azeuedo, J. W. Demmel, I. S. Dhillon,

J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. W.

Walker, and C. Whaley, ScaLAPACK User’s Guide. SIAM, 1997.

[30] B. G. Pfrommer, J. W. Demmel, and H. Simon, “Unconstrained Energy

Functionals for Electronic Structure Calculations,” Journal of Computa-

tional Physics, vol. 150, no. 1, pp. 287–298, 1999.

[31] G. Kresse and J. Furthmüller, “Efficient Iterative Schemes for Ab Initio

25

Total-Energy Calculations Using a Plane-Wave Basis Set,” Physical Review

B, vol. 54, no. 16, pp. 11169–11186, 1996.

[32] R. Kohavi and D. H. Wolpert, “Bias Plus Variance Decomposition for Zero-

One Loss Functions,” in Proceedings of the 13th International Conference

on Machine Learning, pp. 275–283, 1996.

[33] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon,

“Network Motifs: Simple Building Blocks of Complex Networks,” Science,

vol. 298, no. 5594, pp. 824–827, 2002.

[34] U. Alon, “Network Motifs: Theory and Experimental Approaches,” Nature

Reviews Genetics, vol. 8, no. 6, pp. 450–461, 2007.

26

