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Abstract—In this paper, we present a notion of differential
privacy (DP) for data that comes from different classes. Here,
the class-membership is private information that needs to be
protected. The proposed method is an output perturbation
mechanism that adds noise to the release of query response such
that the analyst is unable to infer the underlying class label. The
proposed DP method is capable of not only protecting the privacy
of class-based data but also meets quality metrics of accuracy
and is computationally efficient and practical. We empirically
illustrate the proposed method’s efficacy while outperforming
the baseline Gaussian noise mechanism. We also examine a real-
world application and apply the proposed DP method to the
autoregression and moving average (ARMA) forecasting method,
protecting the privacy of the underlying data source. Case studies
on the real-world advanced metering infrastructure (AMI) mea-
surements validate the excellent performance of the proposed
DP method while also satisfying the accuracy of forecasted AMI
measurements.

Index Terms—Differential Privacy, class-based privacy, Gaus-
sian mechanism, autoregression and moving average, smart meter
data.

I. INTRODUCTION

Differential privacy (DP) [1], [2] has become one of the
most critical concepts in database privacy, gaining an essential
foothold in ensuring that personal or data private to individual
database entries remains indistinguishable after the database is
queried. Broadly speaking, a privacy mechanism for a certain
data query is differentially private if the output of this data
query changes minimally, or with a very low probability,
when a single database entry is added or removed. Numerous
papers give a comprehensive overview of differential privacy.
In [3], the authors treat the problem of differential privacy
from a signal processing perspective and provide a review
of the different mechanisms employed. Differential privacy
mechanisms can be broadly classified as input perturbation,
i.e., adding noise to the input or to the data before responding
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to the query, and output perturbation, noise addition after the
query response is computed. Most of the time, Laplacian or
Gaussian noise is added to the input or the output of the query.
The so-called exponential mechanism [4], [5] is another often-
used differential privacy mechanism with good guarantees,
particularly in the case where the utility of differentially
private query response is also taken into account.

Traditional or classical Gaussian mechanisms [1] add un-
correlated Gaussian noise, whose variance is calculated on
the basis of sensitivity of neighboring sets of private data
to the query and privacy-level parameters. It was shown in
[6] that the variance could be further reduced given a privacy
budget to obtain better utility. A post-processing or denoising
mechanism is also introduced to improve the accuracy of the
query.

Despite the popularity and use of DP in a variety of
situations, there are cases where it is not possible to employ the
original definition and mechanisms for DP. A main drawback
with the traditional DP is that the definition of neighboring
datasets which pertains to addition or removal of a single
data point is not applicable to many use cases. For example,
query response for a single data stream where some important
attributes of this data stream are to be protected rather than
hiding the presence or absence of a single data point in a
large database or data stream. To address this drawback, there
have been other notions of privacy that are more applicable
for scenarios that do not necessarily cater to large databases.
Two such frameworks are the Pufferfish [7] and Blowfish [8]
privacy. Here, they define privacy with respect to pairs of
‘secrets’ that must remain indistinguishable after the privacy
mechanism is used to release the data. These frameworks have
been successfully utilized in many scenarios and particularly
that of trajectory or location release of an individual [9]–[11]
or activity monitoring [12]. However, the privacy mechanisms
presented in the aforementioned papers are either computa-
tionally expensive, do not scale with the size of sample space,
or do not incorporate the utility of the released data while
designing the mechanism. Furthermore, none of the papers
mentioned discuss an output perturbation method such as the
Gaussian mechanism, which optimizes the accuracy of the
query.

As an application, we consider the release of forecasts per-
formed fitting an Auto-Regressive Moving-Average (ARMA)
model. ARMA prediction models have many variants, which
are widely used for time-series forecasts; the underlying
assumption is that the time series is a realization of a Gaussian
process, with a parametric structure for its covariance that
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is determined by the parameters of an ARMA filter. The
Gaussian assumption implies that the Minimum Mean Squared
Error (MMSE) forecast is the conditional mean of the future
samples given the past, and it is a linear affine function of the
observation that depends on the first and second order statistics
of the process. A useful application we explore is the release
of the predicted power consumption for homes in a way that
its statistics are (ϵ, δ) private relative to other homes which
could be, for instance, in the same neighborhood. Releasing
time-series in a private manner is yet another paradigm where
the definition of neighboring data or adjacency is different, as
it is in [13], [14]. The query response mechanisms in these
papers correspond to down-sampling data points in a window,
adding DP-noise and reconstructing the time-series which is
shown to be differentially-private.

An alternative way to make forecasts private would be to
carry out input perturbation or regression in a differentially-
private manner. Recent work [15] studies linear regression in
a differentially-private manner, where the input data and the
corresponding labels are made private by perturbing the suffi-
cient statistics. Related to the proposed Gaussian mechanism,
in [16], a Bayesian linear regression is carried out, i.e., the
posterior of the regression parameters is computed in a private
manner, to protect the underlying data, by perturbing the terms
comprised of private data that are required for estimation
of regression parameters. Furthermore, the noisy posterior
is ‘denoised’ or, in other words, a noise-aware inference is
undertaken. In [17], both input data and labels are made
private by the addition of noise to sufficient statistics when the
query is Gaussian process regression. Like in [16], noise-aware
posterior computation of parameters is discussed. Compared to
the papers discussed above, the differences not only include
a change to definition of neighborhood of data but also the
output perturbation mechanism, whose privacy guarantees are
easier to analyze.

A. Differential privacy in smart grid systems

As mentioned before, the practical application of our DP
mechanism we highlight is sharing power consumption fore-
casts. Differential privacy mechanisms have been widely used
in class-based smart grid data classification and forecasting.
For example, [18] injects functional DP noises into the meter
data to achieve a certain level of differential privacy. In [19],
the authors proposed a novel randomized battery-based load
hiding algorithm which assures differential privacy for smart
metering data. In [20], an innovative DP compliant algorithm
was developed to ensure that the data from consumer’s smart
meters are protected. Moreover, spectral DP is presented to
protect the frequency content of power system time-series
data in [21], [22]. DP techniques are also applied for power
system operation to protect users’ energy consumption patterns
in [23]–[25]. In particular, [24], [25] consider a privacy-
preserving optimal power flow (OPF) mechanism for distribu-
tion grids that secures customer privacy from unauthorized ac-
cess to OPF solutions, e.g., current and voltage measurements.
In [23], the authors investigate how to utilize DP techniques
to release the data for power networks where the parameters

of transmission lines and transformers are obfuscated. None
of these works consider the release of forecasts that are DP.

B. Contributions

We introduce the concept of differential privacy for label
or class data. Our framework is related to the Pufferfish
privacy mechanism, as discussed above. The sensitive or
private information here is the class label or the hypothesis,
rather than the presence or absence of a single data point.
Then, we discuss an additive noise mechanism for the release
of the query response on such data so that the analyst is
unable to infer the underlying class label. The optimality of the
scheme rests on the assumption that the data from each class
have a Gaussian multivariate distribution with a class specific
mean and covariance. Furthermore, we propose a Gaussian
query response mechanism that is computationally efficient
and practical because it also meets accuracy requirements. We
apply the DP mechanism for the release of ARMA forecasts,
testing it numerically on synthetic and real data.

C. Notation

Boldfaced lower case letters, x, are used to denote vectors
whereas upper-case letters, X , are for matrices. Calligraphic
letters, X , are used to denote sets.

II. PROBLEM SETTING

In this section, we elucidate the problem and review the
appropriate definitions from literature. The setting of the
problem is that the data owner requires sensitive information
to be private, while also wanting to answer queries by a third
party analyst with as little error or distortion to the query
response as possible.

In this work, we denote by X ∈ X the sensitive information
which the data owner wants to hold private. One can also
refer to this as the label, class or hypothesis X , that is hidden
from the analyst. For brevity, we use label to refer to the
sensitive information X . Let the probability distribution of
data, d ∈ Rn, that is assumed to be generated given the label,
X , be f(d|X).

The analyst wishes to apply queries or functions Q : Rn →
Rk to the data d. We denote the outcome of the query as q ∈
Rk, i.e., q = Q(d) which is a stochastic function or function
of a random variable. We assume that the query at a certain
instance only acts on data generated when the system is in a
specific label X , i.e., the query does not combine information
from multiple instances with system in different labels. Thus,
we denote the probability distribution of q as f(q|X). Note
that the query output is already modeled as a random outcome.
However, releasing q as is could aid a malicious analyst in
inferring the label X through standard classification schemes
with prior information or belief about X . Therefore, rather
than answering the query directly q = Q(d), the data owner
publishes the output of a randomized algorithm or mechanism
denoted by AQ. Thus, the data owner releases or publishes
query response, q̃ = AQ(d|X). Again, due to the dependence
on a label X , we denote the probability density of the released
query as f(q̃|X).
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The goal of the randomized mechanism AQ is to confuse
the analyst by making the query output given the label X
indistinguishable from the query output when the underlying
label is a neighbor to X . The definition of neighboring labels
will be made clearer later.

For the published data to be useful, the answer to the query
q̃ is required to meet certain quality metrics, such as accuracy
(denoted by ρ). For the rest of the paper, accuracy refers to
accuracy in expectation over the domain of the privatized data.

Next, we review the relevant concepts from literature to
compare and contrast the ideas from the problem setting
described above.

III. PRIVACY: DEFINITIONS AND METRICS

A. Neighborhood of a data label

The data owner needs to define a priori for every label
X , a subset of labels X ′ ∈ X as neighbors. These neighbor
labels are chosen such that privacy is maintained based on our
class-membership based definition. In other words, the labels
X and X ′ should be indistinguishable from the query answer
alone. This is similar to the concept of pair of secrets in the
Pufferfish privacy framework [12].

A graph topology G whose nodes’ set is X and the edges
set, E , can encode information on what ought to be hidden,

G = (X , E), E = {(X,X ′)|X ∈ X , X ′ ∈ X (1)
X }, (1)

One could use a notion of distance d(X,X ′) that can define
a geometric graph structure where the subset X (1)

X that is the
neighborhood X (1)

X of each node X is defined as:

X (1)
X = {X ′|d(X,X ′) = 1, X ′ ∈ X}, (2)

describing all the X ′ that are at distance one from X and
should be giving similar query answers as X . Furthermore,
the graph structure is assumed to be undirected,

X ′ ∈ X (1)
X ⇔ X ∈ X (1)

X′ (3)

The data owner needs to design the neighborhood graph G that
determines the neighborhood for each label X . Neighborhood
can be designed based on desired indistinguishable labels. In
the case of very strict privacy requirements, a fully connected
graph can be used as a neighborhood graph so that every label
has all other labels as neighbors.

B. Definition of Privacy

Conventionally, given the random published answer or re-
alization of q̃ in the differential privacy literature, the name
privacy loss is used as a synonym for the log-likelihood ratio:

LXX’(q̃) ≜ ln
f(q̃|X)

f(q̃|X ′)
. (4)

The reason for the name is that in classical statistical inference,
LXX’(q̃) > 0 yields the decision that the query output is gen-
erated by the distribution f(q̃|X). If this event is infrequent,
then often an alternative hypothesis X ′ (where the distribution
is f(q̃|X ′)) will be chosen as the right probabilistic model.
We now introduce the notion of (ϵ, δ) differential privacy,

which applies to any random vector q̃ that is not conditionally
independent of the private information X:

Definition 1 ((ϵ, δ) Probabilistic Differential Privacy (PDP)
[26]). Consider the probability density of released query or
randomized mechanism q̃ ∼ f(q̃|X) that changes depending
on the class X ∈ X . The randomized mechanism producing
q̃ is (ϵ, δ)- Probabilistic Differentially Private (PDP) iff:

Pr (|LXX’(q̃)| > ϵ) ≤ δ ∀(X,X ′) ∈ E . (5)

It can be shown that (ϵ, δ)-PDP is a strictly stronger
condition than (ϵ, δ)-DP.

Theorem 1 (PDP implies DP [27]). If a randomized mecha-
nism is (ϵ, δ)-PDP, then it is also (ϵ, δ)-DP, i.e.,

(ϵ, δ)−PDP⇒ (ϵ, δ)−DP, but (ϵ, δ)−DP ⇏ (ϵ, δ)−PDP.

Given that PDP provides a more intuitive understanding of
privacy than (ϵ, δ) DP and is a strictly stronger condition, we
make use of PDP throughout this paper. PDP is not closed
under post-processing [28] only if, prior to the query, one
applies a non-bijective transformation. Going forward, we drop
the absolute value while writing |LXX’(q̃)| > ϵ since

|LXX’(q̃)| > ϵ =⇒ LXX’(q̃) > ϵ,LXX’(q̃) < −ϵ (6)
LXX’(q̃) < −ϵ =⇒ −LXX’(q̃) > ϵ =⇒ LXX’(q̃) > ϵ (7)

As the neighborhood graph is undirected, and
Pr (|LXX’(q̃)| > ϵ) ≤ δ ∀(X,X ′) ∈ E , it suffices to drop
the absolute value and Pr (LXX’(q̃) > ϵ) ≤ δ ∀(X,X ′) ∈ E
is equivalent to eq. (5). It is important to remark that prior
statistical information about X is generally available, i.e.,
f(X) is a prior belief or distribution of X . The following
remark explains how Definition 1 is sufficient in general.

Remark 1. If the analyst operates in the Bayesian setting and
there is a statistical prior distribution on the possible outcomes
for X , i.e., a probability model on X , a more meaningful
privacy loss definition than eq. (4) is expressed in terms of
posterior distributions f(X|q̃). Note, however, that:

ln
f(X|q̃)
f(X ′|q̃) = LXX’(q̃) + ln

f(X)

f(X ′)
(8)

where f(X) is the prior distribution. This means that (ϵ, δ)
private according to Definition 1 then:

δ ≥ sup
X∈X

sup
X′∈X (1)

X

Pr

(
LXX’(q̃) > ϵ− ln

f(X)

f(X ′)

)
. (9)

The implication is that the privacy loss distribution is
inherently a function of the statistics of LXX’(q̃), even when
there are priors, which makes the extension to the case where
priors are given relatively straightforward. For this reason, we
will continue the discussion considering the latent information,
or label X , as deterministic and unknown.

C. Publication accuracy constraints

One of the aspects in which our framework differs from
most other DP work, is that we consider the constraint for
the data owner to guarantee a certain level of accuracy in
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the query response, we next define query accuracy. This is
different from the notion of query sensitivity, which is an
intrinsic property of the data, and it is a measure of the utility
of the DP query response.

For a continuous query, the accuracy is a measure of how
dissimilar the answer to the query is, and it is desired to have
q̃ ≈ Q(d). A possible simple measure, the average mean
squared (MS) error per entry, is specified in the following:

Definition 2 (Mean Square Error Accuracy). For a continuous
function Q : Rn → Rk:

ρQ|X =
1

k
E[∥q̃ −Q(d)∥22], (10)

is the expected mean-square query accuracy, where d ∼
f(d|X) and X ∈ X is the information to hold private.

D. Privacy under accuracy constraints

In our work, we adopt the Definition 1 for (ϵ, δ) privacy
along with accuracy constraint and thereby define the overall
privacy in our framework as follows:

Definition 3. A randomized algorithm AQ with outcome q̃ =
AQ(d|X), is (ϵ, δ)-private meeting an accuracy budget ρ for
a query Q iff the condition in eq. (5) holds ∀(X,X ′) ∈ E
along with ρQ|X ≤ ρ ∀X ∈ X .

Having given all the necessary definitions, we now introduce
our method of publishing the query response. We specifically
consider query responses that are continuous valued and
Gaussian distributed given label X .

IV. A PUBLISHING MECHANISM FOR PRIVACY WITH
ADDITIVE NOISE

The most popular designs of DP algorithms amount to
adding random noise to the true query, i.e.:

q̃ = q + η, (11)

where η is drawn from a family of distributions that facilitate
the calculation of the (ϵ, δ) curves; zero mean Gaussian and
Laplacian noise are the most frequent choices. Furthermore,
the entries of the vector η are independent and identically dis-
tributed (i.i.d.) and they are independent of X , i.e. f(η|X) =
f(η). This makes only one parameter, the variance, in the
Gaussian and Laplacian distributions available as a degree of
freedom, which is set once one defines the values of (ϵ, δ).

The idea behind the proposed publication methodology AQ

is simple: we also add Gaussian noise to the actual query
response, but the noise η vector of the mechanism we propose
fη|X(η|X), is label X dependent in general, and its entries of
η are not i.i.d. This leaves us with several additional degrees
of freedom to meet an accuracy constraint, which is a function
of the noise statistics fη|X(η), as we show next.

A. Accuracy for the additive noise scheme

We use the symbol Σ to denote covariance matrices and µ
to denote mean vectors, and use the suffix to indicate what is
the random vector that is averaged; Tr(A) denotes the trace

of the matrix A. The average MSE accuracy can be expressed
as a function of the conditional mean and the covariance of
the noise:

ρMSE
Q|X =

1

k
E[∥η∥2] = Eq|X

[
Tr(Ση|q) + ∥µη|q∥2

]
(12)

=
1

k
Tr(Ση|X) +

1

k
∥µη|X∥2, (13)

B. Illustration: Classical DP additive noise mechanism

In contrast to our framework, the vast majority of the DP
literature considers queries that are a deterministic function
because they do not explictly consider the distribution of data
but only consider the sensitivity or the range. However, as an
illustration, the computation of the (ϵ, δ) curves when the data
is deterministic given the label X is shown, which means the
true query answer is also deterministic given X . We denote
this by q ≡ Q(X). The DP algorithm also adds zero mean
random noise that is independent of X . In this case the noise
is added to a constant and:

q̃ = Q(X) + η ⇒ f(q̃|X) = fη(q̃ −Q(X)), (14)

which implies that for any pair X,X ′ f(q̃|X) and f(q̃|X ′)
differ only in their means, Q(X) and Q(X ′). Let:

µXX’ ≜ Q(X)−Q(X ′). (15)

Now, let us define query sensitivity for this case:

Definition 4 (Deterministic Query Sensitivity). The sensitivity
of a deterministic query about the data X is:

∆p ≜ sup
X∈X

sup
X′∈X (1)

X

∥Q(X)−Q(X ′)∥p. (16)

where dQ ≜ ∥Q(X) − Q(X ′)∥p is an appropriate notion
of distance as ℓp norm that measures how much the queries
applied differ when the label is X or X ′.

In this case, the (ϵ, δ) privacy curve is entirely defined by
the noise distribution and its change due to a shift in the mean:

Pr(LXX’(q̃) > ϵ) = Pr

(
ln

fη(q̃ −Q(X))

fη(q̃ −Q(X ′))
> ϵ

)
(17)

≡ Pr

(
ln

fη(η)

fη(η + µXX’)
> ϵ

)
. (18)

From eq. (18) it is apparent that the interplay of the noise
distribution and the possible values for the offset µXX’ are all
that is needed to establish the (ϵ, δ) privacy trade-off. Note that
in the case of independent noise added to different dimensions
of the query:

LXX’′(q̃) =

k∑
i=1

LXX’′(q̃i). (19)

Indicating [µXX’]i = µi, the expression in eq. (18) is equivalent
to:

Pr

(
k∑

i=1

ln
f(ηi)

f(ηi + µi)
> ϵ

)
(20)
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Next we derive (ϵ, δ) bounds for Gaussian zero mean i.i.d.
noise, In this case η ∼ N (0, σ2

ηI), it is easy to show that [6]:

LXX’(q̃) =
µ⊺

XX’(q̃−Q(X))

σ2
η

+
∥µXX’∥2
2σ2

η

,

which implies that the likelihood LXX’(q̃) is also Gaussian:

LXX’(q̃) ∼ N
(∥µXX’∥2

2σ2
η

,
∥µXX’∥2
σ2
η

)
. (21)

denoting by Q(v) = 1√
2π

∫
v
e−

u2

2 du, then:

Pr(LXX’(q̃) > ϵ) = Q

ϵ− ∥µXX’∥2
2

2σ2
η

∥µXX’∥2

ση

 (22)

In this case, since the trend of the probability is a monotonic
function of ∥µXX’∥2 (i.e., the Euclidean distance of the queries)
a meaningful definition for query sensitivity in Definition 4 is
∆2 = supX sup

X′∈X (1)
X
∥µXX’∥2, which implies:

δ = Q

ϵ− ∆2
2

2σ2
η

∆2

ση

 , (23)

and if we set a limit ρ for the MSE, then σ2
η ≤ ρ/k.

C. Stochastic queries with additive noise

When the query, q = Q(d) is modeled as being an outcome
of a random ensemble whose distribution depends on the
label X , one can directly calculate the inherent privacy using
f(q|X) in lieu of f(q̃|X), i.e., (ϵ, δ) curves without adding
noise at all. If the query responses without noise do not
reveal what the underlying X is then there is no need to
alter the data, i.e., the query response is naturally private
without employing any random mechanism. This has been
described in the literature [29]. However, one cannot control
the generative mechanism for the data, and we would also
need to add suitable noise to further reduce δ. The addition of
suitable noise can mask the hypotheses and yield a lower δ for
a certain ϵ, sacrificing the accuracy of the response. Now, the
distribution of the query response after the addition of noise
is computed as follows:

f(q̃|q, X) = f(q̃|X) =

∫
fη|X(q̃ − q|X)f(q|X) dq. (24)

The analytical calculation of this convolution integral would
be non-trivial in general.

This is why, in this paper, we discuss the case where the
query response given the label X is Gaussian and the noise
is also Gaussian. We do this because such models are ubiqui-
tously used. In mathematical terms, if q ∼ N (µX,ΣX) (where
µX is the mean and ΣX is the covariance matrix of q with label
X), and η ∼ N (µη,Ση), then q̃ ∼ N (µX + µη,ΣX +Ση).
To streamline the notation we will use the conventions:

µX ≜ µq|X , µ̃X ≜ µq̃|X = µX + µη|X , (25)

ΣX ≜ Σq|X , Σ̃X ≜ Σq̃|X = ΣX +Ση|X . (26)

In this case we bound explicitly the probability of the
privacy loss random variable for both for the query q it-
self, Pr(LXX’(q) > ϵ), and for the published query q̃, i.e.
Pr(LXX’(q̃) > ϵ). For the analysis, we use the following fact:

Proposition 1. Let the log-likelihood be LXX’(q) = ln f(q|X)
f(q|X′) .

For the queries that are drawn when the private information
is X , i.e. q ∼ N (µX,ΣX), equivalently we have:

Pr(LXX’(q) > ϵ) ≡ Pr(LXX’(ξ) > ϵ) (27)

where ξ and LXX’(ξ) are:

ξ ≜ U⊺
XX’Σ

−1/2
X (q − µX) ∼ N (0, I); (28)

L(ξ) ≜ −1

2
ln |ΓXX’|+

1

2
ξ⊺(ΓXX’−I)ξ

− µ⊺
XX’ΓXX’ξ +

1

2
µ⊺

XX’ΓXX’µXX’, (29)

and µXX’ ≜ U⊺
XX’Σ

−1/2
X (µX′ − µX). (30)

UXX’,ΓXX’ are the eigenvectors and eigenvalue matrices respec-
tively,

UXX’ΓXX’U
⊺
XX’ ≜ Σ

1/2
X Σ−1

X′ Σ
1/2
X , (31)

with the diagonal matrix ΓXX’ = diag(γXX’) and the vector γXX’,
whose entries are the eigenvalues in descending order and the
unitary matrix of eigenvectors, UXX’.

Proof. See Appendix A.

Naturally, the same expressions hold for q̃ except that to
define ŨXX’, Γ̃XX’ and µ̃XX’ we are using eq. (25) and eq. (26)
and corresponding expressions for X ′. For the conditionally
Gaussian case, in order to create a better level of (ϵ, δ) privacy
the noise design should reduce the difference of the means and
covariances by adding noise. In particular, the quadratic term
in eq. (29) becomes zero if ΓXX’ = I , which is the case when
the noise covariances of the two hypotheses under X and X ′

are the same, and the remaining linear and constant terms go
to zero if the difference between the mean vectors is zero. In
the case of ΓXX’ = I , Pr(LXX’(q) > ϵ) can be computed in
closed form as shown

Corollary 1. Assume ΣX =ΣX′ , so that ΓXX’ =I . Then:

LXX’′(ξ) ∼ N
(
1

2
∥µXX’∥2, ∥µXX’∥2

)
. (32)

and with Q(v) = 1√
2π

∫
v
e−

u2

2 du, then:

Pr(LXX’(q) > ϵ) = Q

(
ϵ− ∥µXX’∥2

2

∥µXX’∥

)
(33)

which is a monotonically increasing function of ∥µXX’∥2.

However, more generally when ΣX ̸= ΣX′ , we use the
Chernoff bound for Pr(LXX’(q) > ϵ) to help evaluate the (ϵ, δ)
privacy levels. The same expression can also be used as a
bound for Pr(LXX’(q̃) > ϵ) using µ̃XX’, and ŨXX’, Γ̃XX’ instead:
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Lemma 1. For all s > max(1, γ1) where γ1 =

λmax(Σ
1/2
X Σ−1

X′ Σ
1/2
X ), it holds:

Pr(LXX’(q) > ϵ) ≤ (s−1) k
2

|ΓXX’|
1

2(s−1) |sI − ΓXX’|1/2
(34)

× e−
ϵ

(s−1)
+ s

2(s−1)
µ⊺

XX’(sI−ΓXX’)
−1ΓXX’µXX’

Proof. See Appendix B.

In order to understand the trends in the bound, we can
specify it for some value of s in a corollary of Lemma 1:

Corollary 2. For s≫ max(1, γ1),

Pr(LXX’(q) > ϵ) ⪅
1

|ΓXX’| 1
2s

e−
ϵ
s e

µ
⊺
XX’ΓXX’′µXX’

2s (35)

= e
1
2s [µ

⊺
XX’ΓXX’′µXX’−ln |ΓXX’|]e−

ϵ
s (36)

The bounds suggests that, more generally, Pr(LXX’(q) > ϵ)
increases monotonically, as µ⊺

XX’ΓXX’′µXX’ − ln |ΓXX’| increases,
which is consistent with the case where the expression is exact
and ΓXX’′ = I . This metric will be leveraged in our optimal
design. In particular, we can assert that for the conditionally
Gaussian case we can use the following (ϵ, δ) bound:

Corollary 3. Let the Gaussian sensitivity be defined as:

∆G = sup
X

sup
X′∈X (1)

X

1

2
µ̃⊺

XX’Γ̃XX’′µ̃XX’ −
1

2
ln |Γ̃XX’| (37)

The following trend is a (ϵ, δ) bound for the privacy loss:

δϵq̃ ≤ δ = e
∆G−ϵ

s . (38)

The bound is simple but quite loose; however it does help
to identify the worst case scenario which, in turn, helps to
optimize the noise parameters.

D. Optimal design

In this section, we propose an algorithm to optimize the
parameters of the additive noise mechanism algorithm AQ(d).
Considering the expression of mean and covariance of q̃ in
eqs. (25) and (26) the expression we derived for q can be ap-
plied to derive Pr(LXX’(q̃) > ϵ) by defining the corresponding
vector:

µ̃XX’ ≜ ŨXX’Σ̃
− 1

2
X (µ̃X′−µ̃X), (39)

and define the unitary matrix ŨXX’ and diagonal matrix Γ̃XX’

through the following eigenvalue decomposition:

ŨXX’Γ̃XX’Ũ
⊺
XX’ ≜ Σ̃

1
2
X Σ̃

−1
X′ Σ̃

1
2
X . (40)

From the analysis in the previous section, and Corollaries 2
and 3, it seems that a good surrogate metric for achieving the
best (ϵ, δ) privacy is:

µ̃⊺
XX’Γ̃XX’′µ̃XX’ − ln |Γ̃XX’| = (µ̃X′ − µ̃X)

⊺Σ̃−1
X′ (µ̃X′−µ̃X)−ln |Γ̃XX’|

(41)

In fact, with s≫ max(γ1, 1) for all Γ̃XX’:

log δϵq̃ ⪅ sup
X∈X

sup
X′∈X (1)

X

(
− ϵ

2s
+
µ̃⊺

XX’Γ̃XX’µ̃XX’−ln |Γ̃XX’|
s

)

=− ϵ

2s
+
1

s
sup
X∈X

sup
X∈X (1)

X

(µ̃⊺
XX’Γ̃XX’µ̃XX’−ln |Γ̃XX’|). (42)

We therefore seek to find the noise means µη|X and covariances
Ση|X that solve the following problem:

min
µη|X,Ση|X,∀X

sup
X∈X

sup
X′∈X (1)

X

µ̃⊺
XX’Γ̃XX’µ̃XX’−ln |Γ̃XX’|

 ,

subj. to µ̃X = µX + µη|X , Σ̃X = ΣX +Ση|X , (43)

ρ =
1

k
Tr(Ση|X) +

1

k
∥µη|X∥2, (44)

For the time being, we assume that noise means µη|X = 0.
Expanding the terms within the sup, we get,

µ̃⊺
XX’Γ̃XX’µ̃XX’−ln |Γ̃XX’| = (µ̃X′−µ̃X)

⊺Σ̃−1
X′ (µ̃X′−µ̃X)−ln

|Σ̃X|
|Σ̃X′ |

= (µ̃X′−µ̃X)
⊺(ΣX′+Ση|X′)

−1(µ̃X′−µ̃X)

− ln
|ΣX +Ση|X|
|ΣX′ +Ση|X′ |

(45)

The surrogate metric in eq. (45) is convex in Σ̃X when all the
other terms are kept constant. It is also convex in the variable
Σ̃−1

X′ . We continue the discussion by setting the optimization
variable as AX ≜ Σ̃−1

X and later estimate Ση|X by subtracting
ΣX from Σ̃X and projecting onto the set of positive semi-
definite (PSD) matrices.

Now, let us focus on the overall cost in the optimization
problem in eq. (44). The terms are ∀X ∈ X , X ′ ∈ X (1)

X :

gXX’ ≜ (µ̃X′ − µ̃X)
⊺AX′(µ̃X′ − µ̃X)− ln

|AX′ |
|AX|

. (46)

The cost associated with the minimization then becomes

J = sup
X

sup
X′∈X (1)

X

gXX’ (47)

Note that there is no symmetry in the surrogate metric,
gXX’ ̸= gX′X and therefore, we need to consider them separately.
One can think of a block-coordinate descent algorithm in
order to reach a minima (local or global). The algorithm we
propose is given in Algorithm 1. Having obtained an AX, one
can determine the noise covariance matrix Ση|X such that the
constraint Tr(Ση|X) is satisfied as follows:

Ση|X =
ρ ProjS+

k
{(A⋆

X )
−1 −ΣX}

Tr
(

ProjS+
k
{(A⋆

X )
−1 −ΣX}

) (50)

where ProjS+
k
(X) is the projection of the matrix X onto

the set of positive semi-definite matrices. We know that the
optimization problem of interest is a non-convex one and
what we seek is an improvement over the standard Gaussian
mechanism, which amounts to adding white noise to the
query response. Our algorithm initializes the noise covariance
matrices to be white. Then, the minimization we perform with
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Algorithm 1: Estimation of AX = Σ̃−1
X ,∀X ∈ X

Result: A⋆
X , ∀X ∈ X

1 Initialize Σ̃
(0)
X = ΣX + (ρ/k)I , α(0)

X = 0.1 ∀X and

A
(0)
X =

(
Σ̃

(0)
X

)−1

for all X ∈ X , t = 0.

2 while α
(t)
X• > 0 do

3 Identify pair of labels:

(X•, X
′
•)=arg(X,X′) sup

X

sup
X′∈X (1)

X

{gXX′(t)}.

4 Compute J (t) =gX•X′•
(t) using (A

(t)
X• ,A

(t)
X• ) in

eq. (46).
5 Update A

(t+1)
X• with α

(t)
X• in Lemma 2:

A
(t+1)
X• ←A

(t)
X• − α

(t)
X•

[
∇AX•

gX•X•(t)
]
, (48)

where

∇AX•
gX•X•(t)=(µ̃

(t)
X•−µ̃(t)

X• )(µ̃
(t)
X•−µ̃(t)

X• )
⊺−(A(t)

X• )
−1.

6 Project AX•(t)(t+ 1) onto the set of positive-semi
definite matrices:

A
(t+1)
X• ← ProjS+

k
{A(t+1)

X• }. (49)

t = t+ 1

respect to different variables is such that there is always a
decrease in the cost function. For this, it is pertinent that we
choose the appropriate step-size αX•(t) in order to converge to
a local minimum.

Lemma 2. Let J (t) = gX•X•(t) and the variable to be updated
A

(t)
X• . If the step size α

X
(t)
•

at iteration t satisfies:

α
(t)
X• ≤ max

{
0, min

X∈X (1)

X•(t)

{bX•X(t), dX•X(t)}
}

(51)

then, the update to A
(t)
X• given in eq. (48) will lead to J (t) −

J (t+1) ≥ 0. The constants in eq. (51) are,

bX•X(t) =
ṽ⊺

XX•A
(t)
X• ṽXX•−ṽ⊺

XX•A
(t)
X ṽXX•

Tr
(
(A

(t)
X• )

−2
)
− ṽ⊺

XX•
(A

(t)
X• )

−1ṽXX•

(52)

+
ln |A(t)

X• |+ ln |A(t)
X |−2 ln |A(t)

X• |
Tr
(
(A

(t)
X• )

−2
)
− ṽ⊺

XX•
(A

(t)
X• )

−1ṽXX•

,

dX•X(t) =
ṽ⊺

XX•A
(t)
X• ṽXX•+ln |A(t)

X• |−ln |A(t)
X |

ṽ⊺
XX•(A

(t)
X• )

−1ṽXX•−Tr
(
(A

(t)
X• )

−2
)
−(ṽ⊺

XX• ṽXX•)
2
,

(53)

where ṽXX’ = (µ̃X′−µ̃X).

Proof. Proof can be found in Appendix C.

V. APPLICATION TO ARMA FORECASTS

In this section, we first discuss how one could apply
the proposed DP method for class-based data to stationary
Gaussian processes, where each class-label X is associated

−2 −1 0 1 2
−1

−0.5

0

0.5

1

1.5

2

2.5

x1

x
2

Fig. 1. The contour plot of synthetic data.

with a Gaussian process with certain mean and covariance.
Then we discuss DP-based ARMA forecasts, where each class
has a different set of ARMA parameters. Finally, we outline
how one could produce DP power consumption forecasts while
hiding the identity of a certain household.

Let x[k] be a stochastic process, whose statistics depend
on a label X we want to conceal; let us define the vector x
of samples that contains both K observed samples xo and T
future samples xf whose forecast we want to share without
revealing the label X , i.e.:

x = [x[0], . . . , x[K + T − 1]]⊺ =

[
xo

xf

]
. (54)

The query is the forecast, xf . A well known result from
statistics is that the minimum-mean squared error (MMSE)
estimator of the forecast is the conditional expectation of xf ,
given xo, i.e.:

q ≡ x̂f = E[xf |xo]. (55)

For a Gaussian process the statistics of xf conditioned on xo

are normal as well. To compute the mean and covariance of
the conditional mean we need to also define the covariance of
x:

E[x] =
[
µo

X

µf
X

]
, E[xx⊤] =

[
Σo

X Σfo
X

Σof
X Σf

X

]
. (56)

This implies that for the query q under the class-label X , the
mean and covariance are :

µX = µf
X +Σfo

X (Σo
X )

−1(xo − µo
X )

ΣX = Σf
X −Σfo

X (Σo
X )

−1Σof
X

(57)

At this point, it should be clear that it is possible to adopt the
scheme we proposed to share a DP forecast for a Gaussian
process. Note that the same formulas provide the optimum
linear-least square forecast. The typical situation is that the
covariance and mean are not known and need to be estimated
from the data. This is why it is popular to assume a parametric
model for the second and first order statistics. The ARMA
model for the second order statistics is an example.
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Fig. 2. The (ϵ, δ)-private curves with different accuracy budgets (see Def. 3) ρ for the synthetic data.

A. ARMA forecasts

An ARMA filter is a discrete time filter whose frequency
response can be parametrized as follows:

H(e−jω) =

∑m
k=1 ake

−jωk∑n
k=0 bke

−jωk
. (58)

An ARMA process is a zero mean stationary process that is
generated by filtering with an ARMA filter i.i.d. zero mean
noise ξ[k] with standard deviation equal to 1; equivalently,

x[k] = −
m∑
i=1

aix[k − i] +

n∑
i=0

biξ[k − i]. (59)

If the process is not zero mean, then x[k] models the residual
after recentering the actual process by subtracting the mean.
From the estimate of the parameters of the ARMA filter
one can calculate the impulse response h[k] whose frequency
response is given in eq. (58) (we skip the expression for
brevity). With that, one can construct the Toeplitz matrix of
the covariance matrix whose ikth entry is

[
E[xx⊤]

]
ik

=

+∞∑
i=−∞

h[i]h[k − i] (60)

and proceed to calculate the forecast. Note that it is possible to
answer the query or compute q using the filter defined above.
However, since our method of numerical calculation relies on
the covariance of the process, we rely on the expression in
eq. (57) to compute the optimum noise distribution for the
forecast q. We summarize the process of adding optimal DP
noise to ARMA forecasts in Algorithm 2.

Algorithm 2: Addition of DP noise to ARMA fore-
casts

1 Compute the ARMA forecasting covariance matrix ΣX

in eq. (57) ∀X ∈ X .
2 Estimate AX∀X ∈ X according to Algorithm 1.
3 Obtain optimal DP noise covariance matrix Ση|X in

eq. (50).
4 Add the optimal DP noise to the query q, i.e.,

q̃ = q + η where η ∼ N (0,Ση|X).

B. Application to power measurements data

To validate our method in the numerical section, we will
consider the case in which the data queried is electric load
consumption from a specific household. Daily patterns of
power consumption, widely available now to utilities, do not
fit a Gaussian multivariate distribution directly. In prior work
[30], however, we showed that they fit well a multivariate
log-Normal distribution, which implies that the logarithm of
the daily pattern is a multivariate Gaussian vector, which is
what we need to apply our method. Let p[k] be the power
consumption at hour k during the day. The model we adopt
is as follows:

x[k] = log(p[k])− µ[k] (61)

where µ[k] is the seasonal mean estimated averaging log(p[k])
over each day so that x[k] is zero mean1. The assumption we
make is that x[k] is an ARMA zero mean stationary Gaussian
process, which allows us to apply the scheme we proposed in

1This is not exactly the case since we are dealing with estimates but is our
modeling assumption.
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the previous sections. Note that here the query is the forecast of
the samples p[k], k = K, . . . ,K+T which are not Gaussian,
i.e.:

q = [p̂[K], . . . , p̂[K + T − 1]]⊤

p̂[k] = ex̂[k]+µ[k], k = K, . . . ,K + T − 1.
(62)

Nonetheless the DP answer q̃ can be computed by applying
the optimum Gaussian noise to the samples of the process
x̂[k] + µ[k], k = K, . . . ,K + T − 1 and then applying the
exponential function to them. Since the exponential function
is a bijective function, the PDP (ϵ, δ) privacy guarantee is
maintained after this type of post-processing. What we can
no longer guarantee is that the accuracy of q̃ is ρMSE

Q|X in
eq. (13). The resulting accuracy can be calculated, but we
skip the derivation for brevity.

VI. NUMERICAL RESULTS

In this section, we illustrate the proposed algorithm with
a synthetic dataset and real-world power system AMI data.
In the synthetic case, there are several classes and the query
corresponding to each class is bi-dimensional Gaussian with
a mean vector and 2× 2 covariance matrix. It is assumed that
each class is the neighbor of the other class. The goal is to
conceal the class-label by adding DP noise to the query output.

In the real-world AMI case, we first map the forecast
of this seasonal and non-Gaussian process onto an ARMA
forecasting problem, and then utilize the (m = 6, n = 5)
ARMA model for training and testing. Finally, we utilize the
proposed optimal DP noise to protect the ARMA forecasts
from households that belong to the same cluster.

A. Synthetic Data

The synthetic data is generated assuming that there are four
classes and all classes are considered as neighbors of the
others. The query corresponding to each class follows a two-
dimensional Gaussian distribution with mean and covariance
matrix. The mean vectors per-class are chosen to lie on a line
in the 2-D space, and the covariance matrix is drawn from
a Wishart distribution with scale matrix as the identity and
two degrees of freedom. This is shown as a contour plot in
Figure 1. Such a case was chosen to highlight the advantage
of the proposed method over adding white noise with variance
to meet the accuracy requirement.

We compare our method with two baselines. Firstly, the
“no-noise” baseline to understand DP guarantee if no noise
was added to the query. One could still expect some inherent
privacy, solely due to the fact that the query itself is stochastic
and the distributions corresponding to each class-label could
be close. Our method starts at this baseline and further
improves the privacy guarantee. The second baseline is the
addition of white Gaussian noise to synthetic data with zero-
mean denoted by “white noise DP” where the variance of noise
σ2 = ρ/D, so that the accuracy requirement in eq. (13) is met.
Note that the addition of zero-mean white Gaussian noise is
commonplace in DP literature, with more focus on choosing
the appropriate variance σ2. One can think of the baseline as
setting of variance in order to meet the accuracy requirement.

We plot the simulation results in Figure 2 with varying
levels of accuracy ρ. Note that the no-noise baseline does
not depend on the accuracy, and is therefore the same curve
throughout. The proposed method outperforms the white-
noise baseline irrespective of the accuracy level, although
the improvement decreases slightly with larger ρ values. The
privacy-accuracy (utility) trade-off is visible in the curves
where larger ρ values are associated with better privacy (ϵ, δ)
values.

B. AMI Data Forecasting by ARMA Model

1) ARMA Forecasting: First, we collect 100 households’
demands, and then remove the seasonal values (in a weekly
scale) from the original demands, and further take the log
values of the nonseasonal demands for training, as described
in subsection V-B. Then, we utilize the k-means algorithm to
cluster the 100 household’s demands into six clusters. In each
cluster, we consider each household as the neighbor of all other
homes. Specifically, we choose the 15-day data for training to
estimate ai and bj parameters in eq. (59), where the 15-day
data have 1440 samples such that the sampling rate is once
per 15 minutes. The forecasting time is three hours with 12
samples, i.e., the size of the query is 12. The forecast trajectory
of x[k] of many households are shown in Figure 3. The gray
lines show the past 24 hours’ demands, and the blue lines show
the forecast three hours’ demands, and the red lines show the
ground-truth three hours’ demands. In Figure 3, the MSE of
House 1, House 2 and House 3 are 2.6986e−4, 2.3339e−4

and 1.4769e−4, respectively. The results show that the ARMA
model forecasts the future demands with high accuracy, which
provides opportunities for analysts to infer the true demands.

2) Differential Privacy for ARMA Forecasting: As in the
synthetic data case, we show the simulation results with
different ρ in Figure 4. Without noise, δ is always 1, which
means that the probability of ARMA forecasted demand being
associated with a certain household (class-label) is 100%.
Therefore, it is necessary to design the DP noise for the query
of ARMA forecasting. With the white noise, δ is reduced to
0.8 when the accuracy ρ = 0.68571 and ϵ = 0.1. With ρ fixed
and ϵ increasing from 0.1 to 1.0, δ decreases slowly from
0.8 to 0.6. In contrast, with the same ρ = 0.68571 and the
ϵ increasing from 0.1 to 1.0, δ of the proposed optimal DP
algorithm decreases fast from 0.72 to 0.35. It indicates that the
proposed algorithm has much better performance regarding
the privacy protection. Similar to the synthetic data, with ρ
increasing (i.e., relaxing the accuracy level), the (ϵ, δ) privacy
is strengthened. Another observation is that with the accuracy
budget ρ increasing from 0.45 to 1.4 and with ϵ = 1 fixed,
the δ of the proposed DP algorithm decreases from 0.84 to
0.35, which shows a trade-off between accuracy and privacy.
Note that the proposed method offers better guarantee than
the white-noise DP method, especially when the accuracy
constraint is stronger, i.e., ρ is small. This is quite important
considering the utility of the query while also concealing the
class label.
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Fig. 3. ARMA Forecasting for power demands of three houses.
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Fig. 4. The (ϵ, δ)-private curves with different accuracy budgets ρ for the real-world AMI data.

VII. CONCLUSION

In this paper, we proposed a new method of differential
privacy for label or class-based data, aiming at adding a

functional DP noise for the release of query response such
that the analyst is unable to infer the underlying class label.
Moreover, we demonstrated that the (ϵ, δ)-private is guaran-
teed to be satisfied while meeting the predefined accuracy
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budget ρ. We illustrate the effectiveness of the proposed
method on the synthetic data, which outperforms the baseline
additive white Gaussian noise mechanism. We further consider
the ARMA forecasting problem for the AMI measurements.
Then, we implement the proposed DP method to the ARMA
forecasting method in order to protect the privacy of the AMI
measurements forecasts. Our empirical case studies on both
the synthetic data and real-world AMI measurements validate
the effectiveness and advantages of the proposed method.

APPENDIX

A. Proof of Proposition 1

Proof. First, note that we can arrange the terms in LXX’(q) as:

LXX’(q) =
1

2
ln |ΣX′ | −

1

2
ln |ΣX|

+
1

2
(q − µX)

⊺(Σ−1
X′ −Σ−1

X )(q − µX)

+ (µX − µX′)
⊺Σ−1

X′ (q − µX)

+
1

2
(µX′ − µX)

⊺Σ−1
X′ (µX′ − µX). (63)

For simplicity, we omit the suffix XX ′. First, eq. (28) re-
centers, whitens and then rotates the normal vector q, which
results in the i.i.d normal vector ξ. To derive the expression
of L(ξ) from eq. (63) we observe that:

(Σ−1
X′ −Σ−1

X ) = Σ
−1/2
X (Σ

1/2
X Σ−1

X′ Σ
1/2
X − I)Σ

−1/2
X

= Σ
−1/2
X UU⊺(Σ

1/2
X Σ−1

X′Σ
1/2
X − I)UU⊺Σ

−1/2
X

= Σ
−1/2
X U(Γ− I)U⊺Σ

−1/2
X

which implies that

(q − µX)
⊺(Σ−1

X′ −Σ−1
X )(q − µX) = ξ⊺(Γ− I)ξ.

The other two terms are obtained similarly:

(µX−µX′)
⊺Σ−1

X′ (q−µX) = (µX−µX′)
⊺Σ

−1/2
X U

·U⊺(Σ
1/2
X Σ−1

X′ Σ
1/2
X )UU⊺Σ

−/2
X (q−µX) = −µ⊺Γξ.

(µX′−µX)
⊺Σ−1

X′ (µX′−µX) = (µX′−µX)
⊺Σ

−1/2
X U

·U⊺(Σ
1/2
X Σ−1

X′ Σ
1/2
X )UU⊺Σ

−1/2
X (µX′−µX) = µ⊺Γµ.

B. Proof of Lemma 1

Proof. Again, we omit the suffixes XX ′ to streamline the
notation. The idea is to leverage Proposition 1 and find a
bound for Pr(L(ξ) > ϵ) through the Chernoff bound. More
specifically, considering the expression eq. (29), for s > 0:

Pr(L(ξ) > ϵ) = Pr(e
s
2 (ξ

⊺(Γ−I)ξ−2µΓξ+µ⊺Γµ) > esϵ+
s
2 ln |Γ|)

≤
E
[
e

s
2 (ξ

⊺(Γ−I)ξ−2µΓξ+µ⊺Γµ)
]

esϵ|Γ|s/2

The expectation J(Γ,µ) ≜ E[e s
2 (ξ

⊺(Γ−I)ξ−2µ⊺Γξ+µ⊺Γµ)] can
be evaluated in closed form solving the following integral:

J(Γ,µ) =

∫
e

s
2 (ξ

⊺(Γ−I)ξ−2µ⊺Γξ+µ⊺Γµ)− ξ⊺ξ
2

(2π)k/2
dξ. (64)

The goal is to express the exponent as a quadratic form.
Combining the quadratic terms and extracting the factor − s

2
the expression becomes:

−s

2

(
ξ⊺
(
(1+s−1)I−Γ

)
ξ + 2µ⊺Γξ − µ⊺Γµ

)
The expression is streamlined by the following substitution for
s and definition of µ̂:

s = 1+ s−1 ⇒ s = (s− 1)−1, s > 0 =⇒ s > 1 (65)

µ̂ ≜ −(sI − Γ)−1Γµ. (66)

so that the exponent can then be rearranged as follows:

−ξ⊺(sI−Γ)ξ − 2µ̂⊺(sI−Γ)ξ ± µ̂⊺(sI−Γ)µ̂− µ⊺Γµ

2(s−1) =

− (ξ − µ̂)⊺(sI−Γ)(ξ − µ̂)

2(s−1) +
s

2(s−1)µ
⊺(sI−Γ)−1Γµ

hence, if and only if sI −Γ is positive definite, which means
that s > γ1 = λmax(Σ

1/2
X Σ−1

X′ Σ
1/2
X ), we have:

J(Γ,µ) =
e

s
2(s−1)

µ⊺(sI−Γ)−1Γµ

(2π)k

∫
e−

(ξ−µ̂)⊺(sI−Γ)(ξ−µ̂)
2(s−1) dξ

=
e

s
2(s−1)

µ⊺(sI−Γ)−1Γµ(s−1)k/2
|sI−Γ|1/2

We can conclude that:

Pr(L(ξ) > ϵ) ≤ (s− 1)k/2e−
ϵ

(s−1)
+ s

2(s−1)
µ⊺(sI−Γ)−1Γµ

|Γ| 1
2(s−1) |sI − Γ|1/2

(67)

where the bound is the expression in eq. (34).

C. Proof of Lemma 2

Proof. Upon updating AX•(t)(t), the cost Jt+1 is,

Jt+1 = sup
X

sup
X′∈X (1)

X

{
gX•(t)X•(t), gXX•(t), gX•(t)X, gXX’

}
(68)

We now divide the analysis into different cases to derive the
condition on the step size.

• If Jt+1 = gXX’ where X ̸= X•(t), X
′ ̸= X•(t), then Jt −

Jt+1 ≥ 0 since terms gXX’ were unaffected by the update
and at step t gX•(t)X•(t) was the supremum thus, Jt −
Jt+1 = gX•(t)X•(t) − gXX’ ≥ 0.

• If Jt+1 = gX•(t)X•(t), it means that the chosen term to
minimize is still the supremum,

Jt − Jt+1 = gX•(t)X•(t)(AX•(t)(t),AX•(t)(t))

− gX•(t)X•(t)(AX•(t)(t+ 1),AX•(t)(t)) (69)

Since gX•(t)X•(t)(AX•(t)(t),AX•(t)(t)) is convex in
AX•(t)(t), the update for AX•(t)(t) ensures that
Jt − Jt+1 > 0. However, for an appropriate step-size,
one can either resort to backtracking line search or use
a small fixed step size.
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• If Jt+1 = gXX•(t), to derive the condition for αt such that
Jt − Jt+1 > 0 consider,

Jt − Jt+1 = gX•(t)X•(t)

(
AX•(t)(t),AX•(t)(t)

)
(70)

− gXX•(t)

(
AX•(t)(t+ 1),AX(t)

)
(71)

= ṽ
⊺

X•X•
A

(t)
X• ṽX•X• − ṽ

⊺

XX•
AX•(t)(t+ 1)ṽXX•

− ln |AX•(t)(t)|+ ln |AX•(t)(t)|
+ ln |AX•(t)(t+ 1)| − ln |AX(t)| (72)

With further simplification and by imposing the condition
Jt − Jt+1 > 0 , we get

αX•(t) ≤ dX•(t),X (73)

• If Jt+1 = gX•(t)X, consider Jt − Jt+1,

Jt − Jt+1 = gX•(t)X•(t)

(
AX•(t)(t),AX•(t)(t)

)
− gX•(t)X

(
AX(t),AX•(t)(t+ 1)

)
(74)

= ṽ
⊺

X•X•
A

(t)
X• ṽX•X• − ṽ

⊺

XX•
AX(t)ṽXX•

− ln |AX•(t)(t)|+ ln |AX•(t)(t)|
+ ln |AX(t)| − ln |AX•(t)(t+ 1)| (75)

With further simplification and by imposing the condition
Jt − Jt+1 > 0 , we get:

αX•(t) ≤ bX•(t),X (76)

where bX•(t) is given in (52).
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