
Intrusion Detection and Forensics
Using Series of Function Calls

Sean Peisert

UCSD

February 21, 2006

Talk for UCI Graduate “Language-Based Security” Class

How Do We Do “Good”
Forensics & ID?

Forensic tools help to analyze the data

Data helps understand what went wrong

Data is descriptive

Real-time ID tools help to find the anomaly

Data is useful for automated “search”

Why can’t we have both?

Possible System
Abstractions?

Assembly Code

Syslog Messages

Login/Logouts

Resource Usage Metrics

System Calls

3

Forensic Principles

Consider the entire system

Consider actions and their effects.

Runtime data is the only authoritative record
of what happened.

Actions and results must be processed and
presented in a way that is understandable by
humans.

Intrusion Detection

Anomaly Detection

Anomaly Detection w/Automated Rule
Generation

Signature (Misuse) Detection

5

Anomaly Detection

D. Denning in 1986

Immunological Approach (Forrest, et al.)

Data Mining

6

Forensics

syslog

“Analyzing Computer
Intrusions” (Andrew
Gross)

BackTracker (King &
Chen)

7

Research Questions

Can we improve post-hoc anomaly detection
accuracy by using function calls as data, as
opposed to system calls alone?

Can we enable forensic analysis of
“intrusions” not otherwise possible or easy?

8

Methods

Capture all calls, their arguments, and their
return values

Compare series of calls between “safe” set
and “test” set

Future: Compare arguments and return
values between “safe” set and “test” set

9

Hamming Distance

Example:

“Safe”: a b c d e f

“Test”: a b c d e g

Hamming Distance (d) = ?

Min sequence length to find anomaly = ?

Minimum Hamming
Distance

“Safe” Corpus:

Size 2: e f, f c,
f a, f b,

Size 3: e f a,
e f b, f f c

“Test” Sequence

e f c

What is the
minimum sequence
length required to
detect this as an
anomaly?

Immunological Approach

Sliding window of size k

“Safe” sequences j

“Test” sequences i

dmin = min{d(i,j) for all safe sequences j}

ŜA = max{dmin(i) for all new sequences i}/k

12

Analyzing Function
Arguments & Return Values

Can’t use the same techniques — need more
advanced data mining

Clustering: k-nearest-neighbor, k-means

Forensic Methods

Prefer to have source code to search for
captured calls

Gathering Data

Variety of methods:

Virtual Machine (a la “Introvirt”)

Binary Rewriter/Dynamic Instrumentation

Compiler

Intel’s Pin (Luk & Cohn, et al., PLDI 2005)

su Experiment #1

Removed call to
pam_authenticate().
What changed?

k=4 total
calls

total

seq

unique
seq

su-
orig

88208 51085 2170

su-
mod

49453 30669 1891

su-orig vs. su-mod

k=4 total different
seqs

only in su-orig 18453

(315 unique)

only in su-mod 36

(all 36 unique)

Total Function Call Seqs
in su

0

3,500

7,000

10,500

14,000

1 2 4 6 10 20

su-orig su-mod

sequence length

nu
m
be

r
of

 s
eq

ue
nc

es

Difference in Total
Function Call Seqs in su

0

350

700

1,050

1,400

1 2 4 6 10 20

in su-orig, not su-mod

sequence length

nu
m
be

r
of

 s
eq

ue
nc

es

Calls in su-orig not in
su-mod

sequence # total
occurrences % of total program

MD5Update 5538 10.85%
MD5Final 2005 3.92%
MD5Init 1002 1.96%
MD5Pad 1002 1.96%

Total 9547 18.69%

su Experiment #2

Ignored result of
pam_authenticate()
call

k=2 total
different seqs

only in su-
orig

2594

(2379 unique)

only in su-
mod

2

(both unique)

One of 2 seqs: strcmp , pam_authenticate

ssh Experiment #1

Edited ssh to echo the
password to the
terminal

k=4 total
different seqs

only in

ssh-orig

12

(9 unique)

only in

ssh-mod

47

(38 unique)

vfprintf, vfprintf, fprintf, read_passphrase

ssh Experiment #2

Edited ssh to send the
password through a
network socket

k=4 total
different seqs

only in

ssh-orig

14

(14 unique)

only in

ssh-mod

45

(45 unique)

inet_aton, inet_addr, rtld_free_tls, rtlf_free_tls

lpr Experiment

Recreated UNM experiment that exploits lpr
bug.

Exploits counter, “creat” syscall, and symlink
to rewrite /etc/passwd.

lpr Results
only in lpr-orig only in lpr-mod

seteuid, error_unthreaded sys_write, close
sbrk, sys_umask lseek, sys_write
open, sys_umask copy, close

nfile, sys_read
creat, sys_umask

sys_read, sys_write
sys_read, sys_syscall

open, creat
sys_unlink, error_unthreaded

close, copy
close, close

close, seteuid
sys_umask, fchown

Conclusions

These initial experiments seem to help
highlight anomalies and then help understand
them.

(Immediate)
Future Work

More experiments (including blind and/or
double-blind ones)

Arguments & return values

Machine learning applied to function calls

Tuning parameters

Key References

Bace, “Intrusion Detection,” 2000.

Denning, “An Intrusion-Detection Model,” IEEE TSE, 1987.

Gross, “Analyzing Computer Intrusions,” UCSD PhD Thesis, 1997.

Hofmeyr, Forrest, & Somayaji, “Intrusion Detection Using
Sequences of System Calls,” JCS, 1999.

Lee & Stolfo, “Data Mining Approaches for Intrusion Detection,”
USENIX Security, 1998.

Peisert, Bishop, Karin, & Marzullo, “Principles-Driven Forensic
Analysis,” NSPW, 2005.

Warrender, Forrest, et al., “Detecting Intrusions Using System
Calls: Alternative Data Models,” IEEE S&P, 1999.

Acknowledgements

This work was partially funded by a
Lockheed-Martin Information Assurance
Technology Focus Group 2005 University Grant,
and NSF.

29

