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1. Introduction 6

Programmable Logic Controllers (PLC) are ruggedized computing devices 7

used in process automation. They control processes such as manufacturing as- 8

sembly lines, robotics, scientific instruments, and other machinery that requires 9

some sort of logic to regulate its function. PLCs are built to be simple in func- 10

tion, as in the process shown in Figure 1, and also tolerant of severe conditions 11

such as moisture, high or low temperature and dust. PLCs have existed since 12

the 1960s, before cyberattacks in the modern sense were conceived of, and also 13

before remote network access to PLCs was considered. Early PLCs used serial 14

connections, and only much more modern PLCs have acquired network com- 15

munication capabilities via TCP/IP in the form of Modbus known as Modbus 16

TCP, and other, similar protocols. Because PLCs can control valuable, phys- 17

ical equipment, and because control systems can have physical consequences 18

to equipment and human life, their secure operation is critical to maintain- 19

ing safety [1]. False outputs can have catastrophic consequences, as Zetter [2] 20

demonstrates. Tampering with a PLC can have disastrous effects. Therefore, 21

knowing that the correct program is running is essential to safety and security. 22

Prior work has shown that non-intrusive load monitoring can be useful to 23

infer the functionality of electrical systems [3]. Recently, it has been shown that 24

patterns in power current signals can be used to infer activity taking place on 25

a computing system [4, §4]. We hypothesized that power signals (specifically 26

current and voltage) could also be used to detect such activity on a PLC. To test 27

our hypothesis, we conducted experiments running different PLC programs. We 28

also examined the relative importance of various features in the classification of 29

these programs. This paper reports on our approach and our results. 30

This paper is organized as follows. Section 2 discusses related work on power 31

analysis and machine learning to classify signals. Section 3 briefly describes how 32
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Figure 1: A PLC with inputs, outputs, a power supply, and external programming devices.

we collected data for this power analysis. Section 4 discusses various approaches33

to conduct the classification of time series data, while Sections 5 and 6 illustrate34

the experimental framework used in this study to conduct and evaluate the35

classification of PLC programs. Subsequently, we describe results in Section 736

followed by conclusions in Section 8. Finally, we discuss some limitations and37

future work in Section 9.38

2. Related Work39

Power analysis has long been used for non-intrusive load monitoring. Hart [3]40

was among the first to apply the technique for identifying physical systems by41

their power signatures. More recently, Gillis and Morsi [5] used a single power42

sensor to detect, if and which breaker in an electric system is open and closed,43

respectively. The task was to specify the start time of such events, with very44

characteristic switching signals in the data. The authors used wavelets with a45

supervised and unsupervised learning approach. Liebgott and Yang [6] used an46

active learning approach to identify the usage patterns of a set of household47

appliances which was similar to the previous work in that it also identified the48

start and end signatures in noisy measurement data.49

In computing, power analysis was one of the first methods to extract hidden50

information from computing devices. Cryptographic keys have been a partic-51

ular target of such techniques [7]. In addition, computation stages have been52

derived from power analysis [8]. Power consumption has been exploited for a53

variety of other purposes including the identification of Trojans in integrated54

circuits [9] and to expose a wide spectrum of system-level host information in55

general computing container clouds [10].56
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Also related to our work is the use of machine learning for signal classifica- 57

tion. Llenas et al. [11] studied the performance of machine learning models for 58

classifying wireless signals using a sampling of the power of the signal over time. 59

Acharya et al. [12] used a convolutional neural network (CNN) to distinguish 60

between normal and myocardial infarction (MI) ECG signals. Most recently, 61

Copos [4, §4] identified programs running on high-performance computing ma- 62

chines, applying frequency and wavelet analysis to power signatures. 63

Our approach is different from these existing approaches in that, to the best 64

of our knowledge, none of these prior approaches has attempted to identify the 65

activity running on a PLC. At the same time, our approach builds on essentially 66

all of this prior work by leveraging both data sources (current and voltage) as 67

well as analysis techniques. 68

3. Data Collection 69

A phasor measurement unit (PMU) is a device that measures electrical waves 70

[13]. Specifically, it measures voltage magnitude, voltage angle, current magni- 71

tude, and current angle (i.e., a phasor [14]). We generated and collected the 72

data by running different PLC programs on a single Siemens Simatic S7-1200 73

PLC [15] and collecting power results using a distribution-level PMU (termed a 74

“micro-PMU” or“µPMU” [13]), manufactured by Power Standards Laboratory, 75

that measures power signals at 512 samples per cycle, 60 cycles per second, and 76

outputs samples at 120 samples per second — a much higher frequency than 77

typical transmission level PMUs. We monitored the power draw of the PLC 78

with a dedicated current loop that fed into the µPMU. 79

We sequentially deployed 10 different ladder logic programs (a graphical, 80

low-level programming language) to the PLC that represented typical work- 81

loads (see Table 1). The programs were chosen with two criteria in mind. The 82

first was that they should exercise different parts of the PLCś functionality 83

i.e. networking, analog-to-digital conversion etc. We chose these programs as 84

distinguishable from each other in a relatively major way. We then chose some 85

programs that had overlapping PLC functionality. We did this to make our task 86

more challenging and we were interested in determining if even small changes 87

to the same program could be identified. 88

We collected and labeled µPMU data for each of the running programs. 89

Additionally, an “idlestate” was recorded where the PLC was not running any 90

code. This enabled us to find a baseline for our supervised learning approach. 91

We conducted several experiments namely exp6, exp7, exp8, and exp9 at differ- 92

ent times by running different PLC programs. These different experiment runs 93

allowed us to design and test simple and hard problems as described below. 94

Goals and Threat Model. PLCs control a myriad of critically important systems 95

including gas pipelines, electrical power grids, railroad signals, and potable wa- 96

ter distribution. Any malicious activity targeting this device could cause damage 97

to equipment, failure of safety systems, or reckless release of hazardous mate- 98

rial. Attacks on a PLC could come in the form of unauthorized modifications 99
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to the firmware, configuration alteration or changing the execution control flow100

as described in [16]. For our work, we define misbehavior of a PLC as the in-101

tentional manipulation of the ladder logic code to adversely affect the process102

being controlled. This type of attack could be used to incorrectly switch rail-103

way tracks, mix incorrect amounts of chemicals, disrupt electrical substation104

machinery, cause tank pressure sensors to be read incorrectly, etc.105

Our goal was to determine if the currently running program was the correct106

program. In order to do this, we needed to distinguish between major and very107

minor changes in the programs. Therefore some of the 10 programs were very108

similar to each other (i.e., a constant had a different value) while others were109

very different. Each program was run for 2 minutes for a total of 14,400 “rows”110

(120 samples/second × 120 seconds) of data containing voltage and current111

measurements for each.112

4. Description of the Classification Problem and Approaches113

The µPMU power data we collected was used to train our machine learn-114

ing models. We attempted to classify the PLC programs based on the energy115

consumption profiles recorded by the µPMU. Since current and voltage were116

changing over time as the program was running, we looked at the problem of117

determining which PLC program was running as a time series analysis problem.118

One approach to classifying time-series data is to use manually-engineered119

features from statistical properties of the signal. This approach typically in-120

cludes examining attributes of a time series, such as minimum, maximum,121

mean, standard deviation, and frequency. These attributes can be used to infer122

properties of the time series as a whole or for some distinct window of time.123

However, this approach often requires some domain knowledge about the data,124

such as specific frequency bands and other statistical properties. Image clas-125

sification problems are examples of this approach, where manually-engineered126

features are used by applying certain filters to the image data. Another ap-127

proach to classifying time-series data is in the time domain. In contrast to128

using manually-engineered features for classification problems, in this approach129

the data is looked at, point by point, sequentially.130

To classify each program using the µPMU power data, we tried several dif-131

ferent machine learning approaches including Support Vector Machines (SVM),132

K-Nearest Neighbor (KNN), Random Forests (RF), and Convolutional Neural133

Networks (CNN). In the end, we chose RFs due to their ability to classify large134

datasets accurately with computational tractability, and CNNs due to their ac-135

curacy and ability to classify the data without having to use pre-built filters.136

To test the performance of our models, we used two scenarios representing137

basic and difficult classification problems as defined in Section 5. In both sce-138

narios we also classified programs with significant changes among themselves.139

The overall accuracy of each model was calculated by exact match accuracy —140

that is, the total number of correctly classified programs divided by the total141

number of all the samples.142
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Figure 2: A Schematic of a Random Forest Classifier Random Forest Classifier.

1

n

n∑
i=1

I(Yi = Zi)

where I is the indicator function. 143

4.1. Random Forest (RF) 144

We selected the random forest classifier due to its computational efficiency 145

on large datasets and its ability to handle a large number of input variables 146

as well as its ability to generalize well. Additionally, random forests show the 147

importance of features in the classification which would assist us in deciding 148

which features to keep in our models. 149

To best describe the random forest classifier, we first describe a decision tree 150

classifier. Decision tree classifiers [17] are simple yet powerful models which 151

employ a divide and conquer approach to classification. Data is recursively 152

partitioned into sections based on the best split which separates out one class. 153

The right side of Figure 2 shows a magnified decision tree. 154

Random Forests are collections of these decision trees as shown on the left 155

side of Figure 2. For each sample of data, a number of decision trees’ results are 156

aggregated. The final output is then the class that was predicted the most by 157

the individual decision trees. For our Random Forest model, we leveraged the 158

RandomForestClassifier [18] as part of the scikit-learn package [19] with default 159

parameters. 160

4.2. Convolutional Neural Networks (CNN) 161

Convolutional Neural Networks (CNN) are designed to recognize patterns 162

in images directly from the pixel representation of an image [20]. We decided 163

to try this approach on our dataset, since the current magnitude over time can 164

be thought of as a “picture” of the running PLC program. The input values 165

are related positionally to each other, i.e., nearby values in the time-series of 166

current magnitude are extremely related. 167

A CNN, in contrast to RF, does not require complex feature engineering. 168

Data can be input “as is” into the classifier. This is key because a highly accurate 169
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model can be trained without the need for domain expertise regarding the PLC170

programs. The training phase learns “filters” which become more complex as171

the data propagates through deeper and deeper layers. CNNs recognize simple172

patterns in the initial layers building up to much more complex patterns in the173

final layers. They extract local features by constraining the reactive region of174

the hidden layers to small local patches. Passing through the layers, neurons175

become related to each other, and some become more influential than others.176

Figure 3 shows a typical CNN.177

Figure 3: A Schematic of a typical Convolutional Neural Network.

For any machine learning model, it is important to guard against overfitting178

the data. That is, it is necessary to avoid creating a model that is too highly179

tuned to the idiosyncrasies of the training dataset and hence does not perform180

well on new data. For CNNs, using a “dropout layer” randomly selects neurons181

so as not to continually use the most influential ones as predicting the final182

output. This guards against overfitting by allowing the network to learn different183

views of the data.184

We used Tensorflow [21], an open source library developed by Google for185

dataflow programming of highly computational applications to implement our186

neural network model. The CNN was composed of three layers: two convolu-187

tional layers, then a fully connected layer. The “Softmax” activation function188

was used. It maps the output to c classes as a set of probabilities. The highest189

probability class is assigned as the predicted class.190

Table 1: PLC Program Description

Networking ADC Digital out Description
Idlestate CPU in stop state
program 3 x Reads from Modbus, runs a function on the data and returns decision via Modbus
program 4 x Makes LEDs blink (1s period)
program 5 x x Read switch status and displays on build in LED (all off)
program 6 x x Reads analog value and sends it via modbus
program 7 client x x version 2 of program 6
program 7 server x version 2 of program 3
program 8 x version 3 of program 3 (debug variables present in program)
program 9 x PROFINET Client
program 10 x version 3 of program 3 (release version/no debug variables)
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5. Experimental Scenarios 191

Our experiments were broken up into two different scenarios. These scenarios 192

were of particular interest for testing our hypothesis and being able to use the 193

current approach in monitoring potential real-time manipulation of the PLC. 194

We describe them in the following subsections. 195

5.1. Scenario 1 196

First, we combined all datasets (experiment runs 6, 7, 8, and 9) together 197

and used the result of 5-fold cross validation as the performance indicator. We 198

considered this scenario a useful starting point. Combining all datasets into one 199

big dataset, and subsequently using cross-validation led to higher accuracy than 200

Scenario 2. This was due to the fact that cross-validation’s random selection of 201

the training set contained a small amount of data from each run with its specific 202

random noise, thereby letting the classifier learn the random information for that 203

run. This approach would perform well in an online situation where training 204

data would continuously be added to update the model. 205

5.2. Scenario 2 206

Scenario 2 involved training the classifier on three separate datasets (e.g., 207

experiment runs 6, 7, and 8) and testing on the fourth dataset (e.g., experiment 208

9), i.e., 4-fold cross validation with completely different datasets. This problem 209

was more complex than Scenario 1 because experiments were carried out at 210

different times of the day and different days, and each dataset was subject to 211

influence by external factors such as voltage fluctuations and temperature. This 212

scenario was used to test the robustness of a fixed model that could be trained 213

once and used statically any time in the future without the need for additional 214

online training data. In this scenario, we report the performance measures as 215

the average accuracy achieved for individual classifications of each dataset while 216

training on the rest of the three datasets. 217

6. Classification of PLC Programs for Different Scenarios 218

These scenarios posed significant challenges in classifying PLC programs. 219

Considering the complexity of the classification problem at hand, both time and 220

frequency domains were deemed necessary for our analysis. Therefore, in order 221

to detect subtle differences between PLC programs, we tested our scenarios in 222

both the time and frequency domains individually. This allowed us to more 223

granularly tune our machine learning models’ metaparameters. 224

The µPMU power data was a time series of electrical information collected 225

from the power draw of the attached PLC. It included current magnitude and 226

angle, and voltage magnitude and angle. The data was labeled for each PLC 227

program run, plus the “idlestate” as described in Section 3. 228
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6.1. Feature Engineering229

We applied feature engineering techniques to the data including rolling av-230

erages, time-lagged windows and Butterworth filters.231

The rolling average data was created by calculating the average of the data232

points over a window of time. This window was then slid through the entire233

original dataset to create a new dataset. Rolling averages have the effect of234

smoothing the data. Because it averages all features in a window of time, it235

removes the small variations between successive time intervals which could be236

due to noise. This allowed our machine learning models to more readily focus237

on the signal rather than the noise.238

For time-lagged windows, we combined consecutive values of the current239

magnitude to form a much larger row of input features we defined as a “lag240

window.”241

Let T be a time series of length n, a lag window Wx of T is a sampling of242

length w < n of contiguous positions from T , such that Wt = tx, ...tx+w−1 for243

1 <= x <= n− w + 1.244

We flattened m contiguous current samples into vectors. Each component245

of the vector was a current magnitude at consecutive moments in time. We can246

think of the m values of current magnitude as an m dimensional vector and247

note that within this m dimensional space only a small number of “points” are248

associated with a particular PLC program run.249

Because different PLC programs exhibit varying frequencies within certain250

bands in the spectrum, we used the Butterworth filter—a type of signal pro-251

cessing filter designed to mask unwanted frequencies, and known to give an252

especially flat frequency response in the passband [22].253

Each of these techniques created an alignment-free framework which allowed254

for the fact that the beginning and end points of the program runs were not255

necessarily precisely aligned with the recorded start time. This was due to the256

fact that each program was started manually and the measurement granularity257

of the µPMU was in 1
120 ths of a second.258

6.2. PLC Program Classification in Time Domain259

In the time domain, for scenario 1, we used current magnitude and angle, and260

voltage magnitude and angle measurements. For scenario 2 we used only current261

magnitude and angle, as we noted that these measurements are determined by262

the PLC itself and are not dominated by the surrounding environment since the263

PLC only consumes ≈ 3W as opposed to other possible noisy consumers in the264

measurement environment that may consume hundreds of watts.265

In scenario 1 we used each set of timestamped values of these features, as a266

separate row of input. We also applied rolling averages to these features. For267

scenario 2, we applied rolling averages as well as a lag window.268

Through heuristics, we determined that the optimal size for the lag window269

for our data was approximately 6 seconds (m ≈ 720) and a window size of 20270

gave the best for the rolling average. That being said, this result is for our data,271

which, as with all data, has noise of various kinds. Other datasets may have272
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different ideal lag windows and window sizes. In order to identify such datasets, 273

procedures and guidelines are discussed in more detail elsewhere [23]. 274

6.3. PLC Program Classification in Frequency Domain 275

We converted time domain signals into the frequency domain using Discrete 276

Fourier Transform (DFT) [24, 25]. We used individual time series describing 277

a particular feature for a specific PLC program (e.g., the current magnitude 278

for idlestate), and subsequently, we computed frequencies using DFT. Liaw et 279

al. [26] demonstrated that the accuracy of the RF classifier depends on how 280

uncorrelated trees are in the forest. The more uncorrelated trees are in the 281

forest, the more accurate the RF classifier. Therefore, to remove correlations 282

between trees as well as noise, and separate signals so that the individual trees 283

are strong, we used rolling averages and Butterworth filters. Rolling averages 284

(also known as moving averages) reduce the noise in the signals because of the 285

smoothing effect of averages, while Butterworth filters are more versatile and 286

remove unwanted frequencies with a ripple free response [22]. Filter windows 287

were chosen based on the exhaustive search technique. For example, the RF 288

classifier was tested for multiple filter windows (sizes) that were slid through 289

the spectrum. 290

7. Results and Discussion 291

We discuss our results from Tables 2 and 3 separately for frequency and time 292

domains. 293

We also discuss the confusion matrices that show the errors in our predic- 294

tions. Columns are the predictions for each PLC program (or the “idlestate”). 295

For example, in Figure 4a, the first column shows all samples predicted to be 296

“idlestate”, the second column shows all samples predicted as r code10, etc. 297

Rows represent the actual PLC program that was running (or the “idlestate”). 298

The top row shows all samples where the PLC was actually in the “idlestate.” 299

Moving along the row, the mispredictions for “idlestate,” and which programs it 300

was mispredicted as, are shown in the corresponding column. The matrix gives 301

a summary of all mispredictions. All non-zero values outside the diagonal are 302

incorrect predictions. A model with perfect prediction would have a confusion 303

matrix where all values not on the diagonal are zero. 304

We display the confusion matrices as heat maps in order to illustrate the fact 305

that even in the cases of some wrong predictions, the majority of predictions 306

fall into the correct class. This is important because if the model is used over a 307

2 minute window of time, instead of each 0.2 seconds, accuracy would be 100%. 308

We show our accuracy results based on the stricter time constraint to show that 309

our approach can be used to detect a program change within 0.2 seconds of its 310

occurrence. 311
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Table 2: Performance of the Random forest Classifier for two scenarios

Scenario 1 Scenario 2
Without

Roll. Avg.
With

Roll. Avg.
Without
Filters

With
Filtersa

With
Filtersb

All Programs 70.17% 97.7% 11.2% 24.6% 28%
4 Prog. States 77.7% 99.08% 24.2% 28.3% 83%

Filtersa – low pass (with normalized cutoff frequency -2.5E-06)
Filtersb – a low pass (with cutoff frequency -2.5E-06) cascaded with a bandpass filter (4th
order, low cutoff 45 Hz, high cutoff 55 Hz)

7.1. Frequency Domain312

It is clear from Table 2 that the RF classifier performed better for scenario313

1 than scenario 2. For scenario 1, the RF classified more than 70% of programs314

accurately when we trained the classifier using all the datasets. Furthermore,315

the RF classifier’s performance improved from 70% to 77% when a rolling av-316

erage window with a triangular window size of 120 samples (data worth 1 sec)317

was used in the frequency domain. The improved performance of the classifier318

can be ascribed to the rolling average filter that reduced the noise in the sig-319

nals. Similarly, when we used only four program states for classification, the320

RF classifier identified approximately 97.7% to 99.08% of the programs accu-321

rately with and without rolling average filters (Figures 4a and 4b), respectively.322

Correctly predicted programs are shown along the diagonal. The misclassified323

programs (∼ 3%; for all programs) are spread across other cells and do not show324

any pattern, which shows that the RF classifier performed consistently. This325

particular scenario was considered as a simple problem, and the RF classifier326

performed remarkably. Indeed, when the classifier did not perform effectively,327

it was because of the noise in the dataset. Hence, using a rolling average filter328

improved the classifier’s performance significantly.329

Scenario 2 was considered a hard problem, because here we trained the330

classifier on a dataset (combining three different datasets) and testing on a331

completely new dataset (fourth dataset). In this scenario, the RF classifier332

performed poorly and was able to identify programs accurately only 11% and333

24% for for Scenario 1 and Scenario 2, respectively. However, when we used a334

low pass Butterworth filter, the RF classifier showed slight improvements from335

11% to 24% and from 24% to 28% for Scenario 1 and Scenario 2, respectively.336

The classifier performed poorly in identifying all programs (programs with337

major and minor differences). We then tested with a low pass Butterworth filter338

cascaded with a band pass Butterworth filter. This improved accuracy to 83%339

for the four program states (programs with major differences) (Figure 5b).340

Figure 6a compares frequency contents computed for the time series of the341

current magnitude across four program states for Scenario 1. Here, we combined342

all the datasets as described in Section 5. It is clear from Figure 6a that the fre-343

quency contents show different signatures across datasets for different programs;344
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therefore, the RF classifier performed effectively for Scenario 1. Similarly, Fig- 345

ures 6b and 6c compare frequency contents computed for the time series of the 346

current magnitude across four program states for Scenario 2. Figure 6b shows 347

frequencies when a low pass Butterworth filter was applied, while Figure 6c 348

shows frequencies when we filtered signals using low pass and band pass But- 349

terworth filters. It is clear from the frequency contents (Figure 6b) that there 350

is no distinguishable pattern for the RF to detect. For example, r code9 shows 351

different amplitudes for each of the different datasets. Therefore, it is hard for 352

the classifier to perform effectively using these features. Furthermore, Figure 353

6c demonstrates that there are frequency bands across the spectrum where the 354

classifier can grow strong trees, as frequency contents can be distinguished be- 355

tween programs (e.g., PLC programs). Accordingly, the classifier performed 356

relatively better with two filters despite Scenario 2 being a hard problem. 357

7.2. Time Domain 358

As shown in Table 3, for scenario 1, the performance of the RF model in the 359

time domain had 89% accuracy without rolling average and 97% with rolling 360

average using all the available µPMU features (current magnitude and angle, 361

voltage magnitude and angle). The accuracy with only 4 program states rose 362

to 95% without rolling average and 99% with rolling average. When using com- 363

pletely different datasets for training and testing in scenario 2, the accuracy 364

dropped drastically to 20% and 30% with and without rolling average respec- 365

tively. This was due to the fact that many of the programs were too similar to 366

distinguish between. When reducing the PLC programs down to those that were 367

significantly different, the RF model achieved a respectable 71% with rolling av- 368

erage and 76% with lag-windowed magnitude. 369

Figure 7 shows the confusion matrix/heat map for scenario 1 for all pro- 370

grams using rolling averages. As can be seen, the mispredictions are distributed 371

throughout the matrix indicating that there was not a general confusion be- 372

tween any two particular programs and that our technique could be used over 373

some longer window of time to achieve 100% accuracy. 374

Figure 8a shows the heatmap for scenario 2 using lag windows. This model 375

performed relatively well at 76% accuracy. 376

For the CNN model, we only used lag windows and did not perform rolling 377

averages. We did this because the CNN we used was originally designed for 378

image classification, thus we wanted our inputs to be similar to that of an 379

image. For detecting all 10 programs, the CNN did not perform well, (40% 380

in scenario 1 and 30% in scenario 2). We explain this with the fact that the 381

random noise in each experiment is larger than the signature change due to the 382

minimal program changes. However, the CNN performed the best overall in 383

both scenarios for 4 program states at 84%. Of note is that the CNN performed 384

the same on the 4 program states in both scenarios. In this scenario the changes 385

in programs were significant enough to clearly identify each program. 386

Figure 8b shows that the majority of misclassifications occurred due to 387

r code7client being predicted incorrectly as r code9. This may indicate that 388
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portions of r code9 are similar to r code7server (i.e., they both use the network-389

ing function at some point) but not overwhelmingly so, since a preponderance390

of the samples were correctly classified as r code7server.391

8. Conclusion392

Our framework and experiments show that the power signature can identify393

PLC programs as the output of a µPMU using the two machine learning ap-394

proaches of random forests and convolutional neural networks. Our accuracy on395

a single dataset of 10 PLC programs that included programs which were very396

similar, reached 99.08%. Using data from completely separate runs, we could397

still detect major program changes at 84% accuracy.398

In practical terms, once the models are developed, implementation to secure399

an actual system is straightforward and does not require domain knowledge.400

It only entails attaching a µPMU to the PLC and collecting data for a short401

period of time (approximately 5 minutes because a PLC’s cyclic program en-402

sures a signature after a small interval). The model training takes another 30403

minutes. Once training is complete, the model is installed with its associated404

monitoring program which runs constantly, looking for and alerting on detection405

of anomalies. The model does not change unless the PLC program is changed.406

9. Limitations and Future Work407

This study demonstrated the potential for classification of PLC programs408

both in time and frequency domains. We showed that different filters could409

help improve predictions of PLC programs in the frequency domain. Similarly,410

time domain also demonstrated a tremendous potential in the classification of411

various programs. However, data collected on different days resulted in some412

incoherency in signals of the same program between datasets. Moreover, RF413

and CNN classifiers were not able to identify programs with minor differences414

effectively. These issues could be addressed in the future work. It is also desir-415

able to include more complexity in data by using more than one PLC in future416

studies to evaluate the robustness of our method. Future work may involve417

taking advantage of time and frequency domains together by combining the418

two domains. Future work may also include designing a specific filter in the419

frequency domain for a particular problem set. In the time domain, it would420

be interesting to explore how different deeper CNNs would perform when we421

include more features.422

Ensuring cybersecurity typically involves identifying threats in real-time and423

from a variety of different possible origins and threat vectors. Moreover, action-424

able cybersecurity requires higher order defense than detecting simple anomalies425

to identify that something is wrong. We have demonstrated how machine learn-426

ing algorithms can be applied to monitor certain classes of threats to operational427

technology devices controlling cyber-physical systems. However, future research428

will undoubtedly be useful in uncovering solutions to additional classes of cyber429

attacks.430
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(a) Predicting all the PLC pro-
grams using frequencies. Before
computing frequencies, the time
series data were smoothed using a
rolling average filter.

(b) Predicting only four PLC pro-
gram states using frequencies. Be-
fore computing frequencies, the
time series data were smoothed us-
ing a rolling average filter.

Figure 4: Scenario 1 – Confusion matrices for Scenario 1 in frequency domain

(a) Predicting all the PLC pro-
grams using frequencies. Before
computing frequencies, the time
series data were filtered using But-
terworth Filters; a low band filter
was cascaded with a band pass fil-
ter.

(b) Predicting only four PLC pro-
gram states using frequencies. Be-
fore computing frequencies, the
time series data were filtered using
Butterworth Filters; a low band
filter was cascaded with a band
pass filter.

Figure 5: Scenario 2 – Confusion matrices for Scenario 2 in frequency domain

13



(a) Scenario 1 – Comparing the
frequency contents across four pro-
gram states for the current magni-
tude. Before computing frequen-
cies, the time series data were
smoothed using a rolling average
filter.

(b) Scenario 2 – Comparing the
frequency contents across four pro-
gram states for the current magni-
tude. The time series data were
filtered using a low pass Butter-
worth Filter before computing fre-
quencies.

(c) Scenario 2 – Comparing the
frequency contents across four pro-
gram states for the current mag-
nitude using Butterworth Filters,
a low pass filter cascaded with a
band pass filter.

Figure 6: Comparing frequency contents for the current magnitude with different filtering
approaches.

Figure 7: Scenario 1 – Time domain RF using rolling averages on all programs.
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Table 3: Time Domain Performance

Scenario 1 Scenario 2
Without

Roll. Avg.
With

Roll. Avg.
Roll. Avg.

Lag
Windowed

RF all programs 89% 97% 20% 30%
RF 4 prog. states 95% 99% 71% 76%
CNN all programs 40% NA NA 30%
CNN 4 prog. states 84% NA NA 84%

(a) Time domain RF using lag
windows on 4 program states.

(b) Time domain CNN using lag
windows on 4 program states.

Figure 8: Scenario 2 – Confusion matrices for Scenario 2 time domain
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