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Abstract 

The differential privacy (DP) literature often centers on meeting privacy constraints by introducing noise to the query, 
typically using a pre-specified parametric distribution model with one or two degrees of freedom. However, this 
emphasis tends to neglect the crucial considerations of response accuracy and utility, especially in the context 
of categorical or discrete numerical database queries, where the parameters defining the noise distribution are 
finite and could be chosen optimally. This paper addresses this gap by introducing a novel framework for designing 
an optimal noise probability mass function (PMF) tailored to discrete and finite query sets. Our approach considers 
the modulo summation of random noise as the DP mechanism, aiming to present a tractable solution that not only 
satisfies privacy constraints but also minimizes query distortion. Unlike existing approaches focused solely on meet-
ing privacy constraints, our framework seeks to optimize the noise distribution under an arbitrary (ǫ , δ) constraint, 
thereby enhancing the accuracy and utility of the response. We demonstrate that the optimal PMF can be obtained 
through solving a mixed-integer linear program. Additionally, closed-form solutions for the optimal PMF are provided, 
minimizing the probability of error for two specific cases. Numerical experiments highlight the superior performance 
of our proposed optimal mechanisms compared to state-of-the-art methods. This paper contributes to the DP 
literature by presenting a clear and systematic approach to designing noise mechanisms that not only satisfy pri-
vacy requirements but also optimize query distortion. The framework introduced here opens avenues for improved 
privacy-preserving database queries, offering significant enhancements in response accuracy and utility.
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Introduction
Differential Privacy (DP) is a technique used for publish-
ing database queries that conceal confidential attributes. 
Some of its real-world applications are in the publication 
of the United States of America Census 2020 data (using 
disclosure avoidance system Census 2020), Google’s his-
torical traffic statistics (Eland 2015), Microsoft’s telem-
etry data (Ding et  al. 2017), LinkedIn user engagement 

information to third parties for advertisements (Rogers 
et al. 2020), etc.

DP hinges on a randomized mechanism wherein the 
data publisher, who owns the database, responds to ana-
lyst queries. The key principle is to generate similar dis-
tributions of query answers for data differing by a specific 
attribute, making it statistically challenging to discern 
whether data with that attribute were involved in the 
query computations.

In the existing literature, randomizing query answers 
commonly involves adding noise with a parametric dis-
tribution featuring one or two degrees of freedom. In 
contrast, this paper proposes a novel approach: opti-
mizing all the parameters of the probability mass func-
tion (PMF) for queries with finite discrete answers. This 
ensures that the randomized query outcome meets DP 
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constraints while minimizing expected distortion for a 
given database and discrete finite set of answers. Notably, 
existing literature does not undertake the optimization 
of noise to minimize distortion under an arbitrary (ǫ, δ) 
constraint, as it typically limits the mechanism to a single 
parameter. Our approach stands out because it optimizes 
the entire distribution.

Our formulation, applicable to both discrete numeri-
cal data (for which perhaps mean squared error (MSE) is 
the best error metric) and categorical data (where error 
rate (ER) is preferable), finds resonance in real-world sce-
narios. For instance, queries related to discrete numeri-
cal data include: (a) The number of households in a 
census tract with at least one college-educated member 
(0 through n, where n is the total number of households 
in that census tract); (b) what is the most popular pro-
motion on a website; or how many users in a certain set 
accepted a sales promotion on a website; (c) The hour of 
peak electricity usage in a neighborhood (00 through 23), 
etc. Similarly, queries related to categorical data are: (a) 
Type of consumer? (Subscriber or Trial user, Residen-
tial or Commercial, etc.); (b) What month of the year? 
(January: 1 through December: 12); (c) What gender is a 
person? (Male: 1, Female: 2, Other: 3), same idea for eth-
nicity, blood type, etc. For discrete numerical data, just 
perform the modulo addition of random noise of size 
n+ 1 , and for categorical data, we assign numerical val-
ues to categories and perform the modulo addition of 
random noise on them.

Before outlining our contributions, we review the rel-
evant literature.

Literature review
In the literature, several papers studied the additive noise 
mechanisms for discrete query outputs (Geng and Viswa-
nath 2015; Soria-Comas and Domingo-Ferrer 2013; Geng 
and Viswanath 2015). For discrete queries with infinite 
support, the additive noise mechanism for ǫ−differen-
tial privacy that minimizes any convex function of the 
query error was found in Geng and Viswanath (2015); 
the optimum PMF is shown to have a specific decreas-
ing staircase trend. The problem of finding the optimal 
data-independent noise mechanism for ǫ−differential 
privacy is also addressed in Soria-Comas and Domingo-
Ferrer (2013). Even though the authors focus on con-
tinuous query outputs, they claim one can easily extend 
the method to discrete queries. Neither paper (Geng 
and Viswanath 2015; Soria-Comas and Domingo-Ferrer 
2013) explored the optimization of the (ǫ, δ)−differential 
privacy trade-off for δ > 0 . For integer query outputs, 
the optimal noise mechanism design for (ǫ, δ)−differen-
tial privacy is the subject of Geng and Viswanath (2015). 
Another approach to integer count queries is carried out 

in Ghosh et  al. (2009), where a double-sided geometric 
distribution noise mechanism is used. A recent study on 
the count query DP problem is found in Cormode et al. 
(2019), in which the authors use a set of constrained 
mechanisms that achieve favorable DP properties. The 
related problem of publishing the number of users with 
sensitive attributes from a database is addressed in Sad-
eghi et al. (2020). In their proposed DP mechanism, they 
add an integer-valued noise before publishing it to pro-
tect the privacy of individuals. Though the randomized 
query response, produced by the proposed mechanism 
in Sadeghi et al. (2020), lies in the actual query support 
range, the additive noise PMF used depends on the query 
output, which requires storing several PMFs. In the con-
text of discrete queries, an additive discrete Gaussian 
noise-based mechanism is proposed in Canonne et  al. 
(2020). They show that the addition of discrete Gaussian 
noise provides the same privacy and accuracy guarantees 
as the addition of continuous Gaussian noise. Another 
recent study focuses on the mechanisms of discrete 
random noise addition (Qin et  al. 2022). In this study, 
the basic DP conditions and properties of general dis-
crete random mechanisms are investigated. In Ravi et al. 
(2022) a randomized mechanism for the labels obtained 
from K-means clustering is provided using the modulo 
addition-based mechanism.

In the literature, a joint DP mechanism is proposed for 
key-value data in Ye et al. (2019), where key uses categor-
ical data and value uses numerical data. Two potential 
applications have been identified: video ad performance 
analysis and mobile app activity analysis. The key in the 
former is the ad identifier, and the value is the time a user 
has watched this video ad, whereas the key in the latter is 
the app identifier, and the value is the time or frequency 
this app appears in the foreground. In another work 
(Wang et al. 2019), local DP mechanisms for multidimen-
sional data that contain both numeric and categorical 
attributes are proposed.

Paper contributions
This paper critically revisits the design of DP random 
mechanisms, specifically focusing on ensuring (ǫ, δ)− DP 
for queries with n+ 1 possible answers, each mapped 
onto the integers 0 through n. The mechanism we study 
involves the modulo n+ 1 addition of noise. The signifi-
cant and novel contributions of this paper can be sum-
marized as follows:

•	 Optimal Noise PMF: In Section “Numerical optimi-
zation”, we demonstrate that the additive noise PMF 
minimizing a linear error metric under a given (ǫ, δ) 
budget can be obtained as the solution of a Mixed 
Integer Linear Program (MILP). Notably, for the case 
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when δ = 0 , the optimum PMF can be found using 
a Linear Program (LP), as established in previous lit-
erature (Geng et al. 2015), which is a special case of 
our general formulation.

•	 Explicit PMF expressions for minimum error: Sec-
tions “PMF for single distance neighborhood” and 
“The BD neighborhood” delve into two special cases, 
providing explicit expressions for the optimum PMF 
that minimizes error for specific (ǫ, δ) pairs. This 
analysis extends and subsumes prior work (Geng 
et al. 2015).

•	 Structure of Optimum PMF and Error Rate: We 
unveil the structural characteristics of the opti-
mum PMF and error rate functions. Specifically, 
the derived error rate function exhibits a piece-wise 
linear nature. Our findings reveal that the optimum 
(ǫ, δ) trade-off curve, for a given error rate, experi-
ences an exponential decrease as δ increases. Moreo-
ver, a discrete set of discontinuities in the curve pre-
cludes any change in the exponential rate of decay as 
ǫ increases.

•	 Numerical Validation and Comparative Analysis: 
The contributions outlined above are corroborated 
by a thorough numerical analysis presented in Sec-
tion “Numerical results”. Our simulations include 
comprehensive comparisons with prior methods, 
demonstrating the superiority of our proposed 
approach.

Notation
In this section, we present a summary of general nota-
tions used throughout the paper. A comprehensive list 
of notations and abbreviations can be found at the top of 
the paper in the Nomenclature section.

Let N,N+,Z,R denote the sets of natural numbers 
including zero, natural numbers excluding zero, inte-
gers, and real numbers, respectively. The set integers 
{0, 1, . . . , n} , n ∈ N , is referred to as [n], [n]+ is, instead, 
{1, . . . , n} . The symbols ⌊k⌋ and ⌈k⌉ denote the floor and 
ceiling functions of k, respectively. The cardinality of set 
A is denoted by |A| , and the set difference of sets A and B 
is denoted as A\B.

The query function applied to data X from a database, 
denoted by X  , is represented as Q(X) , and Q denotes 
a discrete finite set of query answers. In this paper, the 
query domain is discrete and finite, mapped onto the set 
[n] of size n+ 1 . The numerical outcome of the query is 
denoted by the variable q ∈ [n] , while q̃ represents the 
outcome after the randomized publication, with distribu-
tion f (q̃|X).

For vector queries with outcomes, q , in a finite discrete 
domain, one can map the result onto the set [n], and 

hence, the optimization we propose applies. We use f (η) 
to represent the noise distribution fη(η) whenever pos-
sible without confusing the reader.

Preliminaries

Definition 1  ((ǫ, δ)-Differential Privacy (DP) Dwork 
et al. 2006) A randomized mechanism q̃ : Q → Q is (ǫ, δ)
-differentially private if for all datasets X and X ′ differ by 
a unique data record, given any arbitrary event S ⊆ Q 
pertaining to the outcome of the query, the randomized 
mechanism satisfies the following inequality

where Pr(A) denotes the probability of the event A 
and the PMF used to calculate the events probability is 
f (q̃|X).

Conventionally, given the random published answer q̃ in 
the differential privacy literature, the privacy loss func-
tion name is a synonym for the log-likelihood ratio:

where X ∈ X  is the set of data used to compute the 
query and X ′ is an alternative set with a unique attrib-
ute or data point that is different. For each X we denote 
by X (1)

X  the neighborhood of set of X which contains 
all data sets X ′ ∈ X  that differ from X by a predefined 
sensitive attribute we want to conceal. Note that, if the 
event LXX ′(q̃) < 0 under the experiment with distribu-
tion f (q̃|X) then, in classical statistics, the observer of 
the outcomes q̃ will choose erroneously the alterna-
tive hypothesis that X ′ was queried (where the emis-
sion probability is f (q̃|X ′) ) rather than X. By looking 
at the tail of the distribution for LXX ′(q̃) > 0 under the 
distribution f (q̃|X) , one can gain insights into how fre-
quently the mechanism allows to differentiate X from X ′ 
with great confidence, leaking private information to the 
observer.

We now introduce the definition of (ǫ, δ)—proba-
bilistic differential privacy (PDP) we consider in this 
paper, which applies to any random quantity q̃ for any 
given X:

Definition 2  ((ǫ, δ)-Probabilistic DP Machanavajjhala 
et  al. 2008) Consider random data that can come from 
a set of emission probabilities q̃ ∼ f (q̃|X) that change 
depending on X ∈ X  . The data q̃ are (ǫ, δ) - probabilistic 
differentially private ∀X ∈ X  and X ′

∈ X
(1)
X  , iff:

(1)Pr(q̃(X) ∈ S) ≤ eǫPr(q̃(X ′) ∈ S)+ δ,

(2)LXX ′(q̃) � ln
fq̃(q̃|X)

fq̃(q̃|X ′)
,
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and the PMF used to calculate the probability is f (q̃|X).

The following theorem guarantees that (ǫ, δ)-PDP is a 
strictly stronger condition than (ǫ, δ)-DP.

Theorem 1  (PDP implies DP McClure 2015) If a rand-
omized mechanism is (ǫ, δ)-PDP, then it is also (ǫ, δ)-DP, 
i.e.,

The proof of Theorem 1 is shown in McClure (2015), 
Triastcyn and Faltings (2020). This motivates us to use 
(ǫ, δ)—PDP throughout this paper. The (ǫ, δ)—PDP has 
applications in the contexts of location recommen-
dations Zhang and Chow (2021), privacy protection 
from sampling and perturbations (Sholmo and Skin-
ner 2012), to create a realistic framework for statisti-
cal agencies to distribute their goods (Machanavajjhala 
et al. 2008), etc.

In our setup Q(X) is a scalar value in Q ≡ [n] . The 
query response q̃ is obtained by adding a discrete noise 
η , whose distribution is denoted by f (η) , i.e.:

 The PMF associated with the privacy loss function, 
called privacy leakage probability, for the additive noise 
mechanism, can be derived from  (2), (3) and (4):

For the discrete query case, we denote the “distance one 
set” of X ∈ X  as X (1)

X ⊂ X \X and let:

where X ′ differs from X for one user data record or a sen-
sitive user attribute. Let us define the indicator function 
uXX ′(η) , η ∈ [n] such that ith entry is one if LXX ′(q̃i) > ǫ 
and zero otherwise, i.e.:

 where we omitted the suffix η and used f (η) in lieu of 
fη(η) . It is easy to verify that we have:

(3)δ ≥ δǫq̃ � sup
X∈X

sup
X ′∈X

(1)
X

Pr(LXX ′(q̃) > ǫ),

(ǫ, δ)− PDP⇒(ǫ, δ)− DP, but (ǫ, δ)− DP�(ǫ, δ)− PDP.

(4)q̃ = Q(X)+ η ⇒ fq̃(q̃|X) = fη(q̃ −Q(X)).

(5)Pr(LXX ′(q̃) > ǫ) = Pr ln
fη(q̃ −Q(X))

fη(q̃ −Q(X ′))
> ǫ .

(6)µXX ′ � Q(X)−Q(X ′), ∀X ∈ X ,∀X ′ ∈ X
(1)
X .

(7)uXX ′(η) �

{

1, f (η) > eǫ f (η + µXX ′)

0, otherwise

Pr(LXX ′(q̃) > ǫ) =

n
∑

η=0

uXX ′(η)f (η).

Before describing our design framework in Section “Opti-
mal additive noise”, a few considerations on (ǫ, δ)− PDP 
are in order.

Post‑processing
A randomized DP mechanism maps a query output onto 
a distribution designed to meet Definition (1) or (3). If 
the randomized query answer generation requires multi-
ple steps, it is important to ensure that the (ǫ, δ)− PDP 
( (ǫ, δ)− DP ) are met after the very last step. In fact, in 
Meiser (2018) it was pointed out that, unless δ = 0 , in 
general (ǫ, δ)− PDP with δ > 0 cannot be guaranteed 
after post-processing, where post-processing refers to 
processing steps that follow the noise addition prior to 
the release the query response. The objections in Meiser 
(2018) are valid for mechanisms that include post-pro-
cessing like the popular “truncation” or “clamping” mech-
anisms that consists of first adding unbounded noise η 
and then projecting (clamping) the sum Q(X)+ η in the 
prescribed range to generate q̃ . In this case (ǫ, δ)− DP 
are guaranteed before the post-processing step, but not 
after, unless δ = 0 . The proposition below provides guar-
antees for (ǫ, δ)− PDP.

Proposition 1  Let q̃ ∈ Q be a randomized (ǫ, δ)− PDP 
response for query q ∈ Q . Let g : Q → Q be an arbi-
trary invertible mapping. Then g ◦ q̃ = g(q̃) is also a 
(ǫ, δ)− PDP response for any δ ≥ 0 . Furthermore, if δ = 0 , 
ǫ − PDP is preserved, irrespective of g.

Proof  The proof is in Appendix 6. 	�  �

Proposition 1 clarifies the importance of designing ran-
domized responses whose domain is consistent with the 
query output, since it does not require post-processing to 
generate answers in the right set. Clamping is not bijec-
tive and changes the masses of probability in a way that 
alters δ for a given ǫ.

Optimal additive noise
For queries q = Q(X) ∈ [n] , a possible approach 
other than clamping is to assume that the noise addi-
tion is modulo n+ 1 with η ∈ [n] so that the outcome 
q̃ = q + η (mod n+ 1) , is always in the appropriate range. 
In this paper, we seek to obtain the optimum noise dis-
tribution f (η) for such a mechanism. Since (ǫ, δ)− PDP 
implies (ǫ, δ)− DP and hence, it is a stronger notion, we 
use the definition of (ǫ, δ)− PDP throughout.

Next, we omit the (mod n+ 1) to streamline the nota-
tion, with the understanding that, from now on, sums 
and differences of query outcomes and noise values are 
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always modulo n+ 1 . Observe that adding uniform noise 
would lead necessarily to a scalar query q̃ being uniform 
and thus, high privacy (i.e. δ = 0 for any ǫ > 0 ) but poor 
accuracy since 1− 1/(n+ 1) . This motivates the search 
for an optimal solution. Using (5) and (6):

The reasons for using the modulo addition of noise are:

•	 The randomized answers fall within the range 
expected for the query, which allows us to leverage 
Proposition 1.

•	 The mechanisms require defining a single distribu-
tion rather than distinct distributions for all possible 
X ∈ X .

•	 In the optimization, any pair with the same modulo 
difference results in a single (ǫ, δ)− PDP constraint, 
simplifying the search for the optimum distribution.

•	 The simplifications allow us to derive the optimum 
distribution in closed form for specific use cases.

From  (8) it is evident that the (ǫ, δ) privacy curve is 
entirely defined by the noise distribution and its change 
due to a shift in the mean. As a result, the probability 
mass f (q + η) is obtained as a circular shift of the PMF 
f (η) ; therefore (8) can be used with the denominator 
f (η + µXX ′) also representing a circular shift of f (η) . 
This result motivates us to define the neighborhood sets, 
using only µXX ′ , in Section “Analytical solutions”.

Numerical optimization
In this section, we show that the problem of finding an 
optimal additive noise mechanism for a given pair (ǫ, δ) 
and expected distortion cost can be cast into a MILP for-
mulation, i.e. an optimization problem with linear cost, 
linear equality and inequality constraints, and real as 
well as integer variables. While MILPs are non-convex, 
several stable solvers have convergence guarantees. Our 
MILP formulation (in  (13a)–(13g)) finds optimum noise 
distributions minimizing a specified expected distortion 
cost:

where ρη denotes the distortion caused by the noise value 
η ∈ [n] . There are two typical metrics:

Definition 3  (Error Rate) For q̃ = Q(X)+ η , the error 
rate metric, denoted by ρER , is the expected value of the 
function ρ0 = 0 and ρη = 1, η > 0 . Thus:

(8)Pr(LXX ′(q̃) > ǫ) = Pr

(

ln
f (η)

f (η + µXX ′)
> ǫ

)

.

(9)E[ρη] =

n
∑

η=0

ρηf (η),

Definition 4  (Mean Squared Error) For q̃ = Q(X)+ η , 
the MSE corresponds to ρη = η2:

Remark 1  In the case of an ‘ordered’ query domain, 
the MSE metric can be preferable over an error rate met-
ric. That is why we are focusing on the minimization of 
any linear cost in the MILP formulation. However, the 
numerical results shown in Section “Numerical results” 
indicate that even when we target the error rate metric 
ρER = 1− f (0) , the optimal solution tends to have values 
that diminish as they move away from the actual query.

Because our analytical results in Section “Analytical 
solutions” consider the error rate metric, whenever ρ is 
mentioned without specification, this implies ρER is being 
discussed. Having established the cost, the constraints 
(see (13b)–(13h)) are derived as follows. From the databases, 
we calculate the set {µXX ′ } using (6), which are the only data-
base parameters needed in the formulation. As we know, 
the sum of probability masses is 1 (see  (13b)). The indica-
tor function uXX ′(η) , defined in (7), can be mapped on the 
integrality constraint, uXX ′(η) ∈ {0, 1},∀X ∈ X ,∀X ′ ∈ X

(1)
X  

(see 13h) and on two linear inequality constraints, 
f (η)− eǫ f (η + µXX ′)− uXX ′(η) ≤ 0 and eǫ f (η + µXX ′)

−f (η)+ eǫuXX ′(η) ≤ eǫ (see  (13f) and  (13g)).1 We can 
rewrite (8) as Pr(LXX ′(q̃) > ǫ) = Pr(f (η) > eǫ f (η + µXX ′))

=
∑n

η=0
uXX ′(η)f (η) ≤ δ , ∀X ∈ X ,∀X ′ ∈ X

(1)
X  . Since it is a 

bilinear constraint, and for a MILP formulation we need the 
constraints to be linear, we introduce the auxiliary variables 
yη, η ∈ [n]:

(10)ρER � 1− f (0).

(11)ρMSE � E[|q̃ −Q(X)|2] =

n
∑

η=1

η2f (η).

(12)yη � uXX ′(η)f (η), η ∈ [n].

1  The indicator function uXX ′ (η) (in short u) can take two values 
(see  (7)). In the first case, when u = 1 , the Eqs.  (13f ) and  (13g) become 
f (η)− eǫ f (η + µXX ′ ) ≤ 1 and eǫ f (η + µXX ′ )− f (η) ≤ 0 . In (13f ), since ǫ > 0 
and f (η) ∈ [0, 1] , the maximum difference between f (η) and eǫ f (η + µXX ′ ) 
is 1 which happens when f (η) = 1 and f (η + µXX ′ ) = 0 , and for the rest 
of the cases difference is less than 1. The Eq.  (13g) is true due to the def-
inition of u (see  (7)). Next, when u = 0 , the Eqs.  (13f ) and  (13g) become 
f (η)− eǫ f (η + µXX ′ ) ≤ 0 and eǫ f (η + µXX ′ )− f (η) ≤ eǫ . In this case, (13f ) is 
true due to the definition of u (see (7)) and the other equation can be modi-
fied by multiplying e−ǫ both sides to f (η + µXX ′ )− e−ǫ f (η) ≤ 1 , which is 
true due to the similar arguments made earlier for the case u = 1.
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so that we can use 
∑n

η=0 yη ≤ δ to constrain δ instead; 
to enforce yη = f (η) for uXX ′(η) = 1 , and yη = 0 for 
uXX ′(η) = 0 , the trick is to use, respectively, the fol-
lowing linear constraints: uXX ′(η)+ f (η)− yη ≤ 1 , 
uXX ′(η)− f (η)+ yη ≤ 1,2 and yη − uXX ′(η) ≤ 0.3 This 
completes the explanation of the optimization con-
straints shown in (13c)–(13e).4 Let

The form of the MILP is: 

 The MILP has 3(n+ 1) variables out of which f (η) and 
yη , η ∈ [n] are real numbers ( 2(n+ 1) in total) in [0,  1] 
and uXX ′(η) (also (n+ 1) in number) are integers {0, 1} . 
The computational complexity of the MILP solution is 
determined by the algorithm used, which can be branch 
and bound, cutting plane, or branch and cut. A detailed 
study on the complexity of the MILP solution is found in 
Jiang et al. (2021). When δ = 0 , it reduces to the follow-
ing LP: 

M�{µXX ′ |µXX ′ = Q(X)−Q(X ′),∀X∈X , ∀X ′∈X
(1)
X }

(13a)min
f (η),uXX ′ (η),yη

n
∑

η=0

ρηf (η)

(13b)s.t.

n
∑

η=0

f (η) = 1,

(13c)
n

∑

η=0

yη ≤ δ, yη − uXX ′(η) ≤ 0,

(13d)uXX ′(η)+ f (η)− yη ≤ 1,

(13e)uXX ′(η)− f (η)+ yη ≤ 1,

(13f )f (η)− eǫ f (η + µXX ′)− uXX ′(η) ≤ 0,

(13g)eǫ f (η + µXX ′)− f (η)+ eǫuXX ′(η) ≤ eǫ ,

(13h)
f (η), yη ∈ [0, 1], η ∈ [n],

uXX ′(η) ∈ {0, 1}, ∀µXX ′ ∈ M.

(14a)min
f (η),uXX ′ (η),yη

n
∑

η=0

ρηf (η)

 A possible useful variant of the optimization in () that 
will be explored in our numerical results is to minimize δ 
instead, under a distortion constraint ρ , i.e.: 

 In the next sections, we derive analytical solutions of 
(13) that minimize the error probability ρER = 1− f (0) 
for some special database structures and corroborate the 
results in Section “Numerical results” comparing the for-
mulas with the MILP solutions obtained using   Gurobi 
(2021) as a solver.

Analytical solutions
In this section, we analytically study the solution that 
minimizes the error rate E[ρη] = 1− f (0) . To give 
closed-form solutions for the optimum PMF, we focus on 
the following instances of possible µXX ′:

Definition 5  (Single Distance (SD)) In this setting 
∀X ∈ X ,∀X ′ ∈ X

(1)
X  , the difference µXX ′ is constant, i.e. 

µXX ′ = µ̂ . Note that µ̂ ≤ n.

Definition 6  (Bounded Difference (BD)) In this set-
ting ∀X ∈ X , ∀X ′ ∈ X

(1)
X  , µXX ′ take values in the set [µ̄]+ , 

µ̄ ≤ n , at least once.

The most general case is the following:

Definition 7  (Arbitrary) In this case µXX ′ can take val-
ues from any subset of [n],∀X ∈ X , ∀X ′ ∈ X

(1)
X .

The next lemma clarifies that the optimum PMF for the 
BD case for a given (ǫ, δ) is useful to attain the same guar-
antees for the case of an arbitrary neighborhood.

Lemma 1  Suppose µ̄ = sup
∀X∈X ,∀X ′∈X

(1)
X

µXX ′ . Then 
any noise PMF that provides (ǫ, δ) privacy for the BD 

(14b)s.t.

n
∑

η=0

f (η) = 1,

(14c)f (η)− eǫ f (η + µXX ′) ≤ 0, η ∈ [n],

(14d)f (η) ∈ [0, 1], ∀µXX ′ ∈ M

(15a)min
f (η),uXX ′ (η),yη

δ

(15b)s.t.

n
∑

η=0

ρηf (η) ≤ ρ,

(15c)(13b)− · · · − (13h)

4  Note that other constraints can be added, for instance, that of having a 
zero mean distribution, or forcing some of the PMF values to be identical, 
etc.

2  This inequality ensures that yη = f (η) if uXX ′ (η) = 1.
3  This inequality ensures that yη = 0 when uXX ′ (η) = 0.
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neighborhood with parameter µ̄ will give the same guar-
antees in terms of (ǫ, δ) and ρ for the case of arbitrary 
neighborhoods. However, lower distortion is achievable by 
solving the MILP in (13).

Proof  The proof is simple: the set of constraints that 
need to be met to satisfy (ǫ, δ) privacy for the arbitrary 
case is a subset of the BD neighborhood case with µ̄ as a 
parameter. This also means, however, that the minimum 
ρ⋆ for the latter case is sub-optimum. 	�  �

Note that the SD neighborhood setting is a simple case 
while the previous lemma indicates that the BD case is 
more useful in general.

Next, we find an explicit solution for the optimum 
noise PMF f ⋆(η), η ∈ [n] for the SD and BD neighbor-
hood cases. In Section  “Optimal noise mechanism for 
vector queries”, we discuss the case of discrete vector 
queries whose entries are independently subjected to the 
mechanism vs. the optimal solution.

PMF for single distance neighborhood
The natural way to express the optimum PMF for an SD 
neighborhood setting is by specifying the probability 
masses sorted in decreasing order of f(k), ∀k ∈ [n] . They 
are referred to as {f(k)|1 ≥ f(0) ≥ f(1) ≥ · · · ≥ f(n) ≥ 0}.

Lemma 2  Considering the case in Definition 5 where 
µXX ′ = µ̂ is constant ∀X ∈ X , ∀X ′ ∈ X

(1)
X  , the noise PMF 

minimizing the error rate is such that f ⋆
(h) = f ⋆(hµ̂) , 

∀h ∈ [n] and the inequality in  (14c), can be written in 
terms of the sorted PMF as follows:

Proof  The proof is in Appendix 7. 	�  �

To start, let us consider the case δ = 0:

Lemma 3  For the SD neighborhood and δ = 0 , the opti-
mal noise PMF for the modulo addition mechanism is:

Case 1: If (µ̂, (n+ 1)) are relatively prime. 

Case 2: If (µ̂, (n+ 1)) are not relatively prime. 

(16)f ⋆(h) − eǫ f ⋆(h+1) ≤ 0, ∀h ∈ [n].

(17a)f ⋆(k) = e−kǫ f ⋆(0), k ∈ [n]+,

(17b)f ⋆(0) =
1− e−ǫ

1− e−(n+1)ǫ
≡ f ⋆(0).

(18a)f ⋆(k) = e−kǫ f ⋆(0), k ∈ [Nµ̂ − 1]+

 where Nµ̂ = (n+1)
gcd((n+1),µ̂)

 and ρ⋆ = 1− f ⋆(0).

Proof  The proof is in Appendix 8. 	�  �

Lemma 3 is verified numerically in Section “Numeri-
cal results” in both Case 1 and 2 (see Fig. 9). We illus-
trate the two cases in Fig. 1.

From (17b) we can observe that for case 1, the error 
rate ρ⋆ depends only on ǫ and n, and for case 2 (see 
(18c)), ρ⋆ depends on both ǫ and Nµ̂.

Remark 2  It is notable that in this formulation where 
the cost is the error rate, positive probability masses 
corresponding to higher noise outcomes tend to be less 
likely than those having smaller outcomes. This is why 
these designs exhibit low MSE.

Mechanisms with better error rate (lower ρ ) must 
allow for δ > 0 . It can be proven (see Theorem 2) that 
the optimal error rate ρ⋆(δ, ǫ) vs. δ curve is piece-wise 
linear, interleaving flat regions with intervals with lin-
ear negative slope, see Fig. 2.

We categorize them as “linear regions” and “flat 
regions”. Let δǫk and δǫk be the instances of δ at which 
ρ⋆(δ, ǫ) changes from kth linear region to kth flat 
region and kth flat region to (k + 1) th linear region, 
respectively.

(18b)f ⋆(k) = 0, k ∈ [n]\[iµ̂], ∀i ∈ [Nµ̂ − 1]

(18c)f ⋆(0) =
1− e−ǫ

1− e−(Nµ̂)ǫ
≡ f ⋆(0).

Fig. 1  In these examples f ⋆(µ̂) is single distance, µ̂ , away 
from f ⋆(0) hence it is assigned e−ǫ f ⋆(0) , next f ⋆(2µ̂) is assigned 
e−ǫ f ⋆(µ̂) since it is µ̂ away from f ⋆(µ̂) and so on and so forth. 
So the order of assignment of values for plot (a) example is: 
0, 3, 6, 1, 4, 7, 2, 5 and the order of assignment of values for plot 
(b) example is: 0, 2, 4, 6. Since the values at 1, 3, 5, 7 are not µ̂ away 
from f ⋆(2kµ̂), k ∈ [Nµ̂ − 1 = 3] they are assigned 0 value to have 
a higher f ⋆(0)
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Remark 3  We state the following results of this section, 
i.e., Section “PMF for single distance neighborhood”, for 
the case (n+ 1, µ̂) that are relatively prime. For the case 
where they are not, the results are obtained by replacing 
n with Nµ̂ = (n+1)

gcd((n+1),µ̂)
 in all the expressions and 

explanations.

Let us define the following quantities: 

Theorem 2  k ∈ [n]+ , in the kth section where ρ⋆(δ, ǫ) is 
flat within δǫk ≤ δ ≤ δ

ǫ

k:

In the portion of the kth section where ρ⋆(δ, ǫ) decreases 
linearly with δ , which are within δǫk−1 < δ ≤ δǫk:

and ρ⋆(δ, ǫ) = 1− f ⋆(0).

Proof  The proof is in Appendix 9. 	�  �

From Theorem 2 we note that the boundary point δǫk 
determines the value of f ⋆

(n−k) , which is the smallest 
non-zero probability mass in the kth flat region. Simi-
larly, the other boundary point δǫk ≡ eǫδǫk indicates the 

(19a)

δ
ǫ

k := e−(n−k−1)ǫ 1− e−ǫ

1− e−(n−k+1)ǫ
, for k ∈ [n−1]

(19b)δ
ǫ

n := 1, δǫ0 := 0

(19c)δǫk := e−(n−k)ǫ 1− e−ǫ

1− e−(n−k+1)ǫ
, for k ∈ [n]+.

(20)f ⋆(h) =

{

δǫke
(n−k−h)ǫ , h ∈ [n− k],

0, h ∈ [n− k + 1 : n],

(21)

f ⋆(h) =

{

δe(n−k−h)ǫ , h∈[n−k],

e(n−h)ǫ eǫ−1
ekǫ−1

(

1− δ
δǫk

)

,h∈[n−k + 1 :n].

value of f ⋆
(n−k−1) , which is the smallest non-zero proba-

bility mass in the (k − 1)th flat region. Having calculated 
the optimal PMF for the SD neighborhood case in The-
orem  2, the (ǫ, δ) curves correspond to f ⋆(0) = 1− ρ⋆ 
for all its n+ 1 possible expressions or, better stated, 
they are the level curves ρ(δ, ǫ) = ρ⋆ . The trend of δ 
curves is monotonically decreasing with respect to ǫ for 
a given ρ⋆ . Let ǫρ

⋆

0  be the solution obtained setting f ⋆(0) 
in (17b) to be equal to 1− ρ⋆:

Then we must have that δ = 0 for ǫ ≥ ǫ
ρ⋆

0  . Because this 
corresponds to a flat region for f ⋆(0) , there has to be a 
discontinuity moving towards lower values ǫ < ǫ

ρ⋆

0  , and 

δ must immediately jump to δǫ
ρ⋆

0
0  when ǫ is an infini-

tesimal amount below ǫρ
⋆

0  . This point is the edge of the 
linear region. For a range of values of ǫ < ǫ

ρ⋆

0  , δ with 
respect to ǫ must have the negative exponential trend 
δ = (1− ρ⋆)e−nǫ obtained from Eq. (21) for h = 0, k = 1 
until the next jump occurs, for a value ǫρ

⋆

1  which is 
obtained by setting f ⋆(0) for h = 0 and k = 1 in (20) to 
be equal to 1− ρ⋆:

Following this logic, one can prove that the optimum 
(ǫ, δ) curve for a given error rate ρ⋆ is:

Corollary 1  For a given ǫ > 0 , the privacy loss for the 
SD neighborhood case with the optimal noise mechanism, 
is a discontinuous function of ǫ , where:

when ρ⋆ = 1− f ⋆(0) is in kth section, k ∈ [n]+ and ǫρ
⋆

k  are 
the solutions of the following equations:

Proof  As discussed before the Corollary, for δ = 0 , 
the level curves of ρ⋆(δ, ǫ) = ρ⋆ as a function of ǫ must 
be monotonically decreasing for ǫ ≥ ǫ

ρ⋆

0  (see (22)) 
as ǫ increases. Then the curve will have discontinui-
ties that correspond to the flat regions and the trend 
between these discontinuities is obtained through the 
equation (1− ρ⋆) = f ⋆(0) = δe(n−k)ǫ , which implies 

(22)ǫ
ρ⋆

0 : ρ⋆ = 1−
1− e−ǫ

ρ⋆

0

1− e−(n+1)ǫ
ρ⋆

0

(23)ǫ
ρ⋆

1 : ρ⋆ = 1− δ
ǫ
ρ⋆

1
1 e(n−1)ǫ

ρ⋆

1 = 1−
1− e−ǫ

ρ⋆

1

1− e−nǫ
ρ⋆

1

.

(24)δǫ = e−(n−k)ǫ(1− ρ⋆), ǫ
ρ⋆

k ≤ ǫ < ǫ
ρ⋆

k−1

(25)

ǫ
ρ⋆

k :ρ⋆ = 1− δ
ǫ
ρ⋆

k

k e(n−k)ǫ
ρ⋆

k = 1−
1− e−ǫ

ρ⋆

k

1− e−(n+1−k)ǫ
ρ⋆

k

.

Fig. 2  The variation of ρ as a function of δ for SD neighborhood 
showing the alternate flat and linear regions
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δ = (1− ρ⋆)e−(n−k)ǫ . The kth interval starts at the point 

ǫ = ǫ
ρ⋆

k  such that δ = δ
ǫ=ǫ

ρ⋆

k

k  ensures that f ⋆(0) = 1− ρ⋆ ; 
thus, ǫ = ǫ

ρ⋆

k  must be the solution of (25). 	�  �

The BD neighborhood
Also in this case we first start with the optimum noise 
for δ = 0 . First, let us express n as:

where b = ⌊n/µ̄⌋ and r ∈ [µ̄− 1] . For this case, the ine-
qualities in (14c) can be written as the following:

Lemma 4  In the case of a BD neighborhood of size 
µ̄ , the optimum PMF f ⋆(η) has the following form for 
i ∈ [b+ 1]+:

and the mass at zero is:

The PMF has, therefore, a staircase trend with steps of 
length ℓi = µ̄ for i ∈ [b]+ and ℓb+1 = r and ρ⋆ = 1− φ0.

Proof  The proof is similar to that of Lemma 3 because 
it recognizes that it is best to meet the inequalities in (27) 
as equalities, since that allows for the largest f ⋆(0) . The 
only difference is that the masses in the first group [µ̄]+ 
are equal to φ1 = e−ǫ f ⋆(0) , thus they constrain a second 
group to have value φ2 = e−ǫφ1 and so on. There are b of 
them that contain µ̄ masses of probability and only the 
last group includes the last r values. f ⋆(0) is obtained 
normalizing the PMF to add up to 1. 	�  �

The PMF for δ > 0 has staircase pattern (see Fig.  3), 
similar to Lemma 4 and, also in this case, for δ > 0 the 
ρ⋆(δ, ǫ) has a piece-wise linear trend that alternates 
between flat and linear regions. However, the BD neigh-
borhood case has an intricate pattern in which the con-
straints become violations, as the privacy loss δ → 1 . 
Rather than having k = n , the number of sections k is 
quadratic with respect to b. To explain the trend, it is 

(26)n = bµ̄+ r

(27)
f ⋆(h)− eǫ f ⋆(h+ µ) ≤ 0, ∀h ∈ [n], ∀µ ∈ [µ̄]+.

(28)
f ⋆(η) = f ⋆(0)e−iǫ≡ φi, (i−1)µ̄+ 1 ≤ η ≤ min(iµ̄, n).

(29)

f ⋆(0) =

(

1+ µ̄

b
∑

i=1

e−iǫ + re−(b+1)ǫ

)−1

≡ φ0.

best to divide the section of the f ⋆(0) ≡ 1− ρ⋆(δ, ǫ) 
curve vs. δ in b segments, indexed by h ∈ [b]+ as shown 
in Fig.  4. Except for the last interval corresponding to 
h = b , the other segments, indexed by h ∈ [b− 1]+ , are 

Fig. 3  The PMF of the optimal noise mechanism for the BD 
neighborhood follows a staircase pattern. In the flat region, it 
has b+ 1 steps and ith step height is φk

i  . Similarly, in the linear region, 
the PMF has b+ 2 steps and ith step height is ψk

i (δ)

Fig. 4  The variation of f ⋆(0) as a function of δ for BD neighborhood 
showing b segments with the alternate flat and linear regions
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further divided into h segments, indexed by j ∈ [h]+ and 
this index refers to one of the alternating flat and linear 
regions within the hth interval. This results in k = b(b−1)

2  
alternating flat and linear regions. Instead, in the seg-
ment indexed by h = b , there is only one linear region 
i.e., f ⋆(0) = δ . The optimum distribution is specified in 
the following theorem:

Theorem  3  Let b+ r < µ̄ . For a given ǫ > 0 and for 
µXX ′ ∈ [µ̄]+ , ∀X ∈ X , ∀X ′ ∈ X

(1)
X  (i.e. the BD neighbor-

hood), f ⋆(0) versus δ features flat and linear regions as 
shown in Fig.  4. In the first (b− 1) segments, indexed by 
h ∈ [b− 1]+ , each alternating a pair of flat and linear 
regions indexed j ∈ [h]+ , with respective boundaries 
δǫh,j ≤ δ ≤ δ

ǫ

h,j and δǫh,j−1 < δ ≤ δǫh,j , with the convention 

δ
ǫ

h,0 = δ
ǫ

h−1,h−1 . The following facts are true:

(a) In the kth flat region, k =
∑h−1

j′=1 j
′ + j = (h−1)h

2 + j , 

the optimum PMF (c.f. Fig. 3a) for i ∈ [b+ 1]+ is:

where what distinguishes the distributions for each k are 
the intervals η

i−1
< η ≤ η

i
, i ∈ [b+ 1]+ with equal prob-

ability mass φk
i  . More specifically, considering the kth flat 

region, corresponding to the pair h,  j with h ∈ [b− 1]+ , 
j ∈ [h]+ , the intervals η

i−1
< η ≤ η

i
 of the optimum PMF, 

for i ∈ [b+ 1]+ , have lengths ℓi = η
i
− η

i−1
:

The corresponding indexes sets are obtained as:

To normalize the distribution f ⋆(0) = φk
0 must be:

(30)
f ⋆(η) = f ⋆(0)e−iǫ ≡ φk

i , ηi−1
< η ≤ η

i
, η

0
= 0,

(31)ℓi=



























1, for i = 0

µ̄, for i ∈ [b−h]+
µ̄−1, for i ∈ [b−h+1 :b],

i �=b−h+j+1

µ̄, for i=b−h+j+1 whenj �=h
r + h− uhj ,for i = b+ 1.

(32)uhj :=

{

1, for j �= h,
0, for j = h.

(33)η
0
= 0, η

i
= η

i−1
+ ℓi, i ∈ [b+ 1]+.

(34)φk
0 =

1
∑b+1

i=0 ℓie−iǫ
=

(

µ̄αǫ
hj+βǫ

hj

)−1
,

(35)αǫ
hj :=e−ǫξ ǫb−(1−uhj)e

−(b−h+j+1)ǫ ,

and the PMF is valid within δǫh,j ≤ δ ≤ δ
ǫ

h,j where: 

(b) In each of the linear regions, i.e., δǫh,j−1 < δ ≤ δǫh,j , the 
PMF values vary linearly in groups with respect to δ . The 
group lengths are:

each with probability ψk
i (δ) (as shown in Fig. 3b):

(c) In the bth segment, i.e. δǫb−1,b−1 < δ ≤ 1 , the objective 
function maximum f ⋆(0) = δ . So any set of f ⋆(η), η ∈ [n] , 

that satisfy 
n
∑

η=1

f ⋆(η) = 1− δ and uXX ′(0) = 1,uXX ′(η)

= 0, η ∈ [n]+ , provides the optimal PMF. One of the pos-
sible solutions is:

(36)

where ξǫa :=

a−1
∑

i′=0

e−i′ǫ , ∀a ∈ N+

βǫ
hj := 1+ e−(b−h+1)ǫ(e−jǫ − ξǫh )

+ (r + h− uhj)e
−(b+1)ǫ

(37a)
δ
ǫ

h,j = φk
0 e

−(b−h)ǫ

j
∑

j′=0

e−j′ǫ

= φk
0 e

−(b−h)ǫξ ǫj+1, j ∈ [h− 1]

(37b)δ
ǫ

h,h = φk
0 e

−(b−h−1)ǫ , δ
ǫ

0,0 = φ0e
−(b−1)ǫ ,

(37c)δǫh,j = φk
0 e

−(b−h)ǫξ ǫj ≡

(

φk
0

φ
k−1
0

)

δ
ǫ

h,j−1

(38)ℓi =



























1, for i = 0
µ̄, for i ∈ [b− h]+
µ̄− 1, for i ∈ [b− h+ 1 : b],

i �= b− h+ j + 1
1, for i = b− h+ j + 1
r + h− 1, for i = b+ 2

(39)

ψk
i (δ) =

{

δe(b−h−i)ǫ/ξǫj , i ∈ [b− h+ j]

δe(b−h−i+1)ǫ/ξǫj ,i∈[b−h+j+2 :b+ 2],

ψ
b−h+j+1
i (δ)= 1−

b+2
∑

i = 0
i �= b− h+ j + 1

ℓiψ
k
i (δ).

(40)f ⋆(0) = δ,

(41)f ⋆(η) =
1− δ

n
, η ∈ [n]+.
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Note that, in the last segment, the optimal PMF no longer 
follows the staircase pattern.

Proof  The proof is in Appendix 10. 	�  �

In Theorem  3 we cover the case b+ r < µ̄ . When 
b+ r ≥ µ̄ the result is not conceptually difficult, but the 
optimal PMF is hard to express in a readable form. We 
discuss the general case towards the end of Appendix 10.

Corollary 2  For a given ǫ > 0 , the privacy loss for the 
BD neighborhood case with the optimal noise mechanism 
is also a discontinuous function of ǫ , where:

when ρ⋆ = 1− ψk
0 (δ) is in kth section, k ∈

[

b(b−1)
2

]

+
 and 

ǫ
ρ⋆

h,j , h ∈ [b− 1]+, j ∈ [h]+ , are the solutions of:

Proof  The proof is a direct extension of that for Corol-
lary 1 and is omitted for brevity. 	�  �

Optimal error rates as n → ∞

In this section, we study the limit for n → ∞ of the dis-
tributions for the two cases we studied, the SD and BD 
neighborhoods. First, we discuss the δ = 0 case. The goal 
is to find the relationship between ǫ and ρ when n → ∞ . 
From Lemma 3  (17b), we see that for SD neighborhood 
case, f ⋆(0) ≡ 1− ρ⋆(ǫ) → 1− e−ǫ =⇒ ρ⋆(ǫ) → e−ǫ 
as n → ∞ . Since, ρ⋆(ǫ) is also constrained by 0.5, we have 
that the limit function ρ⋆

∞(ǫ):

And the optimum PMF is zero for all η  = hµ̂ , and:

Similarly, for the BD neighborhood case and δ = 0 in 
Lemma 4 as n → ∞ =⇒ b → ∞ , from (29) we get:

Hence, the expression for ρ⋆(ǫ) for any ǫ > 0 is:

(42)δǫ = ξǫj e
−(b−h)ǫ(1− ρ⋆), ǫ

ρ⋆

h,j ≤ ǫ < ǫ
ρ⋆

h,j−1

(43)ǫ
ρ⋆

h,j : ρ⋆ = 1− φk
0 = 1−

(

µ̄α
ǫ
ρ⋆

h,j

b +β
ǫ
ρ⋆

h,j

hj

)−1

.

(44)ρ⋆
∞(ǫ) =

{

0.5, ǫ ∈ (0, ln 2]
e−ǫ , ǫ ≥ ln 2.

(45)f ⋆∞(hµ̂) = (1− ρ⋆
∞(ǫ))e−hǫ , h ∈ N

(46)φ0 ≡ 1− ρ⋆(ǫ) →

(

1+
µ̄e−ǫ

1− e−ǫ

)−1

(47)=⇒ ρ⋆(ǫ) →
µ̄e−ǫ

µ̄e−ǫ + (1− e−ǫ)

Each of the PMF staircase steps becomes of size µ̄ and 
the values have an exponentially decaying trend:

For 0 < δ ≤ 1 , it is convenient to use the index i = n− k 
looking at the trend of the distortion from δ = 1 , where 
f ⋆(0) = 1 backward. Because the discontinuities between 
flat and linear regions happen at the points where 
δ = δǫn−i, i ∈ [n− 1] we can see from Theorem 2 the dis-
tortion for i ∈ [n− 1]:

and the size of the intervals shrinks like an o(e−iǫ) , as 
i → +∞ quickly leading to the same result as δ → 0 , 
where the distortion tends to e−ǫ as stated before.

Similarly, for the BD neighborhood case, to find the 
expressions for φ∞

0  and φ∞
i  , it is convenient to use a 

new index c = b− h , looking at the trends of the dis-
tortion from δ = 1 , where f ⋆(0) = 1 , going backwards 
towards δ = 0 . In the bth segment (part (c) of Theorem 3, 
f ⋆b (η) → 0 as b → ∞ and n → ∞ for η ∈ [n]+ and thus 
f ⋆b (0) → 1 . For δ ≈ 1 , in the cth region we get the follow-
ing expressions by using (34):

Now, as c → ∞ , the expression of φ∞
0 (c, j) in  (53) con-

verges to φ0 as shown in (46), i.e. the result for δ → 0.

Optimal noise mechanism for vector queries
Next, we briefly discuss the optimal noise mechanism 
design for vector queries to explore what difference it 
makes to optimize after mapping each vector onto a 
number in [n] vs. adopting the mechanism on an entry-
by-entry basis. In fact, let each entry of a vector query be 
in the set Q . In the first case, the MILP formulation of the 
problem defined in (13a)–(13g) can be applied directly to 

(48)ρ⋆
∞(ǫ) =

{

0.5, ǫ ∈ (0, ln (1+ µ̄)]
µ̄e−ǫ

µ̄e−ǫ+(1−e−ǫ )
, ǫ ≥ ln (1+ µ̄).

(49)f ⋆∞(0) = 1− ρ⋆
∞(ǫ)

(50)
f ⋆∞(η) = f ⋆∞(0)e−hǫ , (h−1)µ̄ < η ≤ hµ̄, h ∈ N+.

(51)
f ⋆i (0) ≤

1−e−ǫ

1−e−(i+1)ǫ
⇒ ρ⋆(δ, ǫ) ≥ 1−

1−e−ǫ

1−e−(i+1)ǫ
,

(52)αǫ
b−c,j→

e−ǫ

1− e−ǫ
; βǫ

b−c,j→1−
e−(c+j+1)ǫ

1− e−ǫ

(53)=⇒ φ∞
0 (c, j) →

1− e−ǫ

µ̄e−ǫ+(1−e−ǫ(1+e−(c+j)ǫ))
,

(54)φ∞
i → e−iǫφ∞

0 , i ∈ [b+ 1]+.
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vectors of queries considering the masses of probabilities 
as a joint PMF, with arguments corresponding to all pos-
sible tuples in Qk . In Section “Numerical results”, we pro-
vide two examples for 2D vector queries—one for the BD 
neighborhood and another for an arbitrary neighborhood 
(see Fig. 13). We observe that for the BD neighborhood 
case, the optimum noise mechanism follows a staircase 
pattern in 2D as well and for the arbitrary neighborhood, 
the optimum noise mechanism has e−ǫ f ⋆(0) values at 
η = µXX ′ , where boldface letters are vectors.

Remark 4  In general, the optimal multidimensional 
noise mechanism does not amount to adding inde-
pendent random noise to each query entry. In Section 
“Numerical results” we corroborate this statement by 
showing a counter-example obtained using the MILP 
program for the vector case, considering a two-dimen-
sional vector query.

Numerical results
First, we compare the performance of our proposed opti-
mal noise mechanism with the discrete geometric mech-
anism (Ghosh et al. 2009), discrete Gaussian mechanism 
(Canonne et  al. 2020), classical exponential mechanism 
(McSherry and Talwar 2007), discrete count mechanism 
(Sadeghi et  al. 2020), and data independent mechanism 
(Ravi et  al. 2022). In plot  5a, the performance is com-
pared in terms of ρMSE vs. ǫ for a fixed value of δ = 0.3 . 
Similarly, in plot  5b, the performance is compared in 
terms of ρER vs. ǫ for a fixed value of δ = 0.5 . From the 
plots, it is clear that the proposed optimal noise mecha-
nism significantly outperforms all these mechanisms.

Popular mechanisms for discrete queries are adding a 
random variable from a geometric distribution (Ghosh 
et  al. 2009; Balcer and Vadhan 2019) or a quantized 
Gaussian distribution (see e.g. Canonne et  al. 2020). 
Clamping is an operation in which the query response 
q̃ is projected onto the domain [n] for any η ∈ Z (Ghosh 
et al. 2009), i.e.:

Let Fη(η) denote the cumulative distribution function of 
η ; then the distribution of q̃ in terms of the distribution of 
η after clamping is as follows:

From (56) one can compute the (ǫ, δ) privacy curve 
using  (2),  (3) and  (56). After clamping the (ǫ, δ) guaran-
tees provided by the said DP mechanisms are different 
from the ones calculated for n = +∞ as shown in Fig. 6, 
reported for the same MSE = 3.38. From the figure, it 
is clear that clamping increases δ for the same ǫ budget, 
and this effect is particularly pronounced in the case of 
the Gaussian mechanism. Hence, it is not advisable to 
use infinite support-based noise mechanisms, such as 
discrete geometric and discrete Gaussian, in tandem 
with clamping operations to publish the discrete query 
response with finite support.5

(55)q̃ = min(max(0, q + η), n).

(56)fq̃(k|q) =







Fη(−q), k = 0
fη(k − q), k ∈ [n− 1]+
1− Fη(n− q) k = n.
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Fig. 5  Comparison of the proposed optimal mechanism in terms 
of the expected distortion costs with those proposed in Ghosh 
et al. (2009), Canonne et al. (2020), Sadeghi et al. (2020), McSherry 
and Talwar (2007), Ravi et al. (2022). In plot (a), the optimal noise 
mechanism is compared in terms of MSE, ρMSE , with the discrete 
geometric mechanism, discrete Gaussian mechanism, and Gumbel 
mechanism for a fixed a value of δ = 0.3 and n = 8 . In plot (b), 
the optimal noise mechanism is compared in terms of error rate, ρER , 
with the discrete geometric mechanism, discrete count mechanism, 
and data independent mechanism for a fixed a value of δ = 0.5 
and n = 7

0 0.5 1 1.5 2
10−2

10−1

100

ε

δ

Clamped Geometric
Geometric
Clamped Gaussian
Gaussian

Fig. 6  This plot shows the adverse effect of clamping operation 
on the (ǫ , δ) trade-off for discrete geometric and discrete Gaussian 
mechanisms. The following parameters are used: n = 8,α = 0.7 
and σ 2 = 3.38

5  The clamped Geometric mechanism has only one predefined parameter, 
α , from which one can choose, whereas we choose all probability masses, so 
we do not have a single distribution, but we define a class of optimal distri-
butions as the output of the optimization problem.
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Next, we now test the modified MILP problem (15a) 
of minimizing δ , constraining the error rate ρ = ρER 
and solve the MILP numerically using Gurobi as the 
solver. For a fair comparison, we consider the measure of 
errors vs. the ER and MSE, and respective parameters of 
the noise mechanisms viz., α in Ghosh et  al. (2009), σ 2 
in Canonne et  al. (2020), β ′ in Adams (2013)6, and ρ in 
Sadeghi et  al. (2020), Ravi et  al. (2022); the results are 
shown in Fig. 7. In plot 7a, we show the comparison of 

the proposed optimal noise mechanism with the discrete 
geometric, discrete Gaussian, and Gumbel mechanisms 
for a given MSE = 0.6101. Similarly, in plot 7b, we show 
the comparison of the proposed optimal noise mecha-
nism with the discrete Gaussian mechanism, discrete 
count mechanism, and data independent mechanisms 
for a given ER = 0.3. From the plots, it is clear that the 
proposed optimal noise mechanism significantly outper-
forms all these mechanisms ∀ǫ > 0.

Now, we provide the comparison between the PMFs 
of optimal noise distribution with regard to Gaussian 
and geometric distributions in Fig. 8 for the same MSE 
parameter for all the distributions. From the plot, we 
can observe that the probability mass at η = 0 is maxi-
mum for the proposed mechanism, which validates our 
claim of the least error rate among these mechanisms.

In the following figures, we show the structure of the 
PMF associated with the optimal noise mechanism. 
First, we consider the SD neighborhood case. More spe-
cifically, the plots in Fig. 9 show the PMF of the optimal 
noise mechanisms, f ⋆(η), η ∈ [n] , for SD neighborhood 
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Fig. 7  Comparison of the proposed optimal mechanism 
in terms of (ǫ , δ) trade-offs with those proposed in Ghosh et al. 
(2009), Canonne et al. (2020), Sadeghi et al. (2020), McSherry 
and Talwar (2007). In plot (a), the optimal noise mechanism 
is compared with the discrete geometric mechanism, 
discrete Gaussian mechanism and Gumbel mechanism 
for a fixed MSE, i.e., ρMSE

Geo. = ρMSE
Gau. = ρMSE

Gum.
= ρMSE

Opt . = 0.6101 

and n = 8 . In plot (b), the optimal noise mechanism 
is compared with the discrete geometric mechanism, discrete 
count mechanism, and data independent mechanism, i.e. 
f (0) = 1− ρER

Ind. , f (η) = ρER
Ind./n, η ∈ [n]+ , for a fixed ER, i.e., 

ρER
Geo. = ρER

Cnt . = ρER
Opt . = ρER

Ind. = 0.3 and n = 7

Fig. 8  This plot shows the PMF of the optimal noise mechanism 
compared with both the Gaussian and geometric mechanisms. The 
following parameter values are used: n = 8,α = 0.7, ǫ = 1 , δ = 0 , 
and σ 2 = 3.38

Fig. 9  These plots show the PMF of the optimal noise mechanisms 
for the SD neighborhood case and the following parameter values 
are used for both n = 7, ǫ = 0.75 . µ̂ = 3 is used in plot (a), whereas 
µ̂ = 2 in used in plot (b)

Fig. 10  These plots show the PMF of the optimal noise mechanisms 
for BD neighborhood case and the following parameter values are 
used: n = 8, µ̄ = 3, ǫ = 1.5 . In plot (a) we see that the optimal noise 
mechanism follows staircase pattern starting from η = 1 with b = 2 
steps of length µ̄ = 3 and one last step of length r = 2 . In plot (b) we 
show how staircase pattern and step lengths change with δ . It can be 
seen at δ = δ

ǫ

0 = 0.1212 , δ = δǫ1 = 0.1238 , and δ = δǫ2 = 0.1522 step 
lengths are: (1,3,3,2) (blue coloured bars), (1,3,2,3) (red coloured bars), 
and (1,3,2,2,1) (yellow coloured bars), respectively

6  To realize the classical exponential mechanism based DP (McSherry and 
Talwar 2007), we utilize the addition of Gumbel(ǫ ,β ′) distribution to the 
query inputs (Adams 2013), where β ′ is a parameter.
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case for µ̂ = 3 in Fig. 9a and for µ̂ = 2 in Fig. 9b. In the 
left plot, we see that f ⋆(η) is non-zero for all η ∈ [n] 
since ( n+ 1, µ̂ ) are relatively prime but in the right 
plot, we see that f ⋆(η) is zero for η ∈ {1, 3, 5, 7} , since 
( n+ 1, µ̂ ) are not relatively prime (see Fig. 1 for the rea-
soning). From the plots we observe that as δ increases, 
f ⋆(0) increases and since error rate, ρER , is 1− f ⋆(0) 
it decreases with increase in δ . And in the right plot, 
at some of the η ∈ [n]+ values, zero probability mass is 
assigned. Hence, we see a higher value of f ⋆(0) com-
pared to the corresponding values in the left plot, thus 
having a lower error rate in the right plot for a given 
δ value. Recall Lemma  2 and Lemma  3, to see that 
f ⋆(0) ≥ f ⋆(3) ≥ f ⋆(6) ≥ f ⋆(1) ≥ f ⋆(4) ≥ f ⋆(7) ≥ f ⋆(2)

≥ f ⋆(5) in Fig. 9a which are represented using f ⋆(i), i ∈ [n] , 
respectively. Similarly, we observe f ⋆(0) ≥ f ⋆(2) ≥ f ⋆(4)

≥ f ⋆(6) and rest f ⋆(1) = f ⋆(3) = f ⋆(5) = f ⋆(7) = 0 in 
Fig.  9b. Next, we consider the BD neighborhood case. 
The plots in Fig. 10 show the PMF of the optimal noise 
mechanisms, f ⋆(η), η ∈ [n] , for BD neighborhood case 
for δ = 0 in Fig. 10a and for δ > 0 in Fig. 10b. In the left 
plot, we clearly see the staircase pattern with step sizes 
equal to µ̄ , except for the last step. In the right plot, we 
see that step widths change as δ increases its values while 
the staircase structure is maintained. Note that the verti-
cal height of each step is eǫ times higher than the previous 
one, as can be seen in Fig. 10b and in Table 1. Also, from 
the plot in Fig. 10b and Table 1, one can observe as the 
value of f ⋆(0) increases (thus the value of ρER decreases) 
as δ increases, as it is expected.

Next, we consider the vector query case and pro-
vide a counter example to support Remark  4 for a two-
dimensional vector query. Let n = 4, ǫ1 = 1.5, ǫ2 = 1.5,

ǫ = 3,µXX ′ = {0, 1, 2}, δ = 0 . The optimal noise mecha-
nism for (ǫ1, 0) and (ǫ2, 0) DP are: f ⋆1 (η) = f ⋆2 (η) = [0.6469
, 0.1443, 0.1443, 0.0322, 0.0322]; the values of the optimal 
noise mechanism PMF f ⋆(η1, η2) for (ǫ, 0) are in (57):

The marginal distributions happen to be equal, 
which makes sense in terms of symmetry: 
f1(η1) =

∑n
η2=0 f

⋆(η1, η2) ≡ f2(η2) and they have masses 
[0.7681, 0.1073, 0.1073, 0.0086, 0.0086]. We can observe 
that f ⋆(η1, η2)  = f1(η1)f2(η2).

The plots in Figs. 11, 12, 13 and 14 are self explanatory.

(57)











0.6954 0.0346 0.0346 0.0017 0.0017
0.0346 0.0346 0.0346 0.0017 0.0017
0.0346 0.0346 0.0346 0.0017 0.0017
0.0017 0.0017 0.0017 0.0017 0.0017
0.0017 0.0017 0.0017 0.0017 0.0017











Table 1  The PMF of the optimal noise mechanism for different 
values of δ for n = 8, µ̄ = 3, ǫ = 1.5

δ = 0 δ = 0.1212 δ = 0.1238 δ = 0.1522

f ⋆(0) 0.5432 0.5432 0.5548 0.5575

f ⋆(1) 0.1212 0.1212 0.1238 0.1244

f ⋆(2) 0.1212 0.1212 0.1238 0.1244

f ⋆(3) 0.1212 0.1212 0.1238 0.1244

f ⋆(4) 0.0270 0.0270 0.0276 0.0278

f ⋆(5) 0.0270 0.0270 0.0276 0.0278

f ⋆(6) 0.0270 0.0270 0.0062 0.0062

f ⋆(7) 0.0060 0.0060 0.0062 0.0062

f ⋆(8) 0.0060 0.0060 0.0062 0.0014

Fig. 11  These plots show the error rate for the BD neighborhood 
case v/s parameter µ̄ . In the left plot n = 9, δ = 0.2 , and in the right 
plot n = 9, ǫ = 2 are used

Fig. 12  Error rate ρ for the SD and BD neighborhood cases 
v/s parameter δ , respectively, confirming the trends predicted 
by Theorems 2 and 3. In plot (a) n = 9, µ̂ = 3 and in plot (b) 
n = 9, µ̄ = 3 are used

Fig. 13  The optimal noise joint PMF for two-dimensional vector 
query case for a BD and arbitrary neighborhoods, respectively. In 
plot (a) the parameters are: n = 4, ǫ = 3, µ̄1 = µ̄2 = 2 . In this BD 
neighborhood example, the staircase pattern is similar to the scalar 
query case in Theorem 3. In plot (b) the following parameters 
are used: n = 6, ǫ = 3, µ1 = {1, 3}, µ2 = {2, 5} . In this arbitrary 
neighborhood example, the second largest peaks can be 
observed at the union of distance one set of each dimension, i.e., 
[1, 2], [1, 5], [3, 2], [3, 5]
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Conclusions and future work
Considering queries whose domain is discrete and finite, 
in this paper we proposed a novel MILP formulation to 
determine what is the PMF for an additive noise mecha-
nism that minimizes the error rate of the DP answer for 
any ( ǫ, δ ) pair. The modulo addition between the noise 
and the queried data is modulo n+ 1 equal to the size 
of the query domain. For two special cases, which we 
referred to as the SD neighborhood and bounded differ-
ence (BD) neighborhood, we have provided closed-form 
solutions for the optimal noise PMF and its probability 
of error versus δ for a given ǫ and studied the asymptotic 
case for n → ∞ . We also compared the proposed opti-
mal noise mechanism to state-of-the-art noise mecha-
nisms and found that it significantly outperforms them 
for a given ER or MSE. In the future, we plan to leverage 
these results in several applications that have to do with 
labeling data as well as a building block to study theoreti-
cally queries with finite uncountable support as well as 
the case of vector queries, whose optimum PMF can be 
calculated with our MILP and does not appear to be the 
product of the optimum PMFs for each entry.

Appendix

Proof of Proposition 1
Let us define the domains of q, q̃, and g(q̃) to be Q1,Q2 , 
and Q3 , respectively. The given function is g : Q2 → Q3 . 
We can prove that (ǫ, δ)− PDP is preserved in general 
under post-processing if g(q̃) is bijective. In fact, in this 
case Q2 = Q3 and the probability mass of g(q̃) in Q3 
domain, i.e., fg(q̃)(g(q̃)) , is equal to the probability mass of 
the corresponding argument q̃ . So, ∀X ∈ X ,∀X ′ ∈ X

(1)
X  , 

it is trivial to see that:

and that the probability δ of the leakage event 
LXX ′(g(q̃)) > ǫ remains the same. If δ = 0 then the 
ǫ − PDP is always preserved. The case |Q2| ≥ |Q3| is the 
interesting one (e.g. clamping): in this case multiple val-
ues of q̃ ∈ Vg map onto a single value g(q̃) = g . Next, 
we show that LXX ′(q̃) ≤ ǫ with probability one implies 
LXX ′(g(q̃)) ≤ ǫ with probability one. In fact, since for all 
q̃ , f (q̃|X) ≤ eǫ f (q̃|X ′):

Proof of Lemma 2
When the objective is minimizing error rate, it 
is natural to introduce the inequality constraint 
f ⋆(0) = f ⋆(0) ≥ 0.5 = 1− ρER , . Hence, f ⋆(0) = sup∀k∈[n] f

⋆
(k) . 

Now, substitute η = 0 and µXX ′ = µ̂ in  (14c) we see that 
f ⋆(0) ≤ eǫ f ⋆(µ̂) . Since we are minimizing the sum of the 
mass away from zero, we assign f ⋆(µ̂) to the minimum 
possible value, which is f ⋆(µ̂) = e−ǫ f ⋆(0) in this case. 
Similarly, from (14c) we see that f ⋆(kµ̂) ≤ eǫ f ⋆((k + 1)µ̂) , 
k ∈ [n− 1]+ , and we are minimizing the sum of the mass 
away from zero, we need to assign f ⋆((k + 1)µ̂) to the min-
imum possible value, which is f ⋆((k + 1)µ̂) = e−ǫ f ⋆(kµ̂).7 
Since ǫ > 0 , f ⋆(kµ̂) ≥ f ⋆((k + 1)µ̂) , ∀k ∈ [n] . Hence, we 
can write f ⋆

(k) = f ⋆(kµ̂) , ∀k ∈ [n].

Proof of Lemma 3
Case 1: (µ̂, (n+ 1)) are relatively prime.

The proof logic is as follows. Since minimizing the error rate is 
equivalent to having the maximum mass possible at η = 0 , we 
expect f ⋆(0) = supη∈[n] f

⋆(η) . The constraint  (16), implies 
f ⋆(µ̂) ≥ e−ǫ f ⋆(0) . Also that for any η = kµ̂, k ∈ [2 : n] , 
f ⋆(kµ̂) ≥ e−ǫ f ⋆((k − 1)µ̂) ≥ e−kǫ f ⋆(0) and f ⋆((n+ 1)µ̂)

≥ e−ǫ f ⋆(nµ̂) . From all these inequalities and the con-
straint (14a), we conclude that what would allow having the 

(58)LXX ′(g(q̃)) = LXX ′(q̃)

(59)

LXX ′(g(q̃)) = log
f (g |X)

f (g |X ′)
= log

∑

q̃∈Vg
f (q̃|X)

∑

q̃∈Vg
f (q̃|X ′)

≤ log

∑

q̃∈Vg
eǫ f (q̃|X ′)

∑

q̃∈Vg
f (q̃|X ′)

≤ ǫ
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Fig. 14  These plots show the PMF of the optimal noise mechanisms 
when the Advanced Metering Infrastructure (AMI) database 
is queried from 1416 houses that belong to 12 distribution circuits 
across California, USA. We use µ̃ =

⋃

∀X∈X

⋃

∀X ′∈X
(1)
X

µXX ′ . In the left 

plot, 11 quantization levels are used, hence n = 10 . In this example, 
µ̃ = {1, 2, 3, 4} is observed. In the right plot, 17 quantization levels are 
used, hence n = 16 . In this example, µ̃ = {1, 3, 5, 6} is observed. From 
these figures we observe that f ⋆(η) is considerably larger 
for η ∈ {µ̃ ∪ 0} than those η ∈ [n]\{µ̃ ∪ 0}

7  Note that for f ⋆(nµ̂) , there is no choice to assign any value since it will be 
automatically fixed once f ⋆(kµ̂) , k ∈ [n− 1] values are fixed and it is trivial 
to see that f ⋆(nµ̂) = min f ⋆(kµ̂), ∀k ∈ [n].
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largest mass of probability at η = 0 is meeting all constraints 
as equality, starting from the first. Since µ̂ and n are prime, 
the multiples of µ̂ eventually cover the entire range [n] and 
therefore: f ⋆(kµ̂) = e−kǫ f ⋆(0), k ∈ [n] . This result leads to 
the optimum distribution in Lemma 3. Now, f ⋆(0) can be 
computed as follows: 

Case 2: (µ̂, (n+ 1)) are not relatively prime.

The same argument of Case 1 holds for k ∈ [Nµ̂ − 1]+ , 
where Nµ̂ = (n+1)

gcd((n+1),µ̂)
 , i.e., f ⋆(kµ̂) = e−kǫ f ⋆(0), k ∈

[Nµ̂ − 1]+ . However in this case, since for k = Nµ̂ , 
f ⋆(Nµ̂µ̂) = f ⋆(0) and the cycle repeats over the same 
exact values covered from zero up to (Nµ̂ − 1) which 
does not include all PMF entries. Since we are minimiz-
ing the objective function to satisfy all the inequality con-
straint f ⋆(0) = f ⋆(0) ≥ 0.5 = 1− ρER and  (16) for all k 
values that are not constraining f ⋆(0) , the best choice is 
to assign them zero, i.e., f ⋆(k) = 0, k ∈ [n]\[iµ̂],

∀i ∈ [Nµ̂ − 1].

Proof of Theorem 2
We focus on Case 1, as Case 2 follows from Remark 3. In 
Lemma 2, we clarified that it is best to deal with ordered 
values, and in Lemma  3, we specified f ⋆

(h) , h ∈ [n] , as a 
function of ǫ > 0 for δ = 0 . The best solution for ρ(ǫ, δ) 
initially does not change until violating an inequality in 
(16) yields better accuracy. This happens as soon as the 
second smallest value f ⋆(n−1) corresponding to δ = 0 is 
f ⋆(n−1) = δ , which is the upper-limit δ0 from (). The rea-
son why it is f ⋆(n−1) and not f ⋆(n) matters because surely 
f ⋆(n) < eǫ f ⋆(0) which in the modulo n sum is the value 
that follows and that we aim at maximizing. At this point, 
for δ0 < δ ≤ δ1 the value of f ⋆(n−1) = δ , all the values for 
0 ≤ h < n− 1 meet the constraints with equality and 
thus f ⋆

(h) = e(n−1−h)δ , while the last value f ⋆(n) progres-
sively diminishes until it becomes zero, as shown in equa-
tion (21), at the start of the next flat region. This pattern 
continues until eventually one by one all n− 1 masses 
become zero except for f ⋆(0) = 1 = δǫn.

(60a)f ⋆(0)+ e−ǫ f ⋆(0)+ . . .+ e−nǫ f ⋆(0) = 1

(60b)⇒ f ⋆(0) =
1− e−ǫ

1− e−(n+1)ǫ
.

Proof of Theorem 3
In Lemma 4, we have the expressions for φi, i ∈ [b+ 1]+ 
for ǫ > 0 and δ = 0 . The best solution for ρ⋆(δ, ǫ) does 
not change w.r.t δ > 0 until violating an inequality in (27) 
to yield better accuracy. The key to the proof is under-
standing that the first inequality to be violated occurs 
when considering δ greater or equal not to the smallest 
PMF value but to the PMF values of the third to the last 
group in δ = 0 case, i.e., φb−1 = δ , whose value equals 
the first boundary point δǫ0,0 (see  (37b)). The inequal-
ity violated is with respect to the PMF of the second 
to the last group, which is φb , which becomes = δ and 
φb−1 > eǫδ . The reason why the PMF of the last group, 
i.e. φb+1 , does not violate the inequality in (27) is that 
φb+1 < eǫφ0 (we use φ0 since we are doing modulo sum-
mation) is always true for all members of this group, due 
to the fact that φ0 is the objective function which we are 
maximizing. Similarly, the PMF of the second last group, 
i.e. φb , does not violate the inequality in (27) because 
some members of this group do not violate the inequal-
ity φb < eǫφ0 for the same reason as stated above. At this 
point, for δ0,0 < δ ≤ δ1,1 the value of φb−1 = δ , the PMF 
values for i ∈ [b− 1] meet the constraints with equal-
ity and thus ψ1

i (δ) = δe(b−1−i)ǫ , for i ∈ [b− 1] . At this 
point, the group with PMF φb , whose length is ℓb = µ̄ , 
splits into two groups, one of length ℓb = (µ̄− 1) and 
the other with a singleton step ℓb+1 = 1 . This split hap-
pens to assign more probability mass at ψ1

0 (δ) , which is 
our objective, while still violating the constraint in (27) 
between δ = ψ1

b−1(δ) and ψ1
b+1(δ) in order to lower the 

error further. For i = b and i = b+ 2 , the PMF values 
satisfy the constraints with equality, hence ψ1

b (δ) = δe−bǫ 
and ψ1

b+2(δ) = δe−(b+1)ǫ while the unconstrained single-
ton step PMF ψ1

b+1(δ) decreases until it joins the next 
group since it has matched its value, and becomes φ1

b+1 , 
as shown in equation (30), at the start of the next flat 
region, i.e., for δ1,1 ≤ δ ≤ δ1,1 . In this region, the PMF of 
every group is e−ǫ times the PMF of previous group sim-
ilar to Lemma  4; the only change here is the lengths of 
bth and (b+ 1)th groups which are now ℓb = (µ̄− 1) and 
ℓb+1 = r + 1.

Now we provide the reason for splitting only groups 
of lengths µ̄ using contradiction. Suppose there is a 
group i of length ℓ < µ̄ which splits at the beginning of 
a linear region k ∈ [b]+ . As we know, for this group to 
split there must be a violation of the inequality in  (27) 
between the PMF values φk−1

i−1 = δ and φk−1
i  . Now, φk−1

i  
splits into ψk

i (δ) of length (ℓ− 1) and ψk
i+1(δ) of length 1, 
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which decreases as δ grows. We see that ψk
i+1(δ) is ≤ µ̄ 

distance away from at least two members of the ψk
i−1(δ) 

group leading to at least two violations in the inequali-
ties in  (27) which makes the actual privacy loss ≥ 2δ , in 
violation of the inequality constraint in (13c), which is a 
contradiction.

From the discussion in the previous paragraph, for the 
next linear region, we now search for a group of length 
µ̄ with the smallest possible PMF, which is found to be 
(b− 1)th group, whose PMF is φ1

b−1 . For this group to 
split and enter into the linear region, we should have 
δ = φ1

b−2 . As explained in the first paragraph of this 
proof, the same process follows in this linear region too, 
i.e., for δ1,1 < δ ≤ δ2,1 . In the next flat region, i.e., for 
δ2,1 ≤ δ ≤ δ2,1 the step lengths, as compared to previous 
flat region, which have been altered are ℓb−1 = (µ̄− 1) 
and ℓb = µ̄ . Now, observe that bth group has length 
µ̄ and from the discussion in the previous paragraph, 
this group splits at the end of this flat region, i.e., when 
δ = φ2

b−2 + φ2
b−1 = φ2

0e
−(b−2)ǫ(1+ e−ǫ) ≡ δ2,1 . In this 

case the inequality in (27) are violated by both φ2
b−2 and 

φ2
b−1 , hence the summation and the reasoning for  (37b) 

(this was missing in SD neighborhood case). For the same 
reason, in the next linear region i.e., for δ2,1 < δ ≤ δ2,2 
the normalizing factor (1+ e−ǫ) ≡ ξǫ2 is used while com-
puting the PMF values in (39).

These alternate flat and linear intervals are formed as δ 
increases and the process continues until all the remain-
ing groups of lengths µ̄ split into groups of lengths 
(µ̄− 1) . The expression for δh,j , h ∈ [b− 1]+, j ∈ [h]+ 
in  (37c) is computed using f ⋆(0) vs. δ curve (see Fig. 4) 
in the linear region between φk−1

0  and φk
0 , the slope cor-

responding to ψk
0 (δ) i.e. e(b−h)ǫ/ξǫj  from (39). i.e.,

Now, we find the simplified expression for the value of φk
0 

from the fact that φk
0 +

∑b+1
i=1 ℓiφ

k
i = 1 as following:

(61)

δh,j = δ
ǫ

h,j−1 + (φk
0 − φ

k−1
0 )e−(b−h)ǫξ ǫj

= φ
k−1
0 e−(b−h)ǫξ ǫj + (φk

0 − φ
k−1
0 )e−(b−h)ǫξ ǫj

= φk
0 e

−(b−h)ǫξ ǫj .

(62)

φk
0

(

1+ µ̄

b−h
∑

i=1

e−iǫ + (µ̄− 1)

b
∑

i = b− h+ 1
i �= b− h+ j + 1

e−iǫ

+ µ̄uhje
−(b−h+j+1)ǫ+(r + h− uhj)e

−(b+1)ǫ
)

=1

By further simplifying, we get:

The last group has length b+ r which is less than µ̄ in our 
case. This assumption simplifies the analysis, hence trac-
table. Even though the pattern is same, the case b+ r ≥ µ̄ 
complicates the analysis because, for j ∈ [h]+ and for 
every h ∈ [b]+ , instead of increasing h when j = h , j must 
be increased beyond h to accommodate the groups of 
lengths µ̄ created by the last group whenever its length 
r + h exceeds µ̄ . Hence, we do not discuss the analysis of 
this case, but we do provide some numerical results in 
Section “Numerical results”.

Abbreviations
N	� Set of natural numbers including zero
N+	� Set of natural numbers excluding zero
Z	� Set of integers
R	� Set of real numbers
[n]	� {0, 1, . . . , n} , n ∈ N

[n]+	� {1, . . . , n} , n ∈ N+

⌊k⌋	� Floor function of k
⌈k⌉	� Ceil function of k
|A|	� Cardinality of set A
A\B	� Set difference between sets A and B
X 	� Database
X	� Data point(s) in database X
X ′	� A neighboring dataset of X differing by a data record
Pr(A)	� The probability of occurrence of an event A
Q	� Query function
Q	� Discrete set of query answers
q	� A query answer
q̃	� The randomized query answer
fA	� The PMF of a random variable A
f ⋆A 	� The optimum noise PMF of random variable A
f ⋆∞	� The optimum noise PMF as n → ∞

f(k)	� The (k + 1) th largest probability mass
ǫ	� DP budget
δ	� Probability of information being leaked
LXX ′	� Privacy loss function (Eq. 2)
X

(1)
X

	� Neighborhood set of dataset X
η	� Discrete noise random variable
µXX ′	� Query distance between X and its distance one neighbor X ′

uXX ′	� Indicator function which is active when the privacy leakage function 
is more than the privacy budget, ǫ

ρη	� Distortion caused by noise value η
E[A]	� Expectation of a random variable A
ρER	� Error rate
ρ⋆	� Optimum error rate
ρ⋆
∞

	� Optimum error rate as n → ∞

ρMSE	� Mean Squared Error

φk
0 =

�

1+ µ̄

b
�

i=1

e−iǫ − µ̄(1− uhj)e
−(b−h+j+1)ǫ

+ e−(b−h+j+1)ǫ+(r+h−uhj)e
−(b+1)ǫ−

b
�

i=b−h+1

e−iǫ





−1

φk
0 =

�

µ̄αǫ
hj + βǫ

hj

�−1
, see (34).
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yη	� Auxiliary variable equal to f (η)uXX ′ (η)
M	� Set of query distances, ∀ X ∈ X  and X ′ ∈ X

(1)
X

µ̂	� The constant query distance in the Single Distance case
µ̄	� The maximum query distance in the Bounded Difference case
µ̄	� The maximum query distance in the Bounded Difference case
φk
i
	� ith step height in the flat region of the PMF of the optimal noise 

mechanism for BD neighbourhood case
ψk
i (δ)	� ith step height in the linear region of the PMF of the optimal noise 

mechanism for BD neighbourhood case
δǫk

	� The instance of δ at which ρ⋆(δ, ǫ) changes from kth linear region to 
kth flat region

δ
ǫ

k
	� The instance of δ at which ρ⋆(δ, ǫ) changes from kth flat region to 

(k + 1) th linear region
r	� Reminder when n is divided by µ
b	� Quotient when n is divided by µ
Nµ	� Ratio between n+ 1 and gcd((n+ 1 ), µ)
FA	� The cumulative distribution function (CDF) of random variable A
α	� Parameter of geometric distribution used in the paper
β ′	� Parameter of Gumbel distribution used in the paper
AMI	� Advanced metering infrastructure
BD	� Bounded distance
DP	� Differential privacy
ER	� Error rate
LP	� Linear program
MSE	� Mean squared error
PDP	� Probabilistic differential privacy
PMF	� Probability mass function
SD	� Single distance
GCD	� Greatest common divisor
MILP	� Mixed integer linear program
2D	� Two-dimensional
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