
Forensic Analysis
through

Goal-Oriented Logging
Sean Peisert
UC San Diego

research done with Matt Bishop (UC Davis),
Sid Karin (UCSD), and Keith Marzullo (UCSD)

1

SHERLOCK HOLMES: “It is of the highest
importance in the art of detection to be able
to recognize out of a number of facts which
are incidental and which vital. Otherwise
your energy and attention must be dissipated
instead of being concentrated.”

-Sir Arthur Conan Doyle,
“The Adventure of the Reigate Squire,”
The Strand Magazine (1893)

2

Introduction

What is forensic analysis?

Forensic analysis vs. intrusion detection

The Problem: Garbage in, Garbage Out

Existing work?

3

Logged Data vs.
Forensic Utility

amount of data collected

fo
re

n
si

c
u

ti
li

ty
a

b
c

4

Existing Work

Ad Hoc:
Focused solutions: Syslog, TCPwrappers, Coroner’s
Toolkit, Tripwire, LAFS [Wee95], other file auditing
[Bishop88]
Global solutions: “toolbox approach” [e.g. Farmer &
Venema 2004], Sun BSM, BackTracker [King06],
Function Call Monitoring [Peisert, Bishop, et al., sub
to IEEE TDSC 2006]

Models: Model of Auditing and Logging [Bishop89],
Analysis of Intrusions [Gross97], Model of Security
Monitoring [Kuperman04]

5

Background

Must be a better solution!

Principles of Forensic Analysis
[Peisert, Bishop, et al. in NSPW’05]

Guidelines of a Forensic Model
[Peisert, Bishop, et al., sub. to SADFE’07]

6

How Do We Do Good
Forensics?

Principle 1: Consider the entire system

Principle 2: Don’t make assumptions about attacks

Principle 3: Consider effects, not just actions

Principle 4: Context assists in understanding

Principle 5: Actions and results must be
presented in a way that is analyzable by a
human

But what’s in a good forensic model?

7

Principle 1

Principle 1: Consider the Entire System

Guideline: Indicate the information to log
and let the analyst choose whether to
record information

Guideline: Provide tuning parameters

Guideline: Automated metrics could help

8

Principle 2

Principle 2: Don’t make assumptions about
attacks

Guideline: Place bounds on unknown stages
of attacks

9

Principle 3

Principle 3: Consider effects, not just actions

Guideline: Consider both pre-conditions
and post-conditions

10

Principle 4

Principle 4: Context assists in understanding

Guideline: Consider the contextual
elements surrounding an event, e.g.,
credentials, IP addresses, environment
variables.

11

Principle 5

Principle 5: Actions and results must be presented
in a way that is analyzable by a human.

Guideline: Make the data well-formed
[Bishop95]

Guideline: Enable association of discrete events
to analyze larger attacks [Zhou, et al. 07]

Guideline: Make logged events and actual
events one-to-one to enable automated
translation.

12

Our Approach

Builds upon forensic principles & guidelines

Builds upon formalization of multi-stage attacks

[Templeton & Levitt NSPW’00]

[Zhou, Carlson, Bishop, et al. TISSEC’07]

Uses requires/provides model

[Sub. to Oakland’06; Peisert, Bishop et al.]

13

Definitions

“attack”: sequence of events that violates a
security policy (could be internal, as in the
insider problem [Bishop & Peisert: UC Davis
Tech Report CSE-2006-20])

“goal”: to achieve a particular result or
violation

“attack graph”: Multiple goals liked together
in dependency order (related to [Schneier99])

14

Assumptions

We know an attack/intrusion/something has
taken place. (We’re analyzing, not
detecting.)

The forensic software obtains accurate
information from the system.

The forensic software is able to report this
information correctly. [Thompson CACM’84]

15

Basic Attack Graph

...

...

...

...

... ...

...

a b c d

start of attack

intermediate steps

(too many!) end goals of intruder

16

Complex Attack Graph

a b c d

17

Methodology

1. Start with an attack graph representing
attacker goals to achieve a set of results

2.Work backward from ultimate goal

3.Generate a 6-tuple from each goal

4.Extract information to log from 6-tuple

18

Choosing “Goals” and Building Attack Graph

Building Requires/Provides Capability Pairs

Extracting Data to Log from the Formalization

Interpreting Logged Data

Premise and Methodology of
Building Models, Logging, and

Interpreting Data

19

Choosing “Goals”

Currently manual. Eventually:

Based on policy? [Bishop, Wee, & Frank 1996]

How to define policy? [Bishop & Peisert, 2006
UC Davis Tech Report]

Hard!

e.g. “no writes down” – Bell & LaPadula

20

capabilities: a 6-tuple (based on [Zhou07])

src/dest

credentials

actions

services

properties

Building Requires/
Provides Pairs

21

Intuition
Functions
λ: outputs an 8-tuple representing the
combined capability pair(s)
τ: helps to put bounds on an unknown
intermediate step
µ : unions together multiple goals

Algorithms
BOUND-UNKNOWNS
ANALYZE-ATTACK-GRAPH
ANALYZE-GOAL

Extracting the Data to Log
from the Formalization

22

Applying Tau

Unknown

Exploit

Contact

Network

Program

Ultimate Goal:

Execute Root Shell

Contact.requires

Contact.provides Root_Shell.provides

Root_Shell.requires

Unknown Capabilities Provided
Unknown

Capabilities

Required

Remote

System

Intermediate Goal:

23

BOUND-UNKNOWNS Alg:
Applying Tau and Mu

a

c

b

24

Analysis Algorithms

ANALYZE-ATTACK-Graph

ANALYZE-GOAL

Filter by src, dest, and credential

Determine logging point (e.g. kernel call,
hardware) by action, svc., and property

Determine data to log (e.g. syscall, syscall
params, assembly code, environment)

25

Example 1: Morris Worm

Exploit to

Get Shell
Contact

Machine

Contact

Remote

Machine

Copy

Code

Out

Network

Transfer of

Bootstrap &

Worm Code

Execute

Bootstrap

& Worm

Code

Exploit

Remote

Machine

Compile

Bootstrap

& Worm

Code

[Bishop88, Eichin & Rochlis ’89,
Seeley89, Spafford89]

26

Example 2: Spyware

Pass

Around

Password

Capture

Password Send Password

Over Network

Capture.requires

Capture.provides Send.provides

Send.requires

Unknown Capabilities Provided
Unknown

Capabilities

Required

Intermediate Goal:

[A. Singer, “Tempting Fate,” USENIX ;login:, Feb’05]

27

Spyware: What to
record?

Two things:

Capturing the password

Monitor program that is expected to
ask for it.

Sending the password

Opening and use of a socket

28

Spyware: Modeling Goals

Capture_Password.requires:
{(local, local, ANY(uid:u), read, ANY(PA) ^ ANY(shell) ^ kernel,
password:P)}

Capture_Password.provides
{(local, local, ANY(uid:u), ø, Account(P), password:P)}

Send_Password.requires:
{(local, ANY(IP), ANY(uid:u), Communicate.send, ANY(Program),
password:P)}

Send_Password.provides:
{(ANY(IP), local, ø, Communicate.connect, login(P), Account(P))}

29

Implementation Details

FreeBSD 5.x System

Flaws are re-creations of actual exploits
(Spyware example from SDSC intrusion)

Mostly instrumented kernel to get data

30

Implementation Results
of Example 2

Prog Call Arg2 Arg4.
sa_data RetVal

ssh pam_
authenticate 0

ssh socket 0

ssh sendto MyPasswd 192.168.0.1 8

31

[8lgm]-Advisory-3.UNIX.lpr.19-Aug-1991

lpr is/was setuid root

A symbolic link is created from a file to /etc/passwd.

lpr is called 99 times

On the 100th time, the first spool file is reused, and with the
-s argument, lpr follows the symlink to /etc/passwd and copies
a specified file to the destination of the symlink, having been
running as root.

Multiple flaws: non-atomic open (creat), re-use of spools, etc...

Example 3: lpr Bug

32

lpr bug: What data to
record?

Two steps:

open() syscall when lpr reads (and accepts)
the temp file that we have arbitrarily
written

include symlinks!

33

lpr bug capability pair

Modify_passwd.requires:
{(local, local, uid=ANY(uid:u) ^ euid=root,

Write, file, /etc/passwd)}

Modify_passwd.provides:
{(local, local, user:u, Write, file, /etc/passwd
 local, local, user:u, know, ALL(users), username
 local, local, user:u, Write, ALL(users), Accounts
)}

34

Implementation Results
of Example 3

Prog R/Euid Syscall Arg1 Arg2 File1
UID

File2
UID

lpr 1001/1001 open /tmp/.tmp.477 READ 1001

lpr 1001/0 symlink /tmp/.tmp.477 /var/spool/
dfA292 1001 0

lpr 1001/1001 rm /tmp/.tmp.477 1001

lpr 1001/1001 symlink /etc/passwd /tmp/.tmp.477 0 1001

lpr 1001/0 open /var/spool/
dfA292

WRITE, TRUNC,
CREAT 0

35

Future Work

More examples & implementations
Efficiency measurements & comparisons
Relative time
Universal path ID to associate & minimize data.
Policy Discovery

...to generate attack graphs

...to do automated translation of capability pairs
to data necessary to log and where to log it
...to make logged data & events 1:1
...to prove completeness of model

36

Conclusions

Forensics is currently ad hoc; a model of forensics is
necessary.
A model needs to be efficient and effective.
We presented an example of a forensic model
(“Laocoön”) based on forensic principles.
Experimental results show that this model of
forensic analysis seems to work.

Helps to identify and analyze intrusions quickly
Mindful of not recording too much or too little
data, or just the wrong data.

37

