
A Programming Model for Automated Decomposition on

Heterogeneous Clusters of Multiprocessors �

Sean P. Peisert and Scott B. Baden

Department of Computer Science and Engineering

University of California, San Diego

La Jolla, CA 92093-0114

fpeisert@sdsc.edu,baden@cs.ucsd.edug

February 9, 2001

1 Introduction

Clusters of multiprocessors have emerged as a powerful tool for understanding technologically important

physical phenomena [29]. Although various approaches to programming them have emerged [12, 5, 6, 25,

26, 24, 22], with few exceptions [18], heterogeneity has been conspicuously left out of programming models

targeted to hierarchically constructed multicomputers. This is surprising, considering the
exibility o�ered

by heterogeneous cluster designs. Even homogeneous con�gurations are likely to become heterogeneous with

time, due to incremental upgrading. Nodes will come to have di�ering numbers of processors, varying clock

speeds, di�erent memory system con�gurations, or some combination of these.

Heterogeneity introduces a di�cult challenge which could limit the e�ectiveness of clusters: the program-

mer would rather not be aware that the hardware is heterogeneous. In particular, heterogeneity introduces

two implementation issues that complicate user code unnecessarily: how to assess the performance of the

component nodes and how to share the workloads fairly.

In this paper, we will address the problem of how to treat heterogeneity arising in dedicated clusters

of multiprocessors. These techniques generalize to clusters with uniprocessor nodes. We describe a pro-

gramming model and library that may be used to program a heterogeneous cluster almost as if the cluster

were homogeneous. The library, called Sputnik [28], is currently implemented in C++ on top of the KeLP

infrastructure [21, 20, 10]. Sputnik relies on OpenMP to support parallelism within shared memory nodes,

though the underlying model is not tied to a speci�c implementation of processor level parallelism.

�This work was supported in part by UC MICRO program award number 99-007 and by Sun Microsystems. Computer time
on the Origin 2000 was provided by the National Computational Science Alliance. The development of KeLP was supported
by NSF contract ACI-9619020, National Partnership for Advanced Computational Infrastructure.

1

We present results obtained by running an iterative �nite di�erence solver on a two-node cluster of

Origin 2000s. We �nd that Sputnik is able to e�ectively utilize the available parallelism, and that it meets

the requirement of hiding a good deal of the underlying hardware heterogeneity from the programmer.

The paper is organized as follows. In Section 2, we introduce the software issues raised in a heterogeneous

cluster of multiprocessors. Section 3 presents the Sputnik methodology and the API. Section 4 presents

implementation details and section 5 presents empirical results. Section 6 presents discussions, conclusions

and future work.

2 Programming Heterogeneous Clusters of Multiprocessors

In this section we describe our underlying assumptions about the hardware, execution model, and our target

application class.

2.1 System and Programming Assumptions

We de�ne a cluster of multiprocessors as a collection of N multiprocessor nodes, numbered 0 through N �1,

where each node i contains Pi processors. A homogeneous cluster, depicted in Fig. 1a, introduces a two-level

locality model. Processors on the same node communicate quickly through shared memory, but processors on

di�erent nodes communicate much more slowly by passing messages.1 Each node computes at a characteristic

rate, ri, which may be di�erent from that of the other nodes. No node is slower than half the speed of the

fastest node.2 Data transfer rates within and between nodes are not uniform, even if we ignore the e�ects

of contention. We will assume, however, that there is no processor contention, and that both the processors

and the interconnect are dedicated.

1The logically shared memory depicted in the �gure may in fact be physically distributed, but speci�cs of the physical
interconnect are irrelevant here.

2This limitation may be somewhat liberal, but it helps avoid severely imbalanced memory and communication requirements.

C

P

C

P

C

P

C

P

M

C

P

C

P

C

P

C

P

M

C

P

C

P

C

P

C

P

M

C

P

C

P

C

P

C

P

M

Interconnection Network

(a) A two-tier cluster

C

P

C

P

C

P

C

P

M

C

P

C

P

C

P

C

P

C

P

C

P

C

P

C

P

Interconnection Network

M MM

(b) A single tier cluster

Figure 1: Block diagrams of a homogeneous (a) and homogeneous (b) dual tier clusters. M=memory,
C=cache, P=processor. On-processor cache memories are not shown.

2

We will assume that we have an existing application program that runs under SPMD parallelism and

communicates by passing messages either explicitly under programmer control, or under the control of an

application library or a compiler. However, many of our ideas generalize to a global, but distributed shared

memory architecture.

Our application will execute trivially on a dual tier computer if we
atten the hierarchical machine

organization into a `'single-tier" computer and run with one SPMD process per processor. However, we will

assume that a more e�ective strategy is to unfold a second level of parallelism either by relying on lightweight

processes, e.g. threads, one for each CPU 3, or by relying on a library or compiler to achieve a similar e�ect.

2.2 An Application

Consider an iterative �nite di�erence (stencil) method that repeatedly sweeps a two dimensional (M +2)�

(M + 2) mesh according to the formula:

unewi;j = F (�(uoldi;j))

There are two solution arrays unew and uold, and array indices i and j vary independently from 1 to M .

(M is a user input a�ects the accuracy of the computed solution.) The function F () returns the next

approximation to the solution, and operates on a neighborhood of each point of the solution. �() determines

the neighborhood, depends on the application. A simple neighborhood would be nearest neighbors on the

four Manhattan directions. After each iteration the old and new arrays reverse roles. The process terminates

when the answer has converged to a user-supplied threshold.

If the nodes are running at the same speed, then we may partition the workload trivially by splitting

the two dimensional domain into rectangular subdomains of equal size (or as nearly equal as possible given

the the values of M and the number of nodes N). On the other hand, if the nodes run at di�erent speeds,

we must adjust the size of the partitions accordingly in order to balance the workload. This problem is

reminiscent of load balancing strategies such as recursive coordinate bisection which has been applied to

irregular problems on homogeneous architectures [14, 7]. More recently, irregular partitioning has been

applied to heterogeneous architectures [18, 15].

With a partitioning strategy in hand, we are left with the problem of how to determine the relative

running speeds of the nodes. In general, the rate at which a node computes on a given problem cannot

be known in advance, as that quantity depends not only on the speci�c hardware used, but also on the

3In some cases, single-tiered programming might be more e�ective than dual-tiered programming, but we will not argue the
merits of the two approaches here.

3

con�guration and the application. In some cases the speci�c nodes to be used in the job will be determined

only at the time the job is initiated according to decisions made by a job scheduler [17]. To complicate

matters, the maximum running speed may be a non-linear function of the number of threads, and may be

achieved with less than the maximum allowable number of processors. Lastly, various locality parameters,

such as blocking factors, may need to be tuned, e.g. for cache, TLB, and so on.

As a result of these complications, we seek a strategy that automatically determines the optimal setting

of various performance tuning parameters. The approach should enable a program written for homogeneous

multicomputers to run e�ciently on a heterogeneous con�guration without entailing extensive recoding of

the application. We de�ne \e�cient" to mean \competitive with hand coding."

The design of a programming methodology that enables applications to tune their performance to the

hardware is elusive. Techniques currently exist for speci�c problems [8, 27, 23, 19], with some restricted

to single processor or shared memory architectures. Our contribution is a programming methodology and

a supporting user interface that formalizes the process. Our approach obviates the need for empirically-

derived parameters, such as message start time and bandwidth, or a nominal
oating point rate determined

by measuring a �xed kernel [18]. The rationale for our approach is the notorious di�culty of predicting the

performance of an application with a handful of parameters, which often depend on the application and the

input. Instead, our approach is to search the performance-tuning parameter space.

Though our techniques have currently been tested on a �nite di�erence problem, we believe they apply

to other application classes, e.g. the Fast Fourier transform, which are enable to general blocked decompo-

sitions.

3 Sputnik

Sputnik is a programming methodology and a run time library for e�ciently implementing scienti�c com-

putations on heterogeneous clusters of multiprocessors. Sputnik's goal is to enable the programmer to write

an application almost as if the hardware were homogeneous.

Sputnik supports a two-level model of parallel control
ow. The �rst level runs a single process per

node moving data between nodes. The second level runs multiple lightweight processes on each node, one

per processor. Sputnik relies on a two-stage process for optimizing performance at these two levels. The

�rst stage, called ClusterDiscovery, assesses the relative performance of each node by running the original

application program individually on each node. During this stage Sputnik not only determines the speed of

4

each of the nodes, but it attempts to optimize performance for a speci�ed set of optimization criterion. In

the current implementation of Sputnik, we restrict ourselves to optimizing the number of threads. However,

other optimizations, e.g. blocking for cache, are possible.

Using the timings obtained from stage one, the second stage, called ClusterOptimizer, partitions the

dataset non-uniformly, according to the relative speed of each node. Sputnik then runs the program using

the optimal partitionings and other optimizations made in stage one. We can see then, that the �rst stage

of optimization manages the second level of parallelism, and the second stage of optimization manages the

�rst level of parallelism.

3.1 ClusterDiscovery

ClusterDiscovery performs two tasks. It measures node performance and it carries out performance opti-

mizations. Sputnik assumes that optimizations are parameterized. It searches a parameter space of possi-

ble optimizations, choosing the optimal parameter con�guration. When evaluating optimizations, Sputnik

measures application performance directly. It does not model performance using empirically determined

parameters, e.g. peak
oating point rate and message start time, and attempt to use these parameters to

estimate performance. The advantage of this approach is to eliminate nearly all built in assumptions about

the hardware. For example, the nodes need not be multiprocessors, and Sputnik does not need to be told

how many processors there are on each node. It need not know characteristics of the individual CPUs, e.g.

cache con�gurations. However, we must take care to prune the performance-tuning parameter space to avoid

long search times.

3.2 ClusterOptimizer

The ClusterOptimizer uses the optimizations found in the ClusterDiscovery stage and decomposes the un-

derlying computational data according to the relative performance of each node in the cluster. A node

discovered to have better performance than other nodes will therefore work on a larger portion of the overall

problem. Depending on the size of the problem as a whole, the cache sizes, and the amount of communication

taking place, there are a variety of di�erent decomposition schemes available. From the viewpoint of the

programmer, the exact partitioning is not known, except that the partitionings are blocked. Unlike standard

blocked partitionings, the partitionings employed by Sputnik may not be regular.

5

3.3 Limitations

Sputnik assumes that the application is represented as a uniform multidimensional array. It does not cur-

rently support general sparse structures, e.g. sparse matrices or graphs. Computations are further assumed

to be amenable to general blocked decompositions. This constraint admits �nite di�erence computations,

including multi-level and adaptive methods, and spatially subdivided particle methods. However, it does not

apply to matrix linear algebra, which employ block cyclic decompositions. A di�erent kind of abstractions

is required [13].

When executing the ClusterOptimizer stage, it is possible that the optimizations previously made in

ClusterDiscovery will no longer be valid. However, we assume that such non-linearities are benign.

4 Implementation

4.1 Library Design

The Sputnik API was implemented in C++ using the KeLP infrastructure [21, 20, 10], which is a C++ class

library. Like KeLP applications, Sputnik applications are written in a mixture of C++ of Fortran. C++

handles both data decompositions expressed by ClusterOptimization and the accompanying data motion

between processes. Fortran handles the numerical computations.

KeLP supports the irregular decompositions needed by Sputnik, which were discussed in x2. It runs on

top of MPI [3]. Intra node parallelism is managed with OpenMP [4]. Thus, management of parallelism

across and within nodes is handled with two distinct programming models.

The Sputnik API is designed so that the main() routine of a program is moved, mostly, to a user-de�ned

routine called SputnikMain(). The real main() does initialization and calls a routine called SputnikGo().

SputnikGo() acts as a kind of \shell" that calls SputnikMain() over and over to determine the optimal

number of threads per node, and makes the �nal run with the optimized con�guration. SputnikMain

returns a double. The value of that double should be the time it takes for the kernel to run. For example:

double SputnikMain(int argc,char ** argv, double * SputnikTimes) {

double start, finish;

...

<declarations, initializations>

...

6

start = MPI_Wtime(); // start timing

kernel(); // call the kernel function

finish = MPI_Wtime(); // finish timing

...

return finish-start;

}

Essentially everything that was in main() can now be in SputnikMain() with the addition of timing

calls. A typical main() might now look like this:

int main(int argc, char **argv)

{

MPI_Init(&argc, &argv); // Initialize MPI

InitKeLP(argc,argv); // Initialize KeLP

// Call Sputnik's main routine, which in turn will

// then call SputnikMain().

SputnikGo(argc,argv);

MPI_Finalize(); // Shut down MPI

return (0);

}

The call that sets the number of threads per node is actually set in SputnikGo() and is not seen by the

user. The number of threads actually employed in a loop should be tested by calling OMP GET MAX THREADS().

In this way, the programmer can determine whether OpenMP is doing a good job of parallelizing the code.

The repartitioning, one of the primary features of the Sputnik API is a modi�cation of the distribu-

tion functions of an existing KeLP library called DOCK, which automatically decomposes a rectangular

region across processors. Whereas DOCK supports uniform BLOCK decompositions, Sputnik supports non-

uniform ones. Sputnik inherits DOCK's run time Processor and Decomposition objects. The latter has a

distribute() member function, which under Sputnik contains an additional array argument specifying the

running times of each of the processors:

7

Processors3 P;

Decomposition3 T(domain);

T.distribute(BLOCK,BLOCK,BLOCK,P,double Times[]);

4.2 Limitations

Currently only single- dimensional partitions are supported, since our initial target architectures have only

a small (two to four) number of nodes. The distribute() function readily generalizes to multiple dimensions,

however (DOCK supports multi-dimensional partitionings)

The Sputnik API also requires that the application is written in C++, at least as a wrapper, though

the kernel(s) of the program may be written in either C, C++, or Fortran and linked in. Finally, Sputnik

depends on the fact that the cluster has a thread-safe implementation of MPI installed as well as OpenMP

for both Fortran and C++.

4.3 Experimental Testbed

Our experimental testbed consisted of a pair of SGI-Cray Origin 2000 multiprocessors located at the National

Center for Supercomputing Applications (NCSA). The two machines ran v. 6.5 of the IRIX OS. We used

KeLP version 1.3a and compiled all code with the native MIPSpro f77 and CC compilers, v. 7.3.1m, with

command line options as shown in Table 2. We used round robin page placement and turned page migration

on using the following environmental variable settings: DSM MIGRATION =ALL ON and DSM PLACEMENT =

ROUND ROBIN.

Runs were collected during a special dedicated time slot running on two machines called balder and aegir.

The machine con�gurations are given in Table 1. The two machines are connected by an SGI Gigabyte

System Network (GSN) interconnect supporting a maximum bandwidth of 800 MB /sec. and a theoretical

latency of less than 30 �s. Experimental results showed the actual latency to be much closer to 140 �s and

the bandwidth less than 100 MB /sec.

4.4 Optimizations

Sputnik remembers past con�gurations, saving the results of ClusterDiscovery in a small database on disk.

As a result, future runs of the program on the same cluster will not have to \re-discover" performance each

time and can simply run with the optimal settings. This technique allows us to reduce ClusterDiscovery

execution time to zero, though in practice, this may not be so important in iterative methods where we

expect to be able to optimize performance with just the �rst few of many mesh sweeps. In future work, we

8

Characteristic balder aegir

Processors 256 128
Main Memory 128 GB 64 GB
CPU Type and Clock Speed 250 MIPS R10000
Cycle Time 4.0 ns
Processor Peak Performance 500 MFLOPS
L1 Cache Size 32 KB
L2 Cache Size 4 MB
Operating System IRIX 6.5

Table 1: Speci�cations for the two Origin2000 machines, balder and aegir.

Compiler Version Command line
ags

MIPSpro f77 7.3.1m -mp -O3 -mips4 -r10000 -64
MIPSpro CC 7.3.1m -mp -lmpi -lm -lftn -lcomplex -O3 -r10000 -64

Table 2: Compiler command line options

hope to formalize this process. For example, FFTW provides for \words of wisdom" that can be used to

amortize the cost of optimizations. [9].

5 Results

5.1 An application

To validate Sputnik, we ran Redblack3D, an iterative �nite di�erence code that solves Poisson's equation in

three dimensions subject to Dirichlet boundary conditions. Redblack3D uses Red/Black ordering with Gauss-

Seidel iterations to solve the equations. We began with publicly available implementation of Redblack3D [10]

written using the KeLP infrastructure [21, 20, 10].

Recalling that management and control of parallelism is handled in C++ via KeLP, we modi�ed the

application to invoke the Sputnik API, and to unfold a second level of parallelism within the Fortran kernels.

The changes to the Fortran code were trivial, and involved the introduction of a handful of OpenMP direc-

tives. Since these modi�cations would be needed on a homogeneous platform, we consider only the C++

portion of the code.

The existing RedBlack3D code executes an outer iteration loop, and within each iteration it repeatedly

calls a KeLP routine to carry out inter node communication, and a Fortran routine to carry out computation.

Sputnik requires that we move the entire main program inside a call to SputnikGo(), which invokes the

Sputnik shell. Each call to SputnikGo() returns the time spent executing the program. Thus, we insert calls

to time the execution SputnikGo()4 In all, we added or modi�ed about 25 lines of code to an application

4This included some output, which took negligible time.

9

containing 596 uncommented lines of C++. These changes were restricted to the single top-level source

module, which contained 149 uncommented lines of C++.

5.2 Experiments

Our experimental strategy was designed to conserve scarce dedicated time. Thus, we carried out some of our

experiments on a single system emulating a virtual cluster by running two MPI processes on the one node.

We also we ran across the two machines, but we did not employ thread optimization in ClusterDiscovery.

Rather, we set the number of threads manually. This was necessary because we restricted our runs to just

3 mesh sweeps. In practice we would run for dozens or hundreds of mesh sweeps (in particular, if we used

multigrid to accelerate the smoother), but we would only utilize a few mesh sweeps to determine the optimal

decomposition. Thus, the cost of ClusterOptimization would be amortized over the length of the run. 5

This strategy enables us to demonstrate the e�ectiveness of the irregular partitionings employed by Sputnik,

while avoiding long ClusterDiscovery times in the short runs we used to collect our experiments.

In these experiments we set the number of threads on each machine to predetermined values. We ran each

computation for three mesh sweeps, and repeated each run once, for a total of two runs each. Our strategy

was to set the number of threads on one machine (balder) to a �xed amount, while varying the number of

threads on the other machine (aegir) to emulate various degrees of heterogeneity. This enabled us to establish

whether or not the irregular decompositions were robust with respect to the degree of heterogeneity. We

ran three experiments. In the �rst experiment, we set the problem size N = 761. With 761 � 761 � 761

unknowns, and two 64-bit
oating point numbers per unknown, the total amount of storage (excluding ghost

cells) was 6.72 GB. We set the number of threads on balder to �balder = 32, and ran with various number of

threads on aegir, �aegir = 16, 20,24, 28, and 32. Thus, the ratios of machine speeds varied from 2:1 down to

1:1. (As noted previously, the slowest node never runs at less than half the speed of the fastest node). We

also scaled up the power of the virtual cluster, running with the same problem size and �balder = 48; �aegir

= 24, 30, 36, 42, 48, and on a few larger problems with with up to 128 threads on balder and 96 on aegir.

Our results are presented in Fig. 2 and in tabular form in Tab. 3. They reveal that Sputnik is able to

balance workloads according to our expectations. Moreover, Sputnik's e�ectiveness is insensitive over the

tested range of heterogeneity. Fig. 2 presents just the computation times, and shows that the workloads have

been well balanced. We see three sets of bars for each value of �aegir . The left-most bar (black) gives the

original computation time, excluding communication. The middle bar (gray) shows the computational time

5Furthermore, if we use a feature of Sputnik that \remembers" the optimal performance parameters from a previous run,
then this time would be reduced to zero.

10

after Sputnik has assessed the performance of the node, and partitioned accordingly. The �nal bar (white)

shows the ideal time based on the computation time measured during ClusterDiscovery. The di�erences

between the predicted and actual timings are small. They never di�er by more than about 5% in the

�balder = 32 runs, while the relative di�erence decreases as the degree of heterogeneity decreases. (The

di�erences are much smaller for the �balder = 48 runs | about 1%). The discrepancy between the measured

and predicted running time is small, and we suspect that this is due to a non-linearity e�ect that results

from basing our predictions on a uniformly partitioned workload. 6 When we repartition the workload, we

increase the footprint of the workload assigned to the faster machine. In particular, memory access strides

in will be larger, which could result in increased miss rates in the TLB and in the caches. Ideally we might

repeat the ClusterDiscovery stage, but the resultant improvement is not likely to be signi�cant.

Tab. 3 also shows the total times including communication. Signi�cantly, we note that Sputnik prevents

the slower node (aegir) from idling for signi�cant amount of time. For example, with 16 threads and

�aegir = 32, balder remains idle for 40 seconds while waiting for aegir to catch up. With 24 threads and

�aegir = 48, balder remains idle for about 25 seconds. We can see this by glancing at Fig. 3. The total running

times without Sputnik (\Original Total") are nearly identical; both processors will complete in about the

same time, due to the wait on communication. But the actual computation time (\Original Compute")

on one of the nodes is much smaller. Next, we see that with balanced workloads, the total run time is

somewhere in between the two extremes, and similarly for the computation times. The workloads are not

perfectly balanced, however, they are close enough.

We also performed a few experiments with larger numbers of threads and larger problem sizes. These

are shown in Tab. 4. Sputnik performed well with large numbers of threads per system as well, balancing

the workloads to within about 5% of the predicted time or better.

Finally, we ran ClusterDiscovery on a single node with two virtual machine processes. We indeed found

that when presented with a maximum number of threads, that Sputnik would sometimes choose to use fewer

than the maximum number of threads in order to achieve optimal performance.

6Another possibility is that the variations are simply noise; we were not able to repeat our runs a su�cient number of times
to factor out variations due to memory layout and thread scheduling. However, the two runs generally agreed closely.

11

Threads Original Compute New Total New Compute Predicted
aegir balder aegir balder aegir balder aegir

16 47.7 87.7 66.4 65.7 65 60.4 61.8
20 48.4 74.4 63.1 63.8 61.3 58.0 58.6
24 51 62.7 58.4 59.5 56.0 55.4 56.2
28 50 55.6 54.4 53.8 50.3 51.4 52.6
32 51.2 48.7 51.6 52.57 48.0 50.6 49.9

Threads Original Compute New Total New Compute Predicted
aegir balder aegir balder aegir balder aegir

24 37.6 62.9 50.6 49.9 43.8 46.3 47.06
30 37.6 50.1 45.5 45.5 43.4 42.7 42.69
36 36.1 43.5 42.3 42.3 37.8 39.7 37.8
42 36.5 38.4 40.6 40.7 36.8 35.4 36.8
48 37.4 34.3 41.4 42.3 33.3 36.2 33.3

Table 3: Redblack3D timings with 32 and 48 threads on balder and varying numbers of threads on aegir

N Threads Original Compute New Total New Compute Predict
balder aegir balder aegir balder aegir balder aegir

949 64 32 57.1 99.3 74.6 74.6 71.5 71.8 72.5
1163 128 64 59.6 108 83.3 83.7 80.3 75.5 76.8
1163 128 96 65.6 73.5 72.9 72.7 65.5 68.8 69.3

Table 4: Redblack3D timings for larger problems and larger numbers of threads per system

6 Discussion and Conclusions

We have presented a programming methodology and API called Sputnik, which is able to adaptively par-

tition an interactive �nite di�erence solver on a heterogeneous cluster of multiprocessors. Our experiences

demonstrate that heterogeneous clusters of multiprocessors need not be di�cult to program and that they

can be treated almost as if they were heterogeneous. As clusters of multiprocessors appear to be the near-

term future for supercomputing, ways are needed to address the evolution of these machines. Sputnik is one

of these ways.

It should be easily possible to convert an application written with KeLP to Sputnik so long as a good

OpenMP implementation exists and the kernel is amenable to parallelization with OpenMP. Following the

Sputnik Model, the Sputnik API library could be readily adapted to work with di�erent software technologies.

For instance, instead of KeLP one should be able to adapt Sputnik to run applications based on MPI, so

long as the application supports irregular blocked decompositions.

Like others who have developed architecture cognizant methodologies [23] or libraries e.g. PHiPAC [8]

and Atlas [19]. we do not rely on a performance model with empirically-determined parameters. By compar-

12

16 20 24 28 32
0

10

20

30

40

50

60

70

80

90

Number of Threads on aegir

tim
e

(s
ec

on
ds

)

Redblack3D Using 32 Threads on balder

Original Compute Time
Sputnik Compute Time
Predicted Time

24 30 36 42 48
0

10

20

30

40

50

60

70

Number of Threads on aegir

tim
e

(s
ec

on
ds

)

Redblack3D with 48 Threads on balder

Original Compute Time
Sputnik Compute Time
Predicted Time

Figure 2: Redblack3D timings with 32 and 48 threads on balder, and varying numbers of threads on aegir

ison, Crandall has investigated a performance advisory system which relies on a parameterized performance

model [18]. The advantage of an approach which is parameter-free is that to admit extension to new types of

performance optimizations. For instance, the current implementation of Sputnik carries out only one opti-

mization, namely, it determines the optimal number of threads. In the future, we plan to explore alternative

optimizations, such as tiling. Sputnik could also be adapted to work in a dynamic environment as well, where

instead of sampling just once, at the beginning, testing and sampling could happen continuously through-

out the run of the program to optimally execute long-running programs, tuning throughout the run of the

program. Moreover, since actual running times are used, it is possible to accommodate a highly irregular

cluster with slow and fast interconnects. (But the more general scheduling problem on highly heterogeneous

architectures, involving remote resources, requires a di�erent kind of support [15]).

Our initial experiments were carried out on a cluster with just two nodes and many processors. In future

work we plan to extend the API to handle a larger number of \smaller" nodes, and to test other types of

applications such as multigrid and the Fast Fourier transform.

Acknowledgments

The authors wish to thank Faisal Saied for arranging access to the dedicated Origin 2000 at NCSA, and for

the many members of the technical sta� at NCSA who gave advice on using the Origin. Thanks also go

to Dan Shalit for providing assistance with KeLP, and Dr. Paul H. J. Kelly for early suggestions on how

to improve Sputnik. Thanks also go to Uppsala University in Sweden for generously allowing use of the

Yggdrasil cluster in the early stages of the research.

13

0

10

20

30

40

50

60

70

tim
e

(s
ec

on
ds

)

Redblack3D with 48 Threads on balder and 24 Threads on aegir

Original Total balder

Original Total aegir

Original Compute balder

Original Compute aegir

Sputnik Total balder

Sputnik Total aegir

Sputnik Compute balder

Sputnik Compute aegir

Theoretical Balanced

Figure 3: Detailed timings of RedBlack3D timings with 48 threads on balder and varying numbers of threads
on aegir, using the Sputnik library.

References

[1] S. B. Baden and S. J. Fink, \The Data Mover: A Machine-independent Abstraction for Managing Customized
Data Motion," LCPC '99, August 1999.

[2] S. J. Fink, S. B. Baden, and S. R. Kohn, \E�cient Run-Ti me Support for Irregular Block-Structured Applica-
tions," J. Par. Distrib. Comput., 50(1-2), April-May 1998, pp 61-82.

[3] Argonne National Laboratories, \MPI - The Message Passing Interface Standard," http://www-unix.mcs.anl.

gov/mpi/.

[4] OpenMP Architecture Review Board, http://www.openmp.org/.

[5] S. B. Baden and S. J. Fink, \Communication Overlap in Multi-tier Parallel Algorithms," SC98, Orlando FL,
Nov. 1998.

[6] S. B. Baden and S. J. Fink, \A Programming Methodology for Dual-tier Multicomputers. IEEE Trans. on

Software Eng., March 2000.

[7] S. B. Baden, \Programming abstractions for dynamically partitioning and coordinating localized scienti�c calcu-
lations running on multiprocessors," SIAM Journal on Scienti�c and Statistical Computing, vol. 12, pp. 145{157,
January 1991.

[8] J. Bilmes, K. Asanovi�c, C. Chin, and J. Demmel, \Optimizing matrix multiply using PHiPAC: a Portable,
High-Performance, ANSI C coding methodology," in Proceedings of International Conference on Supercomputing,
(Vienna, Austria), July 1997.

[9] The Fastest FFT in the West, http://www.fftw.org.

[10] S. B. Baden and D. Shalit, http://www-cse.ucsd.edu/groups/hpcl/scg/kelp/.

[11] S. B. Baden, D. Shalit, R. B. Frost. \KeLP User Guide Version 1.3," Department of Computer Science and
Engineering, University of California, San Diego, Jan. 2000, ftp://ftp.cs.ucsd.edu/pub/scg/KeLP/UserGuide_
1.3.pdf.

[12] D. A. Bader, and J. Ja'Ja', \SIMPLE: A Methodology for Programming High Performance Algorithms on
Clusters of Symmetric Multiprocessors (SMPs)," Tech. Rep. CS-TR-3798, Univ. of Maryland Inst. for Advanced
Computer Studies-Dept. of Computer Sci, Univ. of Maryland, May 1997.

[13] O. Beaumont, V. Boudet, F. Rastello, and Y. Robert, \Load Balancing Strategies for Dense Linear Algebra
Kernels on Heterogeneous Two-dimensional Grids," IPPS'2000, Cancun Mexico, May 2000.

[14] M. J. Berger and S. H. Bokhari, \A partitioning strategy for nonuniform problems on multiprocessors," IEEE

Transactions on Computers, vol. C-36, pp. 570{580, May 1987.

14

[15] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao, "Application-Level Scheduling on Distributed
Heterogeneous Networks," Proc. Supercomputing 1996, November 1996.

[16] F. Cappello and O. Richard, \Performance characteristics of a network of commodity multiprocessors for the
NAS benchmarks using a hybrid memory model," PACT 99, July 1999.

[17] W. Cirne and F. Berman, \Adaptive selection of partition size for supercomputer requests," in Proceedings of

6th Workshop on Job Scheduling Strategies for Parallel Processing, (Cancun, Mexico), May 2000.

[18] P.E. Crandall and M. J. Quinn, \A Partitioning Advisory System for Networked Data-Parallel Processing,"
Concurrency: Practice and Experience, 7(5), Aug. 1995, pp. 479-495.

[19] R. C. Whaley, A. Petitet, and J. Dongarra, \Automated Empirical Optimizations of Software and the ATLAS
Project," submitted for publication, 1999, http://www.netlib.org/utk/people/JackDongarra/PAPERS/atlas_
pub.pdf.

[20] S. J. Fink, \A Programming Model for Block-Structured Scienti�c Calculations on SMP Clusters," UCSD CSE
Department/Ph.D Dissertation, June 1998.

[21] S. J. Fink, S. B. Baden, and S. R. Kohn, \E�cient Run-Time Support for Irregular Block-Structured Applica-
tions," Journal of Parallel and Distributed Computing, 1998.

[22] I. Foster and N. T. Karonis, \A Grid-Enabled MPI: Message Passing in Heterogeneous Distributed Computing
Systems," Proc. SC 98, Orlando FL, Nov. 1998.

[23] K. S. Gatlin and L. Carter, \Architecture-Cognizant Divide and Conquer Algorithms," SC 99 Conference,
Portland, OR, Nov. 1999.

[24] S. S. Lumetta, A. M. Mainwaring, and D. E. Culler, \Multi-Protocol Active Messages on a Cluster of SMPs,"
Proc. SC 97, San Jose, CA Nov. 1997.

[25] J. May, B. de Supinski, B. Pudliner, S. Taylor, \Final Report Programming Models for Shared Memory Clusters,"
Lawrence Livermore National Labs, 99-ERD-009, January 13, 2000.

[26] J. May and B. R. de Supinski, \Experience with Mixed MPI/Threaded Programming Models," Lawrence Liv-
ermore National Labs, UCRL-JC-133213.

[27] N. Mitchell, L. Carter, J. Ferrante, and K. H�ogstedt, \Quantifying the Multi-Level Nature of Tiling Interactions,"
LCPC 1997.

[28] S. P. Peisert, \A progrmaming model for automated decomposition on heterogeneous clusters of multiprocessors,"
Master's thesis, Dept. of Computer Science and Engineering, University of California, San Diego, 2000.

[29] P. R. Woodward, \Perspectives on supercomputing: Three decades of change," IEEE Computer, vol. 29, pp. 99{
111, Oct. 1996.

15

