
Blockchain as a Trusted Component in Cloud SLA Verification
Amir Teshome

Wonjiga
Univ Rennes, Inria, CNRS,

IRISA
Rennes, France

Sean Peisert
CRD, LBNL

Berkeley, CA, USA

Louis Rilling
DGA

Rennes, France

Christine Morin
Univ Rennes, Inria, CNRS,

IRISA
Rennes, France

ABSTRACT
Migrating an application from local compute resources to commer-
cial cloud resources involves giving up full control of the physical
infrastructure, as the cloud service provider (CSP) is responsible for
managing the physical infrastructure, including its security. The re-
liance of a tenant on a CSP can create a trust issue around whether
the CSP is upholding its end of the bargain. CSPs acknowledge this
and provide a guarantee through a Service Level Agreement (SLA).
SLAs need to be veri�ed for satisfaction of the de�ned objectives.
To avoid raising the trust issue again, such a veri�cation procedure
needs to be unbiased and independently achievable by both tenants
and CSPs without one relying on the other party.

In this paper, we consider an SLA o�ered by the provider that
guarantees the integrity of tenants’ data, and propose to verify the
SLA using an integrity checking method based on a distributed
ledger. Our proposed method allows both CSPs and tenants to per-
form integrity checking without one party relying on the other. The
method uses a blockchain as a distributed ledger to store evidence
of data integrity. Assuming the ledger as a secure, trusted source of
information, the evidence can be used to resolve con�icts between
providers and tenants. In addition, we present a prototype imple-
mentation and an experimental evaluation to show the feasibility
of our veri�cation method and to measure the time overhead.

KEYWORDS
Cloud, SLA, data integrity, remote integrity checking, blockchain

ACM Reference Format:
Amir Teshome Wonjiga, Sean Peisert, Louis Rilling, and Christine Morin.
2019. Blockchain as a Trusted Component in Cloud SLA Veri�cation. In
IEEE/ACM 12th International Conference on Utility and Cloud Computing
Companion (UCC ’19 Companion), December 2–5, 2019, Auckland, NewZealand.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3368235.3368872

1 INTRODUCTION
In the cloud, depending on the service model, the tenant and the
cloud service provider (CSP) own di�erent parts of the system. For
instance, in a Storage as a Service cloud the provider owns the
physical infrastructure and the virtualization layer while the tenant
owns the data stored in the infrastructure. When migrating to the
cloud the tenant loses full control of the physical infrastructure.
The CSP is responsible for managing the infrastructure and so it

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or a�liate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
UCC ’19 Companion, December 2–5, 2019, Auckland, New Zealand
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7044-8/19/12. . . $15.00
https://doi.org/10.1145/3368235.3368872

monitors every aspect from resource allocation and performance
to security. This creates a trust issue between CSPs and tenants.

CSPs acknowledge the trust issue and endeavor to provide assur-
ance through an agreement called Service Level Agreement (SLA).
SLAs help in building a trustworthy relationship between CSPs and
tenants by providing a guarantee for tenants as reward (i.e penalty)
in case of SLA violation. An SLA is negotiated, hence users can
specify their requirements to get a service well tailored to their
needs. The SLA document describes the provided service, the rights
and obligations of all participants and a quantitative description of
the targeted quality of service (Service Level Objective, SLO).

SLOs must be veri�ed for their ful�llment with any violation re-
sulting in a penalty for the violating party. Ideally, after signing the
agreement any participant should have the option to perform SLO
veri�cation independently of the other party(ies). Moreover, in case
of violation, one party should be able to prove the violation to the
others. Currently, detecting SLO violations is left as a responsibility
for tenants. Even when tenants discover any violation, penalties do
not apply automatically. Service providers perform checks on their
side and the penalty is applied only if the provider discovers the
violation. For example, the Amazon availability SLA [2] describes
the procedure to report a violation and states "if the Monthly Uptime
Percentage of such request is con�rmed by us and is less than the
Service Commitment, then we will issue the Service Credit to you ...".

In our previous studies [26, 27], we described a mechanism to
de�ne and verify security monitoring terms in cloud SLAs. Specif-
ically, we de�ned an SLA which guarantees the performance of
network intrusion detection systems for a given set of vulnerabil-
ities. The vulnerabilities are chosen based on tenants needs and
requirements. Our veri�cation process [26] requires cooperation
between tenants and providers in order to verify the satisfaction of
an SLO. In the context of SLAs, such dependency creates a con�ict
of interest and it requires trust from the other party, which goes
back to the initial trust issue. Thus, we need a mechanism to reduce
(remove if possible) such dependency in SLA veri�cation.

To remove such dependency we need either a trusted third party
or an independent system in which participants in the SLA do
not have to trust one another for SLA veri�cation. Recently there
is an increase in application of distributed system technologies
to make a secure system state change between untrusted parties
without using any third party. These technologies, referred to as
blockchains, are widely adopted for their property of tamper-proof
evidence [23]. They are used as the core technology in digital cur-
rency (cryptocurrency) applications. They are also being used in
di�erent applications, e.g Internet of Things, health, identity etc.

In this paper, we provide an SLA veri�cation approach for clouds
which relies on the blockchain technology. In this process, ten-
ants can perform veri�cation at any given time. Besides, tenants

https://doi.org/10.1145/3368235.3368872
https://doi.org/10.1145/3368235.3368872


directly participate in keeping and maintaining attestation data se-
cure, the data which is used for veri�cation. Tenants participation
is made possible by the ability of blockchains to be geographi-
cally distributed. Tenants can be part of the blockchain’s network
and participate in the SLA life-cycle process. We present an SLA
veri�cation method where tenants and providers participate in a
process to keep veri�cation data secure, which allows trusting the
system in general rather than a single entity. Depending on the
algorithm used in the blockchain operation process, some amount
of participants can be malicious and the system can still be trusted.

We de�ne SLAs guaranteeing integrity property of data stored
in the cloud. Our goal is to show that having a trusted component
in the SLA life-cycle helps to facilitate and improve the trust level
of di�erent phases in the life-cycle of SLA. In this paper we use
data integrity property as an example, the method can also be used
for other types of SLAs (e.g security monitoring SLAs [27]).

The rest of the paper is organized as follows. Section 2 describes
the life-cycle of an SLA guaranteeing data integrity. The problem
description is presented in Section 3. Section 4 presents background
and related works. Section 5 presents the threat model for the
veri�cation process. The integrity checking process is presented in
Section 6. Implementation and evaluation details are presented in
Section 7 and 8 respectively. Finally, Section 9 concludes the paper.

2 SLA LIFE-CYCLE FOR MONITORING DATA
INTEGRITY

The SLA life-cycle can be divided into three phases namely SLA def-
inition and negotiation, enforcement, and veri�cation. The contents
of each phase of the SLA life-cycle is di�erent depending on the
properties covered by the SLA. SLA de�nition and negotiation is the
phase where the two parties negotiate and de�ne a set of terms for
the provided service. In the enforcement phase providers implement
the required mechanisms to enforce terms that are de�ned in the
previous phase. The veri�cation phase allows both providers and
tenants to check whether the terms are correctly enforced or not.

We consider SLAs addressing the integrity property of data. Cur-
rently, most SLAs only address availability aspects (e.g., Amazon
S3 [3] and DriveHQ [7]). For example, Amazon S3 claims to have
“extremely durable” storage with redundancy and checks for cor-
ruption while data is at rest and in the network. However, Amazon
SLA does not guarantee this property.

One of the major challenges to include security terms in SLAs
is the di�culty in quantitatively measuring security properties
like integrity and con�dentiality. In our use case, tenants require
checking either their data is corrupted or not. Hence, we assume the
de�nition of SLAs with an objective to keep the data uncorrupted
for the SLA lifetime. Other properties like backup frequency and
type of access control policies can be included in the SLA de�nition.

Data corruption can occur due to various reasons. Depending
on the cause of a corruption, there exist di�erent detection and
correction mechanisms [18–20].

Monitoring SLAs guaranteeing data integrity means continu-
ously verifying the correctness of data stored in the cloud. Either
the tenant or the provider can perform the veri�cation. In this pa-
per, we want to show a mechanism to perform veri�cation without
relying on the provider. We use a blockchain to store evidences
which validate the correctness of outsourced data.

3 PROBLEM DESCRIPTION
Currently existing SLAs lack security terms, except for availability.
The lack of security support has been a signi�cant di�culty for
the adoption of cloud services mainly for enterprises and cautious
consumers (e.g Dropbox [8] uses Amazon’s S3 service to store their
clients data). Such a relationship between companies requires an
agreement which covers the security aspect of the data.

Data integrity failure is a common issue in data storage sys-
tems [9, 14, 25]. There are di�erent solutions to protect and recover
from data corruption. In addition, in some �elds of research and
development, it is mandatory to keep and verify data integrity for
others. For example, regulatory agencies controlling medical drugs
and health care products publish data integrity guidelines [11].
Such agencies require implementing these guidelines in testing,
manufacturing, packaging, distribution, and monitoring of drugs
to review the quality and related issues of the product.

There are di�erent reports of data integrity failure in production
environments. In 2009 Facebook temporarily lost more than 10%
of photos in hard drive failures [9]. Amazon S3 su�ered from a
data corruption issue [14] caused by a load balancer, which resulted
mismatch of MD5 hash values supplied by the user. Wang et.al [25]
examined 138 data corruption incidents reported in the bug reposi-
tories of four Hadoop projects. The study presented conclusions on
the causes and impacts of data corruption and listed limitations in
detection and handling of data corruption mechanisms. Moreover,
data corruption may lead up to service unavailability. As presented
by the technology website MacObserver [5] corrupted Apple iCloud
data was a cause for an Apple iOS home screen crashing bug.

Guaranteeing data integrity through SLAs requires a veri�cation
mechanism that tenants can trust. For current commercial cloud
SLAs, monitoring is performed by tenants or third-party companies,
and service providers should con�rm the violation. In order to
minimize the trust issue between service providers and tenants,
we need an open (non-secretive) process to do veri�cation and to
store and share the result without any bias. In this paper, we show
a monitoring mechanism that can be used to check the correctness
of data stored in the cloud without relying on the service provider.

Having di�erent owners in di�erent tiers or layers of the cloud
is a challenge for veri�cation. Veri�cation in such an environment
means checking the status of a service from a tier which does not
belong to the veri�er. In our case, the provider infrastructure holds
the data and a tenant wants to check the integrity of that data.

We consider an SLO to keep the data uncorrupted throughout
the validity period of the contract. Our problem is similar to a
well-known problem called remote data integrity checking, which
enables a server to prove to an auditor the integrity of a stored �le.
However, in our case the veri�cation is in two ways, i.e. tenants
need to check data integrity in the cloud and providers need to
check the correctness of SLO violation claims submitted by tenants.

4 BACKGROUND AND RELATEDWORK
We propose a veri�cation mechanism based on the blockchain
technology. This section presents an introduction to the blockchain
technology and related works on data integrity monitoring tools.



4.1 Blockchain
Blockchain is a distributed linked list data structure, where each
block contains a cryptographic hash of its predecessor, hence form-
ing a chain. The chain is stored in a distributed manner and each
valid block in the list is available in all participating node. Adding
a new block requires an agreement between the participants. Par-
ticipants use a consensus algorithm to decide what to add next in
the chain. The distribution and the consensus algorithm make the
system trustworthy without trusting any speci�c participant.

Blocks in a blockchain contain at least two parts. (i) Link to a
previous block: the hash value of the previous block will be included
in the current block, and it serves as a link from the previous to the
current block. (ii) Data stored in the current block: is the information
stored in the block. The data can be anything depending on the
application using the blockchain. For example, in Bitcoin [23] the
data section stores transactions.

Based onwrite permissions (permission to add blocks) blockchains
can be grouped into three categories [12]. (i) Public blockchain:
where anyone can join the network and participate in the consen-
sus process to add blocks. (ii) Private blockchain where only one
entity (e.g. the administrator) is allowed to add blocks. (iii) Consor-
tium blockchain where only a pre-de�ned set of nodes are allowed
to add blocks. These could also be generalized into two groups, per-
missioned and permissionless. Consortium and Private blockchains
are permissioned while Public blockchains are permissionless.

After the �rst well known application of blockchain (Bitcoin [23]),
there have been di�erent implementations. We used a permissioned
blockchains implementation called Hyperledger Fabric [16].

4.2 Related Works
This section presents related works on remote data integrity check-
ing and the usage of blockchains for data integrity.

4.2.1 Remote data integrity checking. Integrity checking can be
performed by downloading the whole data and compare it with a
local version but this method contradicts the basic idea of the cloud,
and it is impractical. Thus, almost all remote integrity checking
works rely on cryptographic methods without any downloading.

There are two main approaches for remote data integrity check-
ing: integrity checking with and without a third party auditor (TPA).
TPA is a trusted party who has expertise for performing integrity
checks and convincing both the client and the provider. TPA per-
forms activities like generating a hash value for data blocks and
comparing signatures to verify the integrity of stored data.

For example, TPA is used in a remote data possession checking
protocol proposed by Luo and Bai [22]. They de�ned four functions
namely KeyGen, SigGen, GenProof, VerifyProof : KeyGen run by users
to generate a key, SigGen used by users to generate veri�cation
metadata, GenProof run by service providers to generate a proof
of data storage correctness and VerifyProof used by TPA to verify
the proof from service providers. The protocol executes in setup
and audit phases. In the setup phase, users generate a key using
the KeyGen and metadata for data to be sent to the cloud. The user
can delete the local copies of the uploaded data after sending the
data to the cloud and publishes the metadata to TPA.

The audit phase starts when the TPA commences the veri�cation
process. TPA formulates and sends a challenge to the provider and

waits for a response. Upon receiving the challenge, the provider
runs GenProof to generate a proof showing the data is correctly
stored and sends back the proof to TPA. The TPA runs VerifyProof
using the returned value and checks the result with the original
metadata. This way TPA is used to check data integrity in the cloud.

Other published papers by Apolinario et al. [17], Zhu et al. [28]
and Hao et al. [19] follow a similar pattern, but they use di�erent
cryptographic methods to achieve properties other than integrity,
e.g data dynamics, privacy against veri�ers, and proof on multiple
providers. The protocol by Zhu et.al [28] supports data dynamics,
and the work presented by Hao et.al [19] supports privacy against
third-party veri�ers. In some works the TPA is optional and the user
can also be an auditor. However, in other works, the TPA is required
(e.g Apolinario et al. [17]) and acts as a trusted third party (TTP). It
is used to resolve disputes between the provider and tenants.

There are some works, for example by Hao et.al [20], that do not
rely on a TPA. Hao et.al [20] follows a similar procedure as described
above using six functions to operate, except the cryptographic
procedures are di�erent. Such protocols cannot be used for SLA
veri�cation because the process is only one way, i.e. only one party
is performing the integrity check. For our use case both parties
need to perform the veri�cation. CloudProof [24] presents a storage
systemwhich provides proofs of a violation; hence neither providers
nor tenants can bring a false claim of violation. Our work can be
used to extend such a system in order to exploit the distributed
nature of blockchains and become even more independent from
other entities, like certi�cate authorities.

In our work, wewant to reduce dependency between participants
and possibly remove TTPs as it requires as much trust as providers.
We thus propose to rely on a secure and distributed ledger.
4.2.2 Blockchains on data integrity. There are examples of data in-
tegrity services in IoT, database systems and data provenance tools.
Recently, blockchain based storage systems (e.g Storj [1]), which
feature data integrity by design are being developed. Liu et.al [21]
proposed a blockchain-based data integrity framework for IoT data
stored in the semi-trusted cloud. The framework incorporates data
generators and data consumers and enables consumers to perform
integrity veri�cation. The framework uses a blockchain to store
hash values while the the actual data is stored in a cloud.

Gaetani et.al [18] presented a blockchain-based database with
strong integrity guarantees. They used two layers of blockchains,
the �rst layer with a lightweight distributed consensus protocol
that assures low latency and high throughput. The second layer
is designed with a strong consensus to guarantee better integrity
by using a proof of work (PWA) based algorithm. There are new
upcoming companies (e.g Chainpoint [4]) o�ering to anchor users
data to existing blockchains, which helps to verify the integrity and
existence of data without relying on a trusted third party.

These studies do not describe the ability to verify integrity by
other parties (other than the data owner). This is mainly a result of
the considered threat model. For our use case, both parties require
performing veri�cation. In that sense, we are addressing a di�erent
kind of problem than most blockchain-based applications.

In ourwork, wewant to show the use of a trusted component, like
a blockchain, in the SLA veri�cation process in order to reduce the
dependency between tenants and providers and enable independent
veri�cation by both parties.



Chaincode 
(Smart Contract)

HLF blockchain

Underlying Blockchain

Tenant

Cloud Storage Service

Blockchain App

Verification module

Storing module

Figure 1: Data integrity veri�cation architecture
5 THREAT MODEL
We assume that providers are semi-trusted. In a sense, a provider
may return wrong data or wrong results of computation for a re-
quest from a tenant because an attacker altered the data or because
of some other error. However, providers are not actively trying to
alter tenants’ data. In addition, providers never lie when claiming
that they have not accepted to store some data. They are working
towards maximizing pro�t and errors on the stored data are unin-
tentional. Providers also have an economic incentive related to an
SLA. Hence, they may lie in order not to violate an SLO.

Tenants store data in the cloud and do not keep a copy of the data
locally. Tenants store a hash of the complete data on the blockchain
to be used later for veri�cation. Tenants may falsely claim a reward
for a data integrity breach. Hence, providers need to do veri�cation
by themselves. However, tenants never lie when claiming that
providers accepted to store data. A tenant interacts with a single
provider, and the provider replies to requests about the data.

We assume at least theminimum number of required participants
in the blockchain network are honest and are not controlled by the
provider. In addition, we assume there is a secure communication
network between tenants, providers, and the ledger. Notably, the
integrity of messages is respected, i.e. there is no man-in-the-middle
which is actively altering the communication between parties.

6 DATA INTEGRITY CHECKING
This section describes the proposed method to check integrity using
a trusted, secure ledger and without relying on a third party. This
method is used to perform SLA veri�cation. Using this method,
a tenant can check the integrity of the data stored in the cloud,
and a provider can check the correctness of SLO violation claims
without relying on the other party. Our method guarantees to link
the signees with the same piece of evidence for data integrity.

We use a blockchain to remove the trusted third party. This
secure ledger is used to store a piece of evidence for attesting the
correctness of outsourced data. Providers and tenants form the
blockchain network. Using such a technique gives two advantages.
First, it adds trust, transparency, and security to existing integrity
monitoring techniques and second users are directly participating
in the process of securing their outsourced information system.

Given an SLA guaranteeing the integrity of users data, there are
two main procedures, namely the setup and veri�cation phases.

• The setup phase is performed before uploading a �le to the
cloud. In this phase, a tenant prepares tags for the data to
be used later in the veri�cation phase. Tags are proofs con-
taining the hash of the data (see Section 6.2). The tags are
used by the tenant to perform veri�cation without the need
to trust any party including the provider. After this process,

Node 1
Tenant 1

Ledger

Node 3

Tenant 3 Ledger

Node 4
Tenant 4

Ledger

Node 5
Provider

Ledger

Node 2
Tenant 2

Ledger

Figure 2: Consortium blockchain formed by tenants and

the tenant sends the data and its hash value to a provider.
The hash value is used by the service providers to check
the correctness of the initial data upload. After successfully
uploading the data, both the tenant and the provider publish
the hash value of the data to the ledger.

• The veri�cation phase is the procedure after the data is cor-
rectly uploaded and the hash value published in the ledger.
A tenant sends a request for the provider to perform an in-
tegrity checking and receives the hash value computed over
the current state of stored data. Using the tags generated in
the previous phase a tenant can con�rm the correctness of
the stored data. If the data is not correct, a tenant can claim
an SLO violation using the proof stored in the ledger and
proceed with the next procedure as stated in the SLA.

Section 6.2 presents a more detailed description of each phase.
The blockchain is serving as a secure storage for hash values and
the provider’s infrastructure stores the actual data.

6.1 Architecture
There are �ve main components (see Figure 1): an underlying
blockchain, a smart contract (chaincode), a blockchain application, a
service provider (cloud) and a user (tenant).

• The underlying blockchain is the blockchain network which
stores pieces of evidence (hash values) of data. The hash
values are used as an anchor, referring to the original data.
This component is assumed to be trusted and secure. The
network is a consortium blockchain formed by the tenants
and providers, i.e. a private blockchain having more than
one authorized entity to add blocks (see Figure 2). Every
participant in the network holds all valid blocks and updates
the list according to the consensus algorithm. Our SLA ver-
i�cation method can be used with any type of consortium
blockchain. The number of required participants in the net-
work depends on the type of blockchain implementation
used and the resiliency model requirement (e.g. using HLF
with a crash fault tolerant consensus algorithm, to tolerate
f number of failures requires 2f+1 nodes). See Section 7 for
implementation details.

• A smart contract is the logical and programmable component
of blockchains to perform di�erent tasks. It is the only com-
ponent which directly interacts (performs read and write
operations) with the underlying blockchain. Our smart con-
tract consists of the following functions: initLedger() called
only once to initialize the blockchain, addData(data) used to
add ‘data’ to the ledger, queryData(data) to check if ‘data’ is



Tenant Provider
Ledger

Setup phase

Verification phase

1

2
3

4

6
7

A

B

5 5p
4p

6p
7p

Figure 3: Data integrity veri�cation process, (A) setup phase
and (B) veri�cation phase

in the ledger and Invoke(f, param) used by external applica-
tions to call a function from the smart contract.
To avoid duplicate entry when receiving a write operation
from a tenant or provider, the smart contract �rst checks if
the same data exists in the blockchain. If it found the same
data it returns the block ID of the existing data. Otherwise it
will add the requested data. Thus, even if both tenants and
providers make a separate request using the same data, the
data will be added only once, and both the tenant and the
provider will hold the same block ID.

• Blockchain application is a module which acts on behalf of a
user, i.e. the entitywhowants to call functions from the smart
contract. The caller can be either tenants or the provider to
store or retrieve a piece of evidence for a data block. Our
application contains the storage module used to store evi-
dences in the ledger and the veri�cation module to retrieve
evidences. These modules call the addData() and queryData()
functions respectively from the smart contract.

• The service provider is an entity providing the storage service.
The provider o�ers SLAs to guarantee data integrity. As
described in Section 5 providers are not malicious, and they
can respond to requests (challenges) from a tenant. They can
also perform veri�cation in order to check the correctness
of an SLO breach claim from tenants.

• Users are owners of the data stored in the cloud and they sign
an agreement with the cloud provider. Users add evidences
of data integrity into the ledger and they perform veri�cation
of data integrity to check if the SLO is still valid.

6.2 Integrity Checking Process
The process of checking integrity contains two phases, the setup
and veri�cation phases. In the setup phase, the tenant generates tags
for later veri�cation. In the veri�cation phase, the actual checking
is performed by using the evidence generated in the previous phase.
Figure 3 shows the two phases; in addition we provide algorithms
(Algorithms 1 and 2) describing both phases. The su�x ‘p’ in the
�gure represents the tasks performed by the provider.

6.2.1 Setup phase. Figure 3 (A) shows the setup phase and Algo-
rithm 1 shows the procedure in the setup phase (the line numbers
in the algorithm represent the arrow numbers in the �gure).

1. The tenant (the data owner) performs an operation on the
data to produce tags. In practice, this procedure is hashing
the data using a hash algorithm e.g. SHA-x, or xxHash. Since
we consider non-malicious inputs, a non-cryptographic hash

algorithm is enough for our use case. By using this step the
tenant generates the required tag values.
The tags include three parts: (i) the hash of the data, H(D), (ii)
n random strings called nonce, (R1,R2...Rn ), and (iii) the hash
of the data concatenated with each random string, (H (D +
R1), H (D+R2) ... H (D+Rn )). The number of random strings
(‘n’) is determined by the length of the SLA validity period
and the frequency of veri�cation. For example, if an SLA
is valid for �ve years and veri�cation is performed once
per day, the tenant will generate 1825 (5 * 365) di�erent
strings and performs the hash of data plus a random string,
for every value. The hashes and generated random values,
i.e (H (D + R1), H (D + R2) ... H (D + Rn )) and (R1,R2...Rn ),
should not be shared with other parties, especially with the
provider. These nonce values are used to force providers into
performing a fresh hash computation. Even if the method
requires (n + 1) hash operations, it is practical because of
two major reasons: (i) the SLA has a validity period and (ii)
data integrity is not a property which is checked very often,
unlike availability. Thus, the variable ‘n’ is bounded.

2. The tenant uploads the data with the hash value, i.e. (D, H(D))
to the cloud storage. Upon receiving the data, the service
provider runs the same hash function over the data and
compares the result with the provided hash value. If the
value matches the provider sends a con�rmation; otherwise,
the provider assumes there is an error in the data transfer
and noti�es the tenant. In the case of such an error message,
the tenant should repeat the process.
In practice this process is not novel. Amazon S3’s [3] ‘s3api
put-object’ command takes ‘--content-md5 and --metadata’
arguments and Amazon uses this information to perform
integrity checking. Amazon con�rms the correctness by re-
turning an ‘Etag’ and stores the hash value with the data.
This step is done only once unless the data is changed. In
that case, the hash of the new data should be computed.

3. Once the upload is con�rmed the tenant publishes the hash
value H (D) in the ledger. Publishing a hash value can be
achieved by using the storage module from the client appli-
cation. Providers also publish H (D) to the ledger. However,
the smart contract prevents duplicate entries in the ledger;
thus the second addData() operation returns the block ID of
the previously added data. This way both the provider and
the tenant have the same block ID.

6.2.2 Verification phase. At this stage, H (D) is published, and both
the tenant and provider have a block ID referring H (D) in the
ledger. Note that the strings (R1,R2...Rn ), and H (D + R1), H (D +
R2) ... H (D + Rn )), are stored privately by tenants.

To perform veri�cation, a tenant can challenge a provider to
compute a hash value over the current state of the stored data.
Figure 3 (B) and Algorithm 2 show the veri�cation phase process.

6. A tenant selects a Ri and a �le name to be checked and sends
it to the provider. This value of Ri is then removed from the
set of random numbers, i.e. it will be used only once.

7. The provider computes the hash of the data with the nonce
(Ri ) and returns the result to the tenant. The tenant compares



Algorithm 1: Setup phase
Input: Data ‘D’, Hash function ‘H()’
Result: n Random strings (R1,R2...Rn ), Hash of ‘D’ H(D) and

Hash of ‘D’ with random strings
(H (D + R1), H (D + R2) ... H (D + Rn ))

1 Generate n random strings, compute H (D) and
(H (D + R1), H (D + R2) ... H (D + Rn )) ;

2 Upload the data, i.e send (D,H (D)) to the service provider ;
3 The provider computes a fresh hash of ‘D’, H (D)0 and

compares it with the received one;
if H (D)0 == H (D) then

return ‘success’ ;
else

return ‘error’ ;
end

4 if the previous step is successful then
addData(H (D));

else
return to step two and re-upload the data;

end
5 Get blockID, the blockID indicates where H (D) is stored in the

ledger

the return value with the locally stored value and concludes
about the integrity of the data stored in the cloud.
In the event of a discrepancy between these two values, a
tenant can claim for an SLO violation and use values from
the ledger as evidence. Our integrity veri�cation process
guarantees that the tenant and the service provider will hold
the same block ID value, i.e. they both refer to the same
value in the ledger. Note that holding the same pointer to a
secured data storage location does not automatically resolve
a con�ict between tenants and providers. However, it can
help in the process to resolve a disagreement. One way of
such a usage can be in the process of legal action.

Values written in the ledger are immutable, i.e. they are secured by
duplication and the consensus algorithm; hence, the ledger is serv-
ing as a secure and trusted anchor for both tenants and providers.

Service providers can check the integrity of stored data, by hash-
ing the data over its current state and comparing the result with the
one stored in the ledger. This checking process is especially helpful
when there is a complaint from tenants, and a provider wants to
check the validity of such claims.

7 IMPLEMENTATION
We have a prototype implementation of the proposed data integrity
SLA veri�cation tool. This section presents the implementation
details by describing each component listed in Section 6.1.

We used Hyperledger Fabric (HLF) [16] as a back-end blockchain.
For our use case, the unique features of HLF provide three advan-
tages over other implementations. HLF is permissioned, there is no
native digital currency, and it allows writing a smart contract in
any programming language. As a permissioned ledger, HLF allows
us to create a consortium blockchain network with the tenants
and the provider as the participants. The absence of native digital
currency allows participants to perform operations on the ledger

Algorithm 2: Veri�cation phase
Input: n Random strings (R1,R2...Rn ) and Hash of ‘D’ with

random strings (H (D + R1), H (D + R2) ... H (D + Rn ))
Result: true (no data corruption) or false (there is data

corruption)
6 Select one Ri from the set of strings and send it to the provider.

Remove Ri from the set of strings in order not to use it again ;
7 Compute H (D + Ri ) and return the result ;
if result == Previously computed H (D + Ri ) then

return ‘true’ ;
else

return ‘false’;
end

without transacting payments for each operation. Writing a smart
contract using general purpose programming languages helps to
develop smart contracts easily and rapidly. Additional bene�ts of
HLF include its modular consensus, and its active community both
from academia and industry. Note that other consortium blockchain
networks can be easily adapted for our use case.

All the other modules are implemented using Python except the
smart contract, which is written using the Go programing language.
We used the xxHash [15] algorithm to perform hash operations.
xxHash is an alternative to the SHA hash algorithm families. It is a
non-cryptographic hash algorithm with better speed than SHA fam-
ilies. The main criterion for the hash algorithm is to avoid collisions
and since we consider non-malicious inputs a non-cryptographic
hash algorithm is enough for our use case. We use xxhash.xxh64()
method in our implementation and incremental hashing based on a
�xed block size is used rather than hashing the whole data at once
to decrease the hashing time.

8 EVALUATION
This section presents the setup used to perform a performance eval-
uation of the proposed method and a discussion on the performance
and the security of the proposed method.

8.1 Experimental Setup
We run our experiment on Grid5000 [10] testbed. Three physical
nodes are used to represent a user, a provider and a consortium
blockchain built using Hyperledger Fabric (HLF). Each physical
node contains two Intel Xeon E5-2630 v3 CPU, eight cores per CPU
and 128 GB memory, all running Ubuntu version 14.04.

The entire blockchain network runs on a single physical node
with containerized services, i.e. participants and related compo-
nents are instantiated using Docker containers [6], and they com-
municate through virtual networks. Our blockchain network con-
tains ten participants. HLF uses a structure of organizations and
peers, and in our network there are �ve participating organizations
(i.e. each organization has two participants in the network). For our
experiment, one node in the network is owned and managed by a
tenant and one node by a provider. The remaining eight nodes can
be seen as other tenants and providers participating in the network.

HLF is con�gured to use Kafka cluster and Apache ZooKeeper
ensemble [16] implementing a crash fault tolerant consensus algo-
rithm. There are four nodes in the Kafka cluster and three nodes



forming the ZooKeeper ensemble. In practice, since HLF is modular
and our veri�cation method is not dependent on the consensus pro-
cess, any algorithm can be plugged and used, including Byzantine
fault-tolerant algorithms. The network represents providers and
tenants who agreed on SLA terms on guaranteeing the integrity of
data outsourced to the cloud infrastructure.

A second separate physical node represents a Storage as a Service
cloud provider. Users sign an SLAwith the provider and submit their
data after performing the setup process described in Section 6.2.
In our experiment the provider service is based on python Simple
HTTP server [13]. A third separate physical node is used to rep-
resent a user. Users perform the setup and veri�cation process on
this node.

The data size is a signi�cant factor in our veri�cation process
because the time needed for operations like hashing is directly
related to the data size. For our experiments, we used di�erent data
sizes ranging from 2GB to 16GB. This range of data sizes is enough
to show our experiment goals, but in practice, cloud users can
upload tens or hundreds of gigabytes of data to the cloud. Initially,
all the �les are not cached i.e. the cache is cold.

8.2 Performance Evaluation
The proposed SLA veri�cation method requires two additional
resources. First, time to perform the steps presented in Section 6.2.
Second, at least one node to participate in the HLF blockchain
network. The results of the performance evaluation are structured
in three parts: the time required for operations in the setup phase,
the overhead of the veri�cation phase, and additional resources
required to participate in the process.

In an environment where there is no integrity checking the only
task is to upload the data to the cloud provider. Adding integrity
checks requires two more tasks, namely hashing the data and pub-
lishing the hash value in the ledger. There are two kinds of hash
operations performed by tenants: (i) hashing the data alone to be
sent for the provider and be published in the ledger, and (ii) hash-
ing the data with random nonce values. Figure 4 shows the time
required for the �rst kind of hashing, publishing the hash value,
and uploading data. Note that the time to publish a hash of the
data is constant, since the output of a hash function have �xed size.
Time to publish means the time required to write a hash value into
the ledger. As shown in the �gure it is relatively small (10% and 1%
for 2 and 16 GB respectively) compared to the total time. However,
our blockchain network is being simulated on a single physical
machine. In a real production setup, the time could be higher since
participants are physically distributed.

2 GB 4 GB 8 GB 16 GB
Data size (GB)

0

5

10

15

20

25

30

35

40

45

50

55

D
ur

at
io

n
(S

ec
)

Time required for upload, hash and publish operations

Upload

Hash

Publish

Figure 4: Time for upload, hash&publish tasks (setupphase)

The results of all our experiments are reported over an aver-
age of ten rounds. Writing to the ledger takes on average 0.725
seconds, almost twice the time required for a read operation. It is
because writing to the ledger also performs a read operation to
avoid multiple entries of the same data in the ledger.

The second type of hash consists in selecting n random strings
and hashing the data with each of those strings. For example, with
an SLA having a validity period of �ve years and a frequency of
one veri�cation per day, the tenant selects 1825 random strings
and hashes the data with each string. In comparison, our method
performs a smaller number of hash operations than other crypto-
graphic solutions presented in Section 4.2. However, it takes more
computation time than other solutions, because our method per-
forms a hash of the whole data with each random strings while
other solutions compute a hash of a few blocks out of the whole data.
Parallelization can be used to optimize this process (see Section 9).

Without considering the second type of hash, Figure 4 shows that
the time required for uploading data is dominant over other tasks.
This task is not avoidable even without performing an integrity
check. For the second type of hash, if a single hash operation takes
t seconds, the total operation takes (n ⇥ t ) seconds using a single
process, where n is the number of random strings. For example,
to hash a 2 GB and 16 GB �les take 0.4564 and 3.4266 seconds
respectively. However, this task is highly parallelizable and the time
could be optimized to (n⇥t )

p , where p is the number of processes
used for the hash operations and it is bounded by the number of
CPU cores available on the tenant’s machine.

The veri�cation phase consists of asking providers to perform a
hash of the data with one random string. Hence, this hashing task is
the only additional time compared to the baseline i.e. downloading
the data without doing integrity checks. Figure 5 shows a compari-
son between the baseline (without integrity check) and checking
integrity performed using the setup described above. The baseline
operation (the solid blue line in Figure 5) measures only the time
needed to download the given data while the integrity check (the
dotted orange line in Figure 5) measures time to download the data
plus the time for integrity checking operations. Doing integrity
checks introduces an addition of around 6% of total time. The ad-
ditional time is a result of hashing, and it is directly related to the
data size which is also related to the baseline (download) time.

At least one node is required to participate in the HLF blockchain
network. A tenant or a provider can join the HLF network as an
organization with minimum requirements for operation. These
include a node which participates in the ordering service (i.e. con-
sensus process), a node acting as a peer to maintain the state and
store a copy of the ledger, and a client which acts on behalf of the
tenant and submit transactions. These can be achieved by using
light containers provided by HLF, and they can be hosted in a ma-
chine having as low as 2GB memory. Regarding disk requirements
to store the blockchain data, every entry in the ledger is a key-value
pair (e.g 256 bytes for each key and value). This should be easily
manageable by using regular personal computer storage devices.

9 CONCLUSION
The method proposed in this paper addresses the issue of openness
in the SLA veri�cation process. The method relies on a distributed
ledger using consensus algorithm to keep an untampered state of



2 4 8 16
File Size (GB)

10

20

30

40

50
D

ur
at

io
n

(S
ec

)

Overhead as a result of integrity check

Without integrity check

With integrity check

(a) Time with and without veri�cation

2 4 8 16
File Size (GB)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

P
er

ce
nt

ag
e(

Percentage

(b) Overhead percentage

Figure 5: Time overhead as a result of integrity veri�cation while downloading the data
the stored data. The process integrates security and trust by design.
Tenants and providers can perform veri�cation independently, and
no one is dependent on another single entity. However other entities
are required to keep the blockchain network running.

HLF is used in our prototype implementation with the default
con�guration i.e. without doing any optimization. If there is a need
for high throughput, e.g. a large number of clients with frequent
uploads, HLF can be optimized to handle more than 3500 transac-
tions per second, according to Androulaki et al. [16]. Moreover, in
our experiment, the blockchain network is entirely running on a
single physical node using Docker containers and virtual networks.
In practice, participants in a blockchain network are geographically
distributed. Such distribution introduces additional latency, and our
method should be further evaluated on this regard.

In our veri�cation process, the given data is hashed with n ran-
dom strings, i.e the process executes n hash operations. This veri�-
cation process takes a longer time when compared to other integrity
checking protocols. The hashing process can be optimized by us-
ing parallel processes, since the tasks of hashing the data with n

di�erent random strings are independent of one another.
In our threat model, we assume the existence of a secure com-

munication between cloud providers, tenants, and ledger. In the
absence of such secure communication system, aman-in-the-middle
attack can a�ect our veri�cation process and create a con�ict be-
tween tenants and providers. For example, a malicious attacker can
alter the data sent from the provider to the ledger. Such an attack
can cause a con�ict when a tenant claims an SLO violation.

The provider neither lies nor guesses the result in advance when
asked to compute the hash of data with a given random value
because the tenant uses a di�erent nonce value for each veri�ca-
tion. Service providers can also check the validity of SLO violation
claims by computing the hash of the data over its current state and
comparing the result with the one stored in the ledger.

We assumed that a tenant would keep some part of the generated
proof private. If a tenant loses these values, it is impossible to
proceed with the veri�cation tasks. Hence, the tenant may require
a highly available, secure, and private data storage mechanism.

On top of the proposed method, additional features can be added
to the process. For instance, encryption can be used to add con�den-
tiality. Blockchains can be further elevated to automate di�erent
tasks in the SLA life-cycle including payments for service and au-
tomatic compensation for SLA violation.

In this paper, we showed the advantage of having secure ele-
ments in the SLA veri�cation process for data integrity. The secure
element used in our case is a distributed ledger (blockchain). This
secure component is highly programmable to perform di�erent
tasks; as a result, any remote data integrity checking protocol can
be implemented following our method.

REFERENCES
[1] A�ordable and easy to use decentralized cloud object storage. https://storj.io/
[2] Amazon Compute SLA. https://aws.amazon.com/compute/sla/
[3] Amazon S3. https://aws.amazon.com/s3/
[4] Chainpoint. https://chainpoint.org/
[5] Corrupt iCloud data causes iOS crash. https://www.macobserver.com/tmo/

article/corrupt-icloud-data-can-cause-ios-springboard-home-screen-crash
[6] Docker. https://www.docker.com/
[7] DriveHQ SLA. https://www.drivehq.com/premium/DriveHQSLA.aspx
[8] Dropbox. https://www.dropbox.com/
[9] Facebook temporarily loses more than 10% of photos. http://bit.ly/2lwHkfU
[10] Grid5000. https://www.grid5000.fr/
[11] Guidance on GxP data integrity. https://www.gov.uk/government/publications/

guidance-on-gxp-data-integrity
[12] On Public and Private Blockchains. https://blog.ethereum.org/2015/08/07/on-

public-and-private-blockchains/
[13] Python HTTP servers. https://docs.python.org/3/library/http.server.html
[14] S3 data corruption. https://forums.aws.amazon.com/thread.jspa?start=0&

threadID=22709&tstart=0
[15] xxHash. http://cyan4973.github.io/xxHash
[16] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro, D.

Enyeart, C. Ferris, G. Laventman, et al. 2018. Hyperledger fabric: a distributed
operating system for permissioned blockchains. In Proc. 13th EuroSys. ACM.

[17] F. Apolinário, M. Pardal, and M. Correia. 2018. S-Audit: E�cient Data Integrity
Veri�cation for Cloud Storage. In Proc. TrustCom/BigDataSE.

[18] E. Gaetani, L. Aniello, R. Baldoni, F. Lombardi, A. Margheri, and V. Sassone.
2017. Blockchain-based database to ensure data integrity in cloud computing
environments. In Proc. ITASEC.

[19] Z. Hao and N. Yu. 2010. A multiple-replica remote data possession checking
protocol with public veri�ability. In Proc. ISDPE. IEEE.

[20] Z. Hao, S. Zhong, and N. Yu. 2011. A privacy-preserving remote data integrity
checking protocol with data dynamics and public veri�ability. TKDE 23, 9 (2011).

[21] Bin Liu, Xiao Liang Yu, Shiping Chen, Xiwei Xu, and Liming Zhu. 2017.
Blockchain based data integrity service framework for IoT data. In Proc. ICWS.

[22] W. Luo and G. Bai. 2011. Ensuring the data integrity in cloud data storage. In
Proc. CCIS. IEEE.

[23] S. Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. https:
//bitcoin.org/bitcoin.pdf

[24] R. A. Popa, J. R Lorch, D. Molnar, H. J. Wang, and L. Zhuang. 2011. Enabling
Security in Cloud Storage SLAs with CloudProof.. In Proc. USENIX.

[25] P. Wang, D. J. Dean, and X. Gu. 2015. Understanding real world data corruptions
in cloud systems. In Proc. IC2E. IEEE.

[26] A. T. Wonjiga, L. Rilling, and C. Morin. 2018. Veri�cation for security monitoring
SLAs in IaaS clouds: The example of a network IDS. In Proc. NOMS.

[27] A. T. Wonjiga, L. Rilling, and C. Morin. 2019. De�ning Security Monitoring SLAs
in IaaS Clouds: the Example of a Network IDS. Technical Report RR-9263. Inria.

[28] Y. Zhu, H. Hu, G. Ahn, and M. Yu. 2012. Cooperative provable data possession
for integrity veri�cation in multicloud storage. TPDS 23, 12 (2012).

https://storj.io/
https://aws.amazon.com/compute/sla/
https://aws.amazon.com/s3/
https://chainpoint.org/
https://www.macobserver.com/tmo/article/corrupt-icloud-data-can-cause-ios-springboard-home-screen-crash
https://www.macobserver.com/tmo/article/corrupt-icloud-data-can-cause-ios-springboard-home-screen-crash
https://www.docker.com/
https://www.drivehq.com/premium/DriveHQSLA.aspx
https://www.dropbox.com/
http://bit.ly/2lwHkfU
https://www.grid5000.fr/
https://www.gov.uk/government/publications/guidance-on-gxp-data-integrity
https://www.gov.uk/government/publications/guidance-on-gxp-data-integrity
https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/
https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/
https://docs.python.org/3/library/http.server.html
https://forums.aws.amazon.com/thread.jspa?start=0&threadID=22709&tstart=0
https://forums.aws.amazon.com/thread.jspa?start=0&threadID=22709&tstart=0
http://cyan4973.github.io/xxHash
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

	Abstract
	1 Introduction
	2 SLA Life-cycle for Monitoring Data Integrity
	3 Problem Description
	4 Background and Related Work
	4.1 Blockchain
	4.2 Related Works

	5 Threat Model
	6 Data Integrity Checking
	6.1 Architecture
	6.2 Integrity Checking Process

	7 Implementation
	8 Evaluation
	8.1 Experimental Setup
	8.2 Performance Evaluation

	9 Conclusion
	References

