
Copyright © 2000 Larry Carter & Sean Peisert. Portions of these slides previously Copyright © 1998 by Alpern and Carter.

Performance Measuring on
IBM SP-class Systems:

Timing and Profiling

Copyright © 2000 Larry Carter & Sean Peisert. Portions of these slides previously Copyright © 1998 by Alpern and Carter.

Performance Measuring with
Timings: Wallclock

• Wallclock time (real time, elapsed time)
– High resolution (unit is typically 1 µs)

– Best to run on dedicated machines

– Good for inner loops in programs or I/O.

– First run may be varied due to acquiring page
frames.

Copyright © 2000 Larry Carter & Sean Peisert. Portions of these slides previously Copyright © 1998 by Alpern and Carter.

Performance Measuring with
Timings: CPU

• CPU time
– User Time: instructions, cache, & TLB misses

– System time: initiating I/O & paging, exceptions,
memory allocation

– Low resolution (typically 1/100 second)

– Good for whole programs or a shared system.

Copyright © 2000 Larry Carter & Sean Peisert. Portions of these slides previously Copyright © 1998 by Alpern and Carter.

Performance Measuring with
Timings

• Wallclock time contains everything that CPU
time contains but it also includes waiting for
I/O, communication, and other jobs.

• For any timing results use several runs (three
or more) and use the minimum, not the
average times.

Copyright © 2000 Larry Carter & Sean Peisert. Portions of these slides previously Copyright © 1998 by Alpern and Carter.

Wallclock Time

• gettimeofday() — C/C++
– Resolution up to microseconds.

• MPI_Wtime() — C/C++/Fortran

• Others: ftime, rtc, gettimer, ...

Copyright © 2000 Larry Carter & Sean Peisert. Portions of these slides previously Copyright © 1998 by Alpern and Carter.

gettimeofday()

#include <sys/time.h>

struct timeval *Tps, *Tpf;

void *Tzp;

Tps = (struct timeval*) malloc(sizeof(struct timeval));

Tpf = (struct timeval*) malloc(sizeof(struct timeval));

Tzp = 0;

gettimeofday (Tps, Tzp);

<code to be timed>

gettimeofday (Tps, Tzp);

printf("Total Time (usec): %ld\n",

 (Tpf->tv_sec-Tps->tv_sec)*1000000

 + Tpf->tv_usec-Tps->tv_usec);

Copyright © 2000 Larry Carter & Sean Peisert. Portions of these slides previously Copyright © 1998 by Alpern and Carter.

MPI_Wtime()
C++ Example

#include <mpi.h>

double start, finish;

start = MPI_Wtime();

<code to be timed>

finish = MPI_Wtime();

printf(“Final Time: %f”, finish-start);

/* Time is in milliseconds since a particular date */

Copyright © 2000 Larry Carter & Sean Peisert. Portions of these slides previously Copyright © 1998 by Alpern and Carter.

CPU Timing

• For timing the entire execution, use UNIX
‘time’
– Gives user, system and wallclock times.

• For timing segments of code:

• ANSI C
#include <times.h>

Clock_t is type of CPU times

clock()/CLOCKS_PER_SEC

Copyright © 2000 Larry Carter & Sean Peisert. Portions of these slides previously Copyright © 1998 by Alpern and Carter.

CPU Timing

• SYSTEM_CLOCK() — Fortran (77, 90)
– Resolution up to microseconds

Copyright © 2000 Larry Carter & Sean Peisert. Portions of these slides previously Copyright © 1998 by Alpern and Carter.

SYSTEM_CLOCK()

INTEGER TICK, STARTTIME, STOPTIME, TIME

CALL SYSTEM_CLOCK(COUNT_RATE = TICK)

...

CALL SYSTEM_CLOCK (COUNT = STARTTIME)

<code to be timed>

CALL SYSTEM_CLOCK (COUNT = STARTTIME)

TIME = REAL(STOPTIME-STARTTIME) / REAL(TICK)

PRINT 4, STARTTIME, STOPTIME, TICK

4 FORMAT (3I10)

Copyright © 2000 Larry Carter & Sean Peisert. Portions of these slides previously Copyright © 1998 by Alpern and Carter.

Example time Output

5.250u 0.470s 0:06.36 89.9% 7787+30041k 0+0io 805pf+0w

• 1st column = user time

• 2nd column = system time

• 3rd column = total time

• 4th column = (user time + system time)/total time in %. In other
words, the percentage of time your job gets alone.

• 5th column = (possibly) memory usage

• 7th column = page faults

Copyright © 2000 Larry Carter & Sean Peisert. Portions of these slides previously Copyright © 1998 by Alpern and Carter.

time Tips

• Might need to specifically call
/usr/bin/time instead of the built-in
time.

• Look for low “system” time. A significant
system time may indicate many exceptions or
other abnormal behavior that should be
corrected.

Copyright © 2000 Larry Carter & Sean Peisert. Portions of these slides previously Copyright © 1998 by Alpern and Carter.

More About Timing

• Compute times in cycles/iteration and
compare to plausible estimate based on the
assembly instructions. For instance, with the
times in microseconds:

• (([program time]-[initialization time]) * [clock
speed in Hz])/[number of cycles]

Copyright © 2000 Larry Carter & Sean Peisert. Portions of these slides previously Copyright © 1998 by Alpern and Carter.

More About Timing

• Compute time of program using only a single
iteration to determine how many seconds of
timing, loop, and execution overhead are
present in every run.

• Subtract the overhead time from each run
when computing cycles/iteration.

Copyright © 2000 Larry Carter & Sean Peisert. Portions of these slides previously Copyright © 1998 by Alpern and Carter.

Profiling

• Technique using xlc compiler for an executable
called ‘a.out’:

• Compile and link using ‘-pg’ flag.

• Run a.out. The executable produces the file
‘gmon.out’ in the same directory.

• Run several times and rename ‘gmon.out’ to
‘gmon.1, gmon.2, etc…’

• Execute: ‘gprof a.out gmon.1 gmon.2 >
profile.txt’

Copyright © 2000 Larry Carter & Sean Peisert. Portions of these slides previously Copyright © 1998 by Alpern and Carter.

Profiling: gprof output

• Output may look like this:

 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 72.5 8.10 8.10 160 50.62 50.62 .snswp3d [3]
 7.9 8.98 0.88 __vrec [9]
 6.2 9.67 0.69 160 4.31 7.19 .snnext [8]
 4.1 10.13 0.46 160 2.88 2.88 .snneed [10]
 3.1 10.48 0.35 2 175.00 175.00 .initialize [11]
 1.8 10.68 0.20 2 100.00 700.00 .rtmain [7]
 1.5 10.85 0.17 8 21.25 1055.00 .snflwxyz@OL@1
 0.7 10.93 0.08 320 0.25 0.25 .snxyzbc [12]

Copyright © 2000 Larry Carter & Sean Peisert. Portions of these slides previously Copyright © 1998 by Alpern and Carter.

Profiling Techniques

• Look for the routing taking the largest
percentage of the time. That is the routine,
most possibly, to optimize first.

• Optimize the routine and re-profile to
determine the success of the optimization.

• Tools on other machines: prof, gvprof,
apprentice, prism.

