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Abstract

AEZ encrypts by appending to the plaintext a fixed authentication block and then enciphering
the resulting string with an arbitrary-input-length blockcipher, this tweaked by the nonce and
AD. The approach results in strong security and usability properties, including nonce-reuse
misuse resistance, automatic exploitation of decryption-verified redundancy, and arbitrary, user-
selectable length expansion. AEZ is parallelizable and its computational cost is close to that of
AES-CTR. On a recent Intel processor (Haswell), AEZ runs at about 0.75 cpb on adequately
long messages.

The latest version of this document, and any other related material, can be found on the AEZ
homepage: http://www.cs.ucdavis.edu/∼rogaway/aez
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0 Introduction

This document describes AEZ, which we view as both an enciphering scheme and an authenticated-
encryption scheme. Before specifying it we provide a brief overview.

Authenticated encryption by enciphering. When we speak of an enciphering scheme we mean
an object that is like a conventional blockcipher except that the plaintext’s length is arbitrary and
variable, and, additionally, there’s a tweak. Regarding AEZ in this way, enciphering maps a key K,
plaintext X, and tweak T to a ciphertext Y = Encipher(K,T,X) having the same length as X.
Going backwards, one can recover X = Decipher(K,T,Y ). The security property we seek is that
of a tweakable, strong-PRP (pseudorandom permutation): for a random key K it should be hard
to distinguish oracles (Encipher(K, ⋅, ⋅),Decipher(K, ⋅, ⋅)) from oracles (π(⋅, ⋅), π−1(⋅, ⋅)) that realize
a family of independent, uniformly random permutations and their inverse.

When we instead regard AEZ as an authenticated-encryption (AE) scheme, encryption maps key K,
plaintextM , nonceN (also called a “public nonce” or “public message number”), associated data A,
and an authenticator length abytes to a ciphertext C = Encrypt(K,N,A,M) that is abytes bytes
longer than M . Calling Decrypt(K,N,A,C) returns either a string M or an indication of invalidity.
The security property we seek is that of a robust authenticated-encryption scheme, a new and very
strong notion that implies protection of the privacy and authenticity of M and the authenticity
of N and A, and must do so to the maximal extent possible even if nonces get reused (“misuse
resistance” [35]), the authenticator length (abytes) is small (including zero), or if, on decryption,
invalid plaintexts get prematurely released.

Why speak of enciphering when CAESAR is a competition for AE schemes? Because an enciphering
scheme of the form described determines an AE scheme by a simple and generic transformation—
the encode-then-encipher method—and the AE scheme one gets in this way has attractive security
and usability properties.

Encode-then-encipher encrypts the string M by enciphering a string X that encodes both M and
a block of abytes zero bytes, doing so using a tweak T that encodes N , A, and all parameters.
Decryption works by deciphering the presented string (again using the tweak determined by N
and A) and verifying the presence of the anticipated zero bytes. See Figure 1.

What are these “attractive security and usability properties” to which we allude? (1) If plaintexts
are known a priori not to repeat, no nonce is needed to ensure semantic security. (2) If there’s arbi-
trary redundancy in plaintexts whose presence is verified on decryption, this augments authenticity.
(3) Any number of authenticator bytes can be selected, achieving best-possible authenticity for this
amount of expansion. (4) Because of the last two properties, one can minimize length-expansion
for low-energy or bandwidth-constrained applications. (5) If what’s supposed to be a nonce should
accidentally get repeated, the privacy loss is limited to revealing repetitions in (N,A,M) tuples,
and authenticity is not damaged at all. (6) If a decrypting party leaks some or all of a putative
plaintext that was supposed to be squelched because of an authenticity-check failure, this won’t
compromise privacy or authenticity.

The authors believe that the properties just enumerated would sometimes be worth a considerable
computational price. Yet the overhead we pay is modest: AEZ isn’t much slower than OCB.
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Figure 1: High-level structure of AEZ. After appending to the message a block of zeros we encipher it
using a tweak that encodes the nonce, associated data, and parameters. The enciphering method depends
on the length of what’s being enciphered. Short messages are enciphered by FF0; longer ones, by EME4.
The boxes for Encipher, FF0, and EME4 depend on the underlying key K, which is not shown.

Realizing the enciphering. The way AEZ enciphers depends on the length of the plaintext. If
it’s fewer than 32 bytes we use an algorithm we call FF0, which builds on FFX [4, 12]. When it’s
32 bytes or more we use an algorithm we call EME4, which builds on EME [14, 15] and OTR [23].

FF0 is a balanced-Feistel scheme. Its round function is based on AES4, a four-round version of
AES. Guided by known attacks, more rounds are used for short strings than long ones.

EME4 resembles EME mode (“encipher-mask-encipher”) but, for each of the two enciphering layers,
consecutive pairs of blocks are processed together using a two-round Feistel network. The round
function for this is based on AES4. The mask that is injected as the middle layer is determined, for
each pair of blocks, using another AES4 call. The result is an enciphering scheme that employs five
AES4 operations to encipher each consecutive pair of blocks, so 10 AES rounds per block. Thus
our performance approaches that of AES-CTR mode.

The design of EME4 employs a paradigm we call accelerated provable-security. One begins by de-
signing a cryptographic scheme based on a well-known tool, say a tweakable blockcipher (TBC) [21].
One proves security assuming that the tool meets some standard assumption—here, that the TBC
is secure as a tweakable PRP. As a heuristic final step, the TBC is selectively instantiated by a
scaled-down primitive: most often, we use a reduced-round version of AES, instead of AES itself,
to build the TBC. The thesis underlying this approach is that it can be instrumental in finding
complex but highly efficient schemes; and that if the instantiation is done judiciously, then the
scaled-down scheme retains some assurance benefit flowing from the approach.

The name. The name “AEZ” is not exactly an acronym. The AE prefix is meant to suggest
authenticated encryption and the overlapping EZ suffix is meant to suggest easy, in the sense of
ease of correct use. The AES-like name is also a nod to the fact that AEZ is based on AES and
can likewise be considered a species of blockcipher. Finally, the name can be used to help identify
individuals who can’t distinguish an S from a Z.

2



Hoang, Krovetz, and Rogaway AEZ v2

1 Specification

1.1 Notation

Numbers and strings. A number means a nonnegative integer, N = {0,1,2, . . .} For numbers
i ≤ j, let [i..j] be the numbers {i, i + 1, . . . , j}. A bit is 0 or 1 and a string is a finite sequence
of bits. The length of a string X is written ∣X ∣. The empty string ε is the string of length zero.
Concatenation of strings A and B is written AB or A ∥ B. By 0n we mean the string of n zero bits.
If X is a set of strings then X ∗ is all strings, including ε, formed by concatenating elements of X .
The bitwise xor of equal-length strings A and B is denoted A⊕B. For the xor of unequal-length
strings, first drop the necessary number of rightmost bits from the longer (10⊕ 0100 = 11). For X
a string, let X10∗ =X ∥ 10∗ be X10p with p the smallest number such that 128 divides ∣X ∣ + p + 1.
If ∣X ∣ = n and 1 ≤ i ≤ j ≤ n then X(i) is the ith bit of X (indexing from the left starting at 1),
msb(X) =X(1), lsb(X) =X(n), and X(i..j) =X(i)⋯X(j).
A byte is eight bits. The set of all bytes is denoted Byte. A byte string is an element of Byte∗.
If X is a byte string then Xn is the n-byte string that repeats X a total of n times. The byte
length of X ∈ Byte∗ is ∥X∥ = ∣X ∣/8. When X ∈ Byte∗ and 1 ≤ i ≤ j ≤ ∥X∥ then X[i] is its
ith byte (indexing from the left starting at 1) and X[i..j] is the substring of X that runs from
its ith to jth byte (inclusive). Let [n] be the byte representing nmod 256 (so [0]16 = 0128 and
[1]16 = (00000001)16) and let [n]t be the t-byte string representing nmod 28t in t bytes.

If A is a string we write (A0, . . . ,Am) ← A to indicate that m and A0, . . . ,Am are the unique
values such that A0⋯Am = A and ∣A0∣ = ⋯ = ∣Am−1∣ = 128 and ∣Am∣ ≤ 128, with Am = ε only
when A = ε. If ∣M ∣ ≥ 256 write (M0,M

′
0, . . . ,Mm,M ′

m,M∗,M∗∗) ← M to indicate that m and
M0,M

′
0, . . . ,Mm,M ′

m,M∗,M∗∗ are the unique values such that M0M
′
0⋯MmM ′

mM∗M∗∗ = M and
∣M0∣ = ∣M ′

0∣ = ⋯ = ∣Mm∣ = ∣M ′
m∣ = 128 and either ∣M∗∣ = 128 and ∣M∗∗∣ < 128, or ∣M∗∣ < 128 and

∣M∗∗∣ = 0. So if M consists of an even number of blocks then M∗ =M∗∗ = ε, and if M consists of
an odd number of blocks then M∗∗ = ε.
A block is 128 bits and a block string is a sequence of blocks. Let 0 = 0128. If X = a1⋯a128 is a block
(ai ∈ {0,1}) then X≪1 = a2⋯a128 0 and X≫1 = 0a1⋯a127. If X = X[1]⋯X[16] is a block then
rev(X) =X[16]⋯X[1] is its byte-reversal. For n ∈ N and X ∈ {0,1}128 define mul(n,X) and nX by
saying that mul(0,X) = 0, mul(1,X) = X, mul(2,X) = (X≪1) ⊕ [135 ⋅msb(X)]16, mul(2n,X) =
mul(2,mul(n,X)), and mul(2n + 1,X) =mul(2n,X) ⊕X, and nX = rev(mul(n, rev(X))).

AES and AES4. We assume familiarity with AES. We write AESK(X) = AES(K,X) for AES
encipherment of the 128-bit plaintext X using the 128-bit key K. For K,X ∈ {0,1}128 we write
aesenc(X,K) for a single round of AES: permute X by performing SubBytes then ShiftRows then
MixColumns, then do an AddRoundKey with K. Let aesenclast(X,K) be the same except omit
MixColumns. For K = (K0,K1,K2,K3,K4) a list of five blocks let AES4K(X) = AES4(K,X) be

aesenc(aesenc(aesenc(aesenc(X ⊕K0,K1),K2),K3),K4) .

For K = (K0,K1, . . . ,K10) a list of 11 blocks define AESK(X) = AES(K,X) like we defined AES4
but compose nine rounds of aesenc then a round of aesenclast. Thus AESK(X) = AESK(X)
where K = expand(K) is the vector of 11 subkeys produced from K by the AES key schedule.
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symbol comments

M Plaintext. M ∈ Byte∗

C Ciphertext. C ∈ Byte∗

K Key. K ∈ Byte∗. An entropy-extraction algorithm maps arbitrary keys to 32 bytes

N Nonce (aka: public sequence number). N ∈ Byte∗. ∥N∥ ≤ 12 recommended

A Associated data. A ∈ Byte∗. Users should use the empty string if they don’t need the AD

abytes Authenticator length. abytes ∈ [0..16]. Default is 16. C will be abytes longer than M

extns Extensions directive. extns ∈ Byte3. Default is [0]3. Other values direct pre/post processing

Figure 2: Arguments and parameters. The first five values are arguments to Encrypt( ) or Decrypt( ).
The next two values are parameters. The current document only specifies the behavior of AEZ when
extns = [0]3; other values will direct the invocation of integrated extensions.

1.2 Parameters

We’ll take parameter to mean “a value on which AEZ encryption depends that we are expecting,
independent of any particular API, to be held constant throughout some long-lived context.” Thus
we will not regard keybytes as an AEZ parameter (we permit keys of any length), nor npubbytes
(we permit nonces to have varying lengths, even within a session). While these two values are
omitted from the CAESAR-specified API, they could be specified in a different API. With this
understanding, we will regard AEZ as having two parameters (and even these could be considered
as arguments instead of parameters). See Figure 2.

The authenticator length, abytes, quantifies the authenticity provided. It also determines
how much longer a ciphertext is than its plaintext. The possible values of abytes are integers
between 0 and 16 (inclusive). While we call abytes a parameter, we do not insist that it be
held constant throughout a session; a user is free to change it with each encryption. Still, we
expect most applications to fix abytes.

The extensions directive, extns, will, in the future, unlock capabilities that have tradition-
ally been seen as outside the scope of an encryption scheme’s functionality. These include
secret nonces (secret message numbers), plaintext-length obfuscation (via a specified padding
regime), and encoding ciphertexts into a prescribed alphabet. These extensions will be re-
alized by a wrapper that keylessly transforms a plaintext, AEZ encrypts it, then keylessly
transforms the result. Pre- and post-processing is effectively absent (that is, the identity)
when extns = [0]3. A document defining AEZ extensions will be released later.

AEZ parameters have defaults: abytes = 16 and extns = [0]3. The only named parameter set,
aez, uses these. A conforming AEZ implementation is free to select defaults different from the ones
given, and to let the user select abytes and/or extns through the argument list of procedures
and to let these values vary across calls. In any context where the key length or nonce length are
required to be fixed, we select byte lengths for these of keybytes = 16 and npubbytes = 12.
We emphasize that AEZ itself does not support secret nonces. Readers who find fault with calling
extns an AEZ parameter but failing to specify pre- and post-processing behavior when it takes on
a non-default value should regard extns as the constant [0]3.
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1.3 Pseudocode

The definition of AEZ is provided in Figures 3 and 4. Let us explain some aspects of the pseudocode.

Encryption and decryption. To encrypt a string M we augment it with an authenticator—a
block of abytes zero bytes—and encipher the resulting string, tweaking this with a tweak formed
from A, N , and the parameters. The values are encoded into the tweak in a manner that enhances
the efficiency of their processing—in particular, the AD always starts at the second block and ends
on a block boundary, while the nonce is packed into the first block as long as this is possible. Next
we encipher the augmented message. To decrypt a ciphertext C we reverse the process, verifying
the presence of the all-zero authenticator.

Enciphering. Messages are enciphered by either of two methods. Strings of 1–31 bytes are
enciphered using FF0, while those of 32 bytes or more are enciphered using EME4.

Roughly following FFX [4, 12], algorithm EncipherFF0 uses a balanced Feistel network. The number
of rounds depends on the length of the plaintext: as few as eight, or as many as 24. The round
function is based on AES4. This is embodied in the pseudocode by the fact that our tweakable PRP
decides to use AES or AES4 based on the first component of the tweak, employing the full AES
only for tweaks beginning with a −1. The EncipherFF0 routine is illustrated at the bottom-left of
Figure 5 for the setting where messages have 16 or more bytes.

A novel feature of EncipherFF0 is the possible xoring of a bit into the ciphertext just before the
algorithm’s conclusion. This is done to avoid simple random-permutation distinguishing attacks,
for very short strings, based on the fact that Feistel networks only generate even permutations.
A similar trick, conditionally swapping two fixed points, has been used before [30]. Compared to
swapping two points, our approach has the benefit that the natural implementation is constant-
time.

EncipherEME4 melds EME [14, 15], OTR [23], and a variety of other ideas. Refer to the illustration
at the top left of Figure 5. Consider the simplest case, where the messageM =M0M

′
0M1M

′
1⋯MmM ′

m

has an even number of blocks. Each rectangle with a pair of numbers is a tweakable PRP, the label
being the tweak and the key K left implicit. Each successive pair of blocks MiM

′
i (for i ≥ 1) is

initially subjected to a two-round Feistel network. This both begins the scrambling of MiM
′
i and

yields a value X that is a computational almost-xor-universal hash of M1M
′
1⋯MmM ′

m. The first
pair of blocks are now processed, but where X initially offsets one of them. This both begins the
scrambling of M0M

′
0 and yields the value S that is a computational almost-universal hash of all

of M . Note the same S can be computed when deciphering. The TBC calls of the middle row now
inject into the Feistel network a random-looking position and S-dependent value. It should not
be surprising that two additional Feistel rounds suffice to make the construction a strong PRP—
provably so, under the assumptions we have stated. We call this construction ẼME4[E]. It is the
generalization of EME4 that employs an arbitrary TBC.

Messages with an odd number of blocks are processed as illustrated on the top-left plus and top-
right figures. Messages with an even number of blocks and the final block fragmentary are processed
as illustrated on the top-left plus bottom-right figures.
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100 algorithm Encrypt(K,N,A,M) // AEZ authenticated encryption

101 X ←M ∥ [0]abytes
102 T ← Format(N,A)
103 if M = ε then return AMac(K,T )[1..abytes]
104 C ← Encipher(K,T,X)
105 return C

110 algorithm Decrypt(K,N,A,C) // AEZ authenticated decryption

111 T ← Format(N,A)
112 if ∥C∥ ≤ abytes then if (C = AMac(K,T )[1..abytes]) then return ε else return �
113 X ← Decipher(K,T,C)
114 M ∥ Z ←X where ∥Z∥ = abytes
115 if (Z = [0]abytes) then return M else return �

120 algorithm Format(N,A) // Encode inputs and parameters

121 if ∥N∥ ≤ 11 then return 00 ∥ (abytes)6 ∥ extns ∥ N ∥ 10∗ ∥ A
122 if ∥N∥ = 12 then return 01 ∥ (abytes)6 ∥ extns ∥ N ∥ A
123 if ∥N∥ ≥ 13 then return 10 ∥ (abytes)6 ∥ extns ∥ N[1..12] ∥ A ∥ 10∗ ∥ N[13..∥N∥] ∥ [∥N∥]8
200 algorithm Encipher(K,T,X) // AEZ enciphering

201 if ∥X∥ < 32 then return EncipherFF0(K,T,X)
202 if ∥X∥ ≥ 32 then return EncipherEME4(K,T,X)

210 algorithm EncipherFF0(K,T,M) // FF0 enciphering

211 m← ∣M ∣; n←m/2; Δ← AHash(K,T )
212 if m = 8 then k ← 24 else if m = 16 then k ← 16 else if m < 128 then k ← 10 else k ← 8
213 L←M(1 .. n); R ←M(n + 1 .. m); if m ≥ 128 then j ← 5 else j ← 6

214 for i← 0 to k − 1 do R′ ← L⊕ ((E0,j
K (Δ ⊕ R10∗ ⊕ [i]16))(1..n)); L← R; R ← R′ od; C ← R ∥ L

215 if m < 128 then C ← C ⊕ (E0,7
K (Δ ⊕ (C ∨ 10∗)) ∧ 10∗)

216 return C

220 algorithm EncipherEME4(K,T,M) // EME4 enciphering

221 Δ← AHash(K,T ); (M0,M
′
0, . . . ,Mm,M ′

m,M∗,M∗∗) ←M ; d← ∣M ∣mod 256

222 for i← 1 to m do X ′i ←Mi ⊕E1,i
K (M ′

i); Xi ←M ′
i ⊕E0,0

K (X ′i) od
223 if d = 0 then X ←X1 ⊕⋯⊕Xm ⊕ 0 else if d ≤ 127 then X ←X1 ⊕⋯⊕Xm ⊕E0,3

K (M∗10∗)
224 else X ←X1 ⊕⋯⊕Xm ⊕E0,3

K (M∗) ⊕E0,4
K (M∗∗10∗) fi

225 R ←M0 ⊕E0,1
K (M ′

0 ⊕X) ⊕Δ; R′ ←M ′
0 ⊕E−1,1K (R) ⊕X; S ← R⊕R′

226 for i←1 to m do Z←E2,i
K (S); Yi←X ′i ⊕Z; Y ′i ←Xi ⊕Z; C ′i←Yi ⊕E0,0

K (Y ′i ); Ci←Y ′i ⊕E1,i
K (C ′i) od

227 if d = 0 then C∗ ← C∗∗ ← ε; Y ← Y1 ⊕⋯⊕ Ym ⊕ 0

228 else if d ≤ 127 then C∗ ←M∗ ⊕E−1,3K (S); C∗∗ ← ε; Y ← Y1 ⊕⋯⊕ Ym ⊕E0,3
K (C∗10∗)

229 else C∗←M∗ ⊕E−1,3K (S); C∗∗←M∗∗ ⊕E−1,4K (S); Y ←Y1 ⊕⋯⊕ Ym ⊕E0,3
K (C∗) ⊕E0,4

K (C∗∗10∗) fi
230 C ′′0 ← R⊕E−1,2K (R′); C0 ← R′ ⊕E0,2

K (C ′′0 ) ⊕Δ; C ′0 ← C ′′0 ⊕ Y
231 return C0C

′
0⋯CmC ′m C∗C∗∗

Figure 3: AEZ authenticated-encryption: main routines. The tweakable blockcipher E and message
authentication code AMac are defined in Figure 4. Algorithm Decipher(K,T,C), not shown, returns the
unique M such that Encipher(K,T,M) = C. See the accompanying text for how this is computed.
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300 algorithm AHash(K,A) // AXU hash

301 (A0, . . . ,Am) ← A

302 if ∣Am∣mod 128 = 0 then return E3,0
K (A0) ⊕E3,1

K (A1) ⊕⋯⊕E3,m
K (Am)

303 if ∣Am∣mod 128 ≠ 0 then return E3,0
K (A0) ⊕E3,1

K (A1) ⊕⋯⊕E3,m−1
K (Am−1) ⊕E1,0

K (Am10∗)

310 algorithm AMac(K,A) // PRF

311 return E−1,5K (AHashK(A))

400 algorithm Ei,j
K (X) // TBC on T = {0}×[0..7] ∪ {1,2,3}×N

401 (J,L, K0,K1,K2,K3) ← Expand(Extract(K))
402 k0 ← (K0,K1,K2,K3,0); k2 ← (K2,K3,K0,K1,0)
403 k1 ← (K1,K2,K3,K0,0); k3 ← (K3,K0,K1,K2,0)
404 K ← (L,J,2J,4J,K0,K1,K2,K3,K0,K1,K2)
405 if i = −1 then return AESK(X ⊕ jJ)
406 if i = 0 or j = 0 then return AES4ki

(X ⊕ jJ)
407 return AES4ki

(X ⊕ (j mod 8)J ⊕ 2⌊(j−1)/8⌋L)

410 algorithm Extract(K) // Convert key to 256 bits

411 z ← [0][1][2]⋯[15]; for i← 1 to 7 do Ci ← AES4(z,z,z,z,z)([i]16)
412 a← (0,C1,C2,C3,0); b← (0,C4,C5,C6,0); C ← C7

413 (I0, . . . , Im) ←K; if ∥Im∥ = 16
414 then J ← AES4a(I0 ⊕C) ⊕AES4a(I1 ⊕ 2C) ⊕AES4a(I2 ⊕ 22C) ⊕⋯⊕AES4a(Im ⊕ 2mC)
415 L← AES4b(I0 ⊕C) ⊕AES4b(I1 ⊕ 2C) ⊕AES4b(I2 ⊕ 22C) ⊕⋯⊕AES4b(Im ⊕ 2mC)
416 else J ← AES4a(I0 ⊕C) ⊕AES4a(I1 ⊕ 2C) ⊕AES4a(I2 ⊕ 22C) ⊕⋯⊕AES4a(Im10∗ ⊕ 3C)
417 L← AES4b(I0 ⊕C) ⊕AES4b(I1 ⊕ 2C) ⊕AES4b(I2 ⊕ 22C) ⊕⋯⊕AES4b(Im10∗ ⊕ 3C)
418 return J ∥ L

420 algorithm Expand(K) // Map 256-bit string to vector of 128-bit subkeys

421 (J,L) ←K; k ← (J,L,2J,L,4J)
422 for i← 0 to 3 do Ki ← AES4k([i]16)
423 return (J,L, K0,K1,K2,K3)

Figure 4: The universal hash, MAC, and tweakable blockcipher used by AEZ. The last carries out
key processing that an implementation would normally do at session-setup time. An alternative “scaled-up”
algorithm AEZ10 would redefine E more simply, setting Ei,j

K = AESK(iI ⊕ jJ ⊕X) where I = AESK(0) and
J = AESK(1) and restricting keys {0,1}128.

At this point we could instantiate E using a standard TBC-construction based on AES: the XE
method [21, 33] would do, yielding the scheme AEZ10 specified in the caption of Figure 4. At that
point we would have a provably-secure enciphering scheme (for strings of 32 or more bytes) with
an amortized five AES calls per pair of blocks, so 2.5 AES calls per block. The cost would be
similar to that of EME2 [14], spending an extra 0.5 AES calls per block but avoiding the repeated
doubling and the need for an AES-inverse.

But suppose we shatter our abstraction boundary and look at all that is really going on to enci-
pher M in AEZ10. Then the design starts to seem like major overkill: in effect, each block Mi is
processed with 30 rounds of AES (ten of them shared with a neighboring block)—not counting the
additional AES rounds to produce the unpredictable, M -dependent value S that gets injected into
the process while 20 rounds yet remain.

In light of such apparent overkill, EME4 selectively prunes some of the AES calls that AEZ10 would
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Figure 5: Illustration of AEZ. Rectangles with pairs of numbers are tweakable blockciphers, the pair
being that tweak (the key, always K, is omitted). Top left: EME4 when the plaintext has an even number
of blocks. Top left + top right: EME4 when the plaintext has an even number of full blocks and a
fractional final block. Top left + bottom right: EME4 when the plaintext has an odd number of full
blocks. Bottom left: FF0 when the plaintext has 16 or more bytes. Bottom right: AHash when the
message has a full (top) or partial (bottom) final block; along with the turning of the hash into a MAC.

make, using AES4 instead of AES. In particular, we prune invocations where we are trying to achieve
good xor-universal hashing. We leave enough AES rounds for confusion/diffusion processing of M
so that each block Mi is effectively processed with 12 AES rounds, eight of these subsequent to
injection of the highly-unpredictable S. The key steps in calculating S are not pruned, nor is the
TBC used to mask any final fragment.

Deciphering. We define Decipher(K,T,Y ) as the unique X such that Encipher(K,T,X) = Y .
Logically, this is all we need say for the specification to be well-defined, so we omit writing out the
implementing pseudocode. Still, that pseudocode is easy to describe. The reason this is so is that
enciphering and deciphering are highly symmetric for both FF0 and EME4.

FF0 deciphering is identical to FF0 enciphering except that we must count backwards instead of
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forwards, and we must do the only-even-cycles correction (line 215) at the beginning instead of the
end. Specifically, a routine DecipherFF0(K,T,M) (the M now representing ciphertext) is identical
to EncipherFF0(K,T,M) except that line 214 is changed to count from k − 1 down to 0, while for
line 215 has each C replaced by M before moving the line up to just after line 212.

EME4 deciphering is identical to EME4 enciphering except that we must take the column-1 tweaks
in reverse order. Specifically, a routine DecipherEME4(K,T,M) (the M now representing cipher-
text) is identical to EncipherEME4(K,T,M) except we must swap tweaks (0,1) and (0,2), and
we must swap tweaks (−1,1) and (−1,2). These four tweaks appear at lines 225 and 230.

Key processing. For the users’ convenience, AEZ allows keys of any length. Using procedure
Extract, the provided key is processed into 32 bytes using an almost-universal hash function with a
fixed but “random” key. The approach is rooted in the leftover hash lemma [2, 10, 16]. The hash we
select is similar to that used in PMAC [5]. Using procedure Expand, we stretch the 32-byte result
from the entropy extraction to obtain the additional key material we will need. The method is
basically counter mode, but still based on AES4. The extract-then-expand approach is traditional,
and is that used by NIST recommendation SP 800-56C [7].

Hashing and MACing. We employ a MAC, the one we call AMac, only for the special case of
a user enciphering an empty message. This is treated as a special case only for efficiency reasons,
so as to make FK(X) = Encrypt(K,ε,X, ε) an attractive MAC. The chosen MAC is constructed
in the Carter-Wegman tradition, employing a simple and parallelizable AES4-based universal hash
function. That hash function, AHash, is exactly what is used to compute Δ, the distillation of the
AD, nonce, and parameters needed by FF0 and EME4. The hash and MAC we use are depicted
at the bottom-middle of Figure 5.

The tweakable blockcipher. The TBC used by AEZ employs a tweak (i, j) with −1 ≤ i ≤ 3 and
j ≥ 0. The first component selects between use of AES (i = −1) and AES4 (i ≥ 0). Either way, the
construction is based on XE [21, 33]. But we cap the number of different multiple of J that might
be needed in order that a small and fixed amount of precomputation (to compute J , 2J , and 4J)
will suffice. After each such phase (eight successive tweaks), we double L and add it in.

1.4 Usage cap

We impose a limit that AEZ be used for at most 248 bytes of data (about 280 TB); by that time,
the user should rekey. For the purpose of this requirement, we say that, when encrypting (N,A,M)
with a given key K, AEZ is acting on ∥N∥ + ∥A∥ + ∥M∥ bytes. The above requirement stems from
the existence of birthday attacks on AEZ, as well as the use of AES4 to create a universal hash
function.

2 Security Goals

Nonce-reuse security. AEZ achieves nonce-reuse misuse-resistance (MRAE), as previously de-
fined by Rogaway and Shrimpton [35]. In an MRAE scheme, repeating a nonce will violate privacy
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only insofar as repetitions of (N,A,M) triples will be identified as such. It will not compromise
authenticity at all. SIV [35] is the best-known MRAE scheme.

Some researchers call AE schemes nonce-reuse misuse-resistant more broadly, encompassing schemes
that achieve much weaker notions, like those that leak the longest common block-aligned prefix (for
some fixed and typically small blocksize). Such notions were invented to approximate best-possible
security for online schemes, which they do rather inexactly. MRAE schemes can’t be online.

Exploitation of embedded novelty. MRAE security implies automatic exploitation of random-
ness or sequence numbers present in messages: in any context where messages are known to be
distinct (eg, a sequence number is embedded somewhere within) or are extremely unlikely to collide
(eg, a freshly-generated session key is embedded somewhere within), use of a nonce unnecessary.
In such settings, omission of a nonce does not represent misuse; it is a sound way to encrypt.

Exploitation of domain-specific redundancy. In many contexts, plaintexts have a certain
expected structure. This might arise because the message was produced by or for a particular
protocol. We intend that if the user checks for the anticipated structure and regards messages as
inauthentic if they don’t comply, then this check augments authenticity and correspondingly lessens
the need for the nominal redundancy that is inserted by AEZ before enciphering (that is, the extra
abytes zero bytes). The concept of automatically exploiting redundancy present in plaintexts
to achieve authenticity is well known in cryptographic folklore, where it has often been wrongly
assumed, and demonstrably achieved for AE based on a strong-PRP [3].

Releasing unverified plaintext. When decrypting, an unverified plaintext is a string that will
be released if the ciphertext is deemed authentic, but is supposed to be quashed otherwise. While
not definitionally mandated, AE schemes routinely compute such a thing. One form of encryption-
scheme misuse is to release some or all of the unverified plaintext despite the ciphertext’s invalidity.
This might happen because of an incremental decryption API or a more traditional side-channel.

Contemporaneous work by Andreeva et. al gives definitions to formalize an AE scheme’s security
against release of unverified plaintexts [1]. Our own definitional approach is different; we formalize
robust AE, which incorporates the unverified-plaintext concern among its aspects. In claiming
robust-AE security for AEZ the unverified plaintext is the value X computed at line 113. Achieving
robust AE implies that no harm would come of returning (X,�) instead of � at line 115.

Per-message nonce-length and parameter authentication. No security problems result from
employing nonces of varying lengths during a session, nor from changing the authenticator length
abytes during a session. Of course accessing such capabilities would require an appropriate API.

Good security for any amount of plaintext expansion. Traditionally, AE security definitions
“give up” when the adversary forges. This means that, at least definitionally, it’s OK for a scheme
to fail catastrophically when it first fails. A consequence is that authentication tags need to be
so long that forgeries almost never occur. Yet there are applications where an occasional forgery
is fine. For example, in some settings it ought to be fine to use a one-byte authenticator: while
the adversary will have a 2−8 chance of forging a given message, we could still expect that, say, a
reasonable adversary won’t have much more than a 2−80 chance to forge ten consecutive messages.
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AEZ permits short authentication tags, getting security as strong as possible given the selected
authenticator length. This implies that we must use a new definition for AE, one that does not
give up when a forgery occurs. It is described next.

Robust AE. Our new security definition for AE formalizes that one is doing as good a job as
possible for a given value τ of plaintext expansion (τ = 8 ⋅ abytes). The statement is required to
hold even in the face of decryption leaking some specified information. An upcoming academic
paper defines and investigates this notion of robust AE. Here we sketch the idea.

We restrict attention to AE schemes Π = (K,E ,D) that operate on strings of any length and that
are τ -expanding, ∣EN,A

K (M)∣ = ∣M ∣ + τ , for a user-selectable τ ∈ [0..τmax]. We first consider an
adversary that has access to one of two pairs of oracles. In the real setting the encryption oracle
encrypts according to E and the decryption oracle decrypts according to D. In the ideal setting the
encryption oracle, asked (N,A,M), returns πN,A(M) where, for each N,A, the function πN,A is a
uniformly selected random injection from m-bit strings to (m + τ)-bit ones. All of these functions
are chosen independently. The decryption oracle, given (N,A,C), checks if there’s an M such that
πN,A(M) = C. If so, it returns M . Otherwise it returns the distinguished value �.
The above notion is that of a pseudorandom injection (PRI). To arrive at the more general notion
of an RAE scheme, we modify how decryption works in the ideal setting. This is unchanged when
(N,A,C) is valid (that is, when there is an M such that πN,A(M) = C), but when it’s not, a
simulator S gets to return what it wants. The return value may be based only on N,A,C, τ and
any saved state of S. The real decryption algorithm D can now be augmented to capture any
desired leakage when the ciphertext is invalid: have algorithm D return what it wants, as long as it
is recognizably invalid (eg, we can require that the length of the unverified plaintext not be ∣C ∣ − τ
bits). The notion is a strengthening of a PRI insofar as not only must the scheme approximate a
PRI with respect to valid ciphertexts, but, when they’re invalid, the simulator must still be able to
approximate that which D returns.

While the simulator S and invalid-message-returning D strengthen the RAE notion relative to the
PRI notion, the key aspect, we think, is simply our insistence that encryption looks like a PRI even
in the case that the ciphertext expansion is zero or small. In fact, when the ciphertext expansion
is large, the PRI notion and the MRAE notion effectively coincide [35]. On the other hand, when
ciphertext expansion is zero, the RAE (and PRI) notion coincides with that of a strong-PRP. RAE
security can be thought of as a way to bridge strong-PRP security and MRAE security, coinciding
with the former when τ is zero and the latter when τ is large.

Provable security. AEZ has been developed with provable security strongly in mind. The
paradigm we have used is what we call the accelerated provable-security paradigm. First, a scheme
is designed and proven secure when its underlying cryptographic tool—a tweakable blockcipher
(TBC), in the case of AEZ—meets some well-established security definition. At that point one
could instantiate the primitive with a conventional tool—eg, using AES and the XE construction
[21, 33], as we described for AEZ10. One would then have a scheme with a customary provable-
security claim. Instead, to make our scheme faster, we choose to selectively instantiate some of the
TBC calls with a construction based on AES4, a four-round version of AES. Insofar as AES4 is
not secure as a PRP (and, additionally, our method of tweaking it is not always XE), this step is
effectively heuristic.
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Security goal Query complexity Time complexity Approx formula

Confidentiality of plaintext 55 128 s2/2110 + t/2128

Authenticity of plaintext 55 128 s2/2110 + t/2128

Authenticity of AD 55 128 s2/2110 + t/2128

Authenticity of the nonce 55 128 s2/2110 + t/2128

Robust AE 55 128 s2/2110 + t/2128

Figure 6: Security goals for AEZ with default parameters (aez). Query complexity is log base-2
of blocks queried: one needs about 255 blocks before having a good chance to violate the goal. Time
complexity is log base-2 of cycles: one needs about 2128 time to break the goal if one has only small amount
of plaintext/ciphertext. The formula bounds adversarial advantage as a function of queried blocks (s) and
time (t) by a known, modest-size adversary. The final row, RAE security, not only implies the other rows
but also nonce-reuse misuse-resistance: AEZ provides maximum-possible robustness against nonce reuse.

We call the instantiation of a scheme using a mixture of full and downgraded primitives the scaled-
down design. In contrast, using a conventional construction for the primitive would yield the usual,
scaled-up design. AEZ is a scaled-down realization of ÃEZ. It is a thesis underlying our design
methodology that the approach is useful both to discover good schemes and to have some measure
of assurance for them.

Quantitative security statements. For the scaled-up version of AEZ with default parameters,
we expect that an adversary cannot be exhibited that violates RAE security with advantage ex-
ceeding 5s2/2128 + t/2128 where s is the total number of 16-byte blocks of messages encrypted or
authenticated (plus 3 blocks per message, by convention) and t is the time (including the descrip-
tion size) in which the adversary runs. The second addend is a stand-in for an advantage term
associated to breaking the PRP security for the underlying blockcipher. Constants 5 and 3 are the
result of ongoing analysis. The number of encryption and decryption queries does not appear in
the formula above because we have folded them into s.

For aez itself, the formula should be replaced by 5s2/2113 + t/2128 because of the higher maximal
expected differential probability of AES4 [18] compared to an ideal hash or cipher.

Many authors prefer to think of security in terms of number-of-bits. We would summarize the
5s2/2113 < s2/2110 term of the last formula by saying that aez is expected to have 55 bits of
security. We warn that when an author makes a claim like “GCM has 128 bits of security” the
focus is time complexity, imagining a fixed and small amount of ciphertext. When saying that we
have at least 55 bits of security we are speaking exclusively of query complexity: that an adversary
must gather roughly 255 blocks (259 bytes) worth of ciphertext before it has a good chance to
break RAE security (assuming an explicitly given attack of reasonable description size and time
complexity). Recall our usage cap, that AEZ should be used for at most 248 bytes. One might
summarize targeted security goals for aez as shown in Figure 6.

Security non-goals. We have not tried to achieve security beyond the birthday bound; like
traditional modes of operation based on a 128-bit blockcipher, there certainly are easy distinguishing
and forging attacks by the time the adversary queries AEZ with about 264 blocks of message, AD,
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or nonce. Similarly, we we not targeting time-complexity security in excess of what is inherent in
employing a 128-bit key. That said, we avoid the obvious 2128-time brute-force attack for keys in
excess of 128 bits by processing arbitrary-length keys to 256-bit strings, rather than 128-bit strings,
in our realization of extract-then-expand key processing.

3 Security Analysis

An academic paper with the relevant security proofs for AEZ is in preparation. In the meantime,
we summarize some of our results. All are in the provable-security tradition (as opposed to our
making cryptanalytic claims).

Ciphertexts of at least one block. Let ÃEZ[E] be the generalization of AEZ where each E is a
tweakable blockcipher (TBC) of the correct signature [21]. We can prove that ÃEZ[E] achieves RAE
security as long as E is secure as a tweakable PRP. The claim assumes that ∥M∥ + abytes ≥ 16
for each encryption query employing plaintext M , and ∥C∥ ≥ 16 for each decryption query of a
ciphertext C. These conditions hold automatically for the default choice of abytes = 16. With
those provisos, RAE security can be proven along the following lines.

EME4 provides a length-preserving, variable-input-length, strong PRP on Byte≥32 (strings
of 32 or more bytes) with birthday-bound distinguishing advantage. This statement requires
only chosen-plaintext-attack PRP security for the underlying TBC.

The tweak provided to EncipherEME4 is incorporated by what can be regarded as the XEX
construction [21, 33]. The underlying hash function, AHash, is almost-xor universal (AXU)
when E is a PRP.

The round functions of FF0 are derived from a tweakable blockcipher (TBC) with tweak space
T = {(i,0) ∣ i = 1, . . . ,24}. We employ the XE construction [21, 33] to extend the tweak space
to T ×N ×A. One can then view that, for each (N,A), we use independent round functions.
Since a 6-round Feistel network on {0,1}2n already yields a strong PRP with birthday-bound
distinguishing advantage [20, 28, 29], FF0 gives a length-preserving, strong tweakable-PRP on
Byte≥16 ∩Byte≤31, with birthday-bound distinguishing advantage.

Once one has shown that the Encipher procedure of ÃEZ provides a length-preserving strong
tweakable-PRP then ÃEZ itself is a robust-AE scheme. This follows from a generic result that
asserts that encode-then-encipher conversion gives RAE security.

The choice of our TBC is heuristically justified as follows.

The processing of the tweaks to compute the XE offsets only requires a universal hash, and
four-round AES with independent, uniformly random subkeys is already known to be a good
AXU hash [18]. Similarly, the AXU security for AHash can be justified by viewing AHash as
an approximation of a variant in which the subkeys are chosen uniformly and independently
from {0,1}128 ⋅4×{0128}. That variant of AHash is again AXU due to the fact that four-round
AES with independent, uniformly random subkeys is an AXU hash [18].

For EME4, when processing each pair of blocks M0 and M ′
0, the first and last rounds only

need to be AXU, due to the classic result of Naor and Reingold [25]. Then, for the four-round

13



Hoang, Krovetz, and Rogaway AEZ v2

Feistel networks that process Mi and M ′
i with i ≥ 1, we heuristically use AES4 for the round

function, since, even then, each ciphertext block Ci is processed with 12 AES rounds (four
of which are shared with a single neighboring block), eight of which are subsequent to full
mixing, and all of which are subsequent to the position-dependent masking.

For FF0 we are effectively using a minimum of 32 = 8 ⋅ 4 rounds of AES. While AES4 is not
itself a good PRF, it would seem to be a stronger round function than those used by most
conventional Feistel-based designs.

Let ε be the maximum expected differential probability of (independently-keyed) AES4; this is
known to be at most (52/234)4 ≈ 2−113.088 [18]. While ÃEZ achieves RAE security with birthday-
bound security in the blocksize, AEZ only achieves RAE security with advantage about σ2 ⋅ε, where
σ is the number of blocks that the adversary queries. There are corresponding attacks. As a simple
example, let abytes = 16 and have an adversary repeatedly ask to encrypt a fixed message M with
a fixed nonce N but using AD values that consist of two random blocks. A collision in ciphertexts
will be found in about 1/√ε expected queries. Say it arose from AD values of A = A0A1 and
A′ = A′0A

′
1. Then test if one again gets a collision with M and N but with AD values of either

A ∥ 0 or A′ ∥ 0. If so, one almost certainly has a “real” encryption oracle.

Security of AMac. If AHash is an AXU hash then AMac is a PRF, as AMac is constructed from
the Carter-Wegman paradigm [6]. Alternatively, one can view AMac as an approximation of an
AES-based PMAC [5] in which all but the final blockcipher call have had the number of AES rounds
reduced from 10 to 4, a heuristic employed in ALRED, MARVIN, and PELICAN [8, 9, 36, 37]. This
gives another heuristic justification for the scaling down from full AES to AES4 in AHash.

Ciphertexts of less than one block. The claim that EncipherFF0 gives a tweakable, strong
PRP over Byte≤15 is heuristically justified. Consider a collection of independent, ideal, k-round
Feistel networks on {0,1}2n; the round functions are all uniformly random and independent. The
best attack known that distinguishes them from a family of independent, truly random even per-
mutations, requires at least 2(k−4)n plaintext/ciphertext pairs [27]. From our choice of the number
of rounds, this attack needs at least 272 plaintext/ciphertext pairs, and thus doesn’t violate our
security goals.

There are of course many provable-security results on balanced Feistel as well, but proven bounds
for a fixed-round Feistel network operating on an m-bit string vanish at about 2m/2 queries, and
we are looking at settings with m as small as 8.

Key processing and AES4 details. For the analysis above we sometimes pretended that the
subkeys for AES4 (excluding the XE offsets) are independent of other keys. In the implementation,
to reduce context size, we derive eleven subkeys K0, . . . ,K10 from the key K and steal the needed
subkeys for AES4 from these. Associated to this choice, we elect to determine each subkey Ki using
a more conservative (and also more parallelizable) key-scheduling algorithm than the traditional one
used by AES, which gives rise to consecutive subkeys that are rather “close.” (The cryptanalytic
proximity of neighboring subkeys seems more likely to be problematic when the number of AES
rounds is reduced from eleven to four.)

In defining AES4 subkeys, the final subkey is taken to be zero. This is provably without consequence
when constructing an AXU hash function. It would seem to be fine in further AEZ contexts where
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operation
m≥2 even m≥2 even m≥3 odd m≥3 odd m=1 m=1 m=1 m=2
d=128 d<128 d=128 d<128 d=8 d=16 d≥24 d<128

encipher or decipher a m+0.8 m+2.4 m+1.6 m+1.6 10 6.8 4.4 3.2
(3.6) (3.6) (3.6) (3.6) (10) (6.8) (4.4) (3.2)

encrypt or decrypt b m+3 m+3 m+2.2 m+3.8 3.6 3.6 3.6 5
(3.6) (3.6) (3.6) (3.6) (3.6) (3.6) (3.6) (4)

reject invalid ciphertext b 0.4m+2.4 0.4m+3 0.4m+2 0.4m+3 0 0 0 3.6
(3.2) (2.8) (2.8) (3.2) (0) (0) (0) (3.6)

Figure 7: Efficiency of AEZ. Worst-case computational work (and, parenthesized, latency) measured in
AES-equivalents, defined as ten AES rounds. The nonempty string X being operated on has m = ⌈∣X ∣/128⌉
blocks, the possibly-fragmentary last one having 1 ≤ d ≤ 128 bits. Assumptions: (a) Key already setup,
nonce and AD already processed. (b) Key already setup, AD already processed, nonce has 12 or fewer bytes,
abytes = 16. Other tasks: Key setup: 0.8m + 1.6 (0.8). Process AD: 0.4m (0.4) (key already setup,
nonce of 12 or fewer bytes). MAC generation or verification: 1 (1) (key already setup, AD already
processed, nonce N =ε, its contribution precomputed).

each AES4 application except the last is followed by one that employs pre-whitening. Cascading
a post-whitened permutation with a pre-whitened one seems redundant. Pleasantly, using zero
as a final AES4 round key frees up the xor included in the aesenc instruction to do the other
computational work needed for Feistel.

Our version of AES4 does not omit the final-round MixColumns, as AES itself was defined to do. In
the context of repeated AES4 applications, omission of the final MixColumns likely would decrease
security. See Dunkelman and Keller for some work in this direction [11]. And the motivation for
removing the MixColumns step from the last round of AES is for us moot: the inverse AES cipher
is never used.

The E construction is not provably-secure under the assumption that AES is a good blockcipher;
the TBC construction is where the scaling-down has occurred. But one would get a provably
good TBC if one dropped lines 401–403, regarded the AEZ key as a random 7 ⋅ 16 byte string
J ∥ L ∥K ∥ k0 ∥ k1 ∥ k2 ∥ k3, and replaced the two AES4 calls by AES calls.

At present we view the entropy extraction procedure Extract as essentially heuristic, although some
provable-security claims about it can be made from the leftover hash lemma [2, 10, 16]. The method
follows the general plan of NIST recommendation SP 800-56C [7], employing entropy extraction
followed by a CTR-mode expansion. For the former we produce produce 256 bits rather than 128
bits, as this seemed more appropriate to our choice of allowing such long keys.

4 Features

See Figure 7 for a table summarizing computational costs and Figure 8 for a table summarizing
algorithmic features. Below we enumerate additional features and restate some key ones.

1) Strings of any byte length m can be encrypted into strings of m + abytes bytes where
0 ≤ abytes ≤ 16. One achieves the maximal privacy and authenticity consistent with abytes.
The value abytes is authenticated and may change as often as a user likes.
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Objective Robust-AE, a goal that implies MRAE (nonce-reuse misuse resistance).

Type Blockcipher-based scheme, based on AES and AES4.

Intended for sw/hw/lw. Intended to do well where AES does, in SW or HW and on low-power
devices where ciphertext length should be minimized.

Key length Arbitrary. Subkeys are obtained using an extract-then-expand approach.

Nonce length Arbitrary. May vary during a session.

Auth length 0–16 bytes. Expansion by 0 bytes gives a strong, tweakable, VIL blockcipher.

Nonce reuse Yes. Secure against nonce-reuse in the strongest sense of the phrase [35].

Unverified
plaintext

Yes. It is fine to release unverified plaintext (a recovered but inauthentic plaintext).
This is one aspect of our notion of a robust AE.

Parallelizable Yes. Two passes must be made to encrypt or decrypt, but both are parallelizable.
Processing of the AD is also parallelizable.

Incremental No. MRAE schemes can’t be incremental. Use as a deterministic MAC is incremental
with respect to block replacement or appending-on-the-right.

Online No. MRAE schemes can’t be online (encryption or decryption).

Inverse free Yes. The inverse direction of AES or AES4 is never used.

Context size 144 bytes (for J,2J,4J,L,K0–K3,Δ) or 112 bytes (for J,L,K0–K3,Δ; two extra
doublings/msg) or 48 bytes (for J,L,Δ; 1.6 extra AES-equivalents/msg) or 32 bytes
(for J,L; can’t exploit static AD).

Static AD Yes. Static AD values can be preprocessed and used thereafter at near-zero cost.

Fast reject Yes. Invalid ciphertexts can be rejected far more quickly than valid ones decrypted.

Performance About the cost of OCB or AES-CTR, approaching 1.0 AES-equivalents per block

Proofs Either: Yes, there are proofs, but then a heuristic optimization is applied to a provably-
secure scheme to get a nice speedup; or No, there are no proofs for AEZ itself, although
the authors employ provable-security to motivate and justify design choices.

Further
features

▸ Can exploit arbitrary redundancy in messages for authenticity ▸ Can be used as an
efficient, parallelizable MAC (encrypt the empty string). ▸ Can be used to encipher
short strings and to encrypt strings with low expansion. ▸ Parameters are authenticated
and may vary during a session. ▸ Extensions (not AEZ itself) will support secret nonces,
plaintext-length obfuscation, and radix64url output encoding. ▸ No patents.

Figure 8: Table of properties for AEZ. The choice of properties to list as rows evolved from slides
prepared by Bart Preneel during a Dagstuhl workshop [31].

2) Computational cost is close to that of AES-CTR mode: roughly 1 AES-equivalent per block.
And an implementation only needs to employ the forward direction of AES.

3) Nonces are optional (fix N = ε if unused). If used, they can have any length. If unused, one
gets the strongest possible security notion in their absence.

4) Keys can have any length. A user may, for example, use a passphrase or DH ephemeral key.
(Note: some features one might want for mapping a passphrase to a 128-bit key, like salting
and an intentionally slow mapping to slow password guessing, are not natively provided.)

5) AEZ functions well as a stand-alone MAC and as a stand-alone enciphering scheme. In the
former context, it is parallelizable and uses about 0.4 AES operations per block.

6) Verification of plaintext redundancy enhances authenticity, as we have already explained.
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7) Short authenticators provide the security one would hope for. Our security notion doesn’t
“give up” when the adversary forges. This is part of the robust-AE notion.

8) Release of unverified plaintext does not cause any problems for AEZ. This is another part of
the robust-AE notion.

9) The security properties achieved by AEZ enable support for secret message numbers as a
simple add-on. This will be accomplished as an AEZ extension. Further AEZ extensions
will handle plaintext-length obfuscation, password salting, password guess-throttling, and
encoding ciphertexts into a target alphabet.

10) An encryption implementation can make one left-to-right, constant-memory pass over the
input, and then a second left-to-right, constant-memory pass over the input, this time out-
putting the ciphertext online. Decryption can be similarly realized. The cost increases about
40%, to an amortized 1.4 AES-equivalents per block.

11) It is possible to accelerate the rejection of invalid ciphertexts by having decryption compute
the final ciphertext block Mm prior to computing the remainder of the plaintext. The cost is
about 0.4 AES-equivalents per block.

12) AEZ is fully parallelizable in the processing of plaintext, ciphertext, and AD.

13) Static AD can be preprocessed so that one doesn’t have to subsequently pay a per-message
∣A∣-dependent cost. (Note: realizing this benefit requires an API that decouples provisioning
of the AD and provisioning of other inputs.)

14) Word alignment of the message and AD are not disrupted (for example, one never prepends
a byte to the message or AD, and then processes it).

15) The context size has been kept quite small: that natural context size is 144 bytes, although an
implementation can make due with as little as 32 or 48 bytes without incurring an excessive
computational price.

16) No AEZ-related patents have been or will be requested.

On an Intel Haswell CPU, a preliminary implementation of AEZ enciphers 4 KByte messages at
0.75 cpb and has a peak processing rate (the marginal cost of processing an additional 256 bytes)
of 0.69 cpb.

Advantages over GCM. AEZ has much stronger security properties than GCM. The later is
not nonce-reuse secure, cannot safely generate short tags [13], and is not secure with respect to
disclosure of unverified plaintext. GCM does not achieve the RAE security definition. AEZ avoids
GF(2128) multiplies (apart from the finite-field “doubling” that it uses).

A closer match to AEZ in terms of high-level aims is SIV, which is at least nonce-reuse secure [35].
But SIV has to output 128-bits more than its input; it is not RAE secure; and it is not parallelizable
(although the last issue could easily be fixed).

5 Design Rationale

Enciphering-based AE. An old result had already shown that enciphering with a strong PRP
provides a versatile route to AE [3]. We recently came to understand just how attractive this route
might be. On the one hand, we kept hearing requests for stronger AE security properties, like

17



Hoang, Krovetz, and Rogaway AEZ v2

nonce-reuse misuse-resistance, authenticity without minimal ciphertext expansions, and security if
unverified plaintexts are disclosed. Enciphering-based AE could deliver such aims. On the other
hand, enciphering schemes that worked on either long or short strings were steadily becoming better-
known objects. While they didn’t have the efficiency of OCB, say, neither were they computationally
exorbitant. And there was the hope of doing better.

Developing the enciphering scheme. With AES support increasingly embedded into devices,
we wanted to base our enciphering scheme on the AES round function. A wide body of work had
made abundantly clear that the best techniques for AES-based enciphering were going to depend on
the length of the plaintext. When the plaintext was short, we would want a simple, aesenc-based
design. For long strings we would want a more conventional mode. To cover all strings we’d have
to glue the two together.

For enciphering short strings, some version of FFX [4] was the obvious choice. It was already in
a draft standard [12], and the long history of Feistel networks made the choice seem safe (even if
security bounds for balanced Feistel networks become disappointing when the input gets too short).

For enciphering longer strings, there were a great many off-the-shelf alternatives we could turn to
(see [34] for a list). The best-known was EME2 [14, 17]. But its treatment of final fragments and
long messages seemed complex, and it needed two AES calls per block and lots of doubling. Most
alternatives traded a blockcipher calls for a potentially expensive finite-field operation, a direction
we didn’t want to go. We decided that no off-the-shelf solution would do.

Our EME4 solution builds on EME [14, 15] and OTR [23], but uses tweakable blockciphers [21] to
arrive at an analyzable design. It makes strong use of what we have called accelerated provable-
security. The scaled-down design, with a per-block amortized cost of just 1.0 times that of AES
and no use of inverse-AES, was cheaper than we initially imagined to be possible. While it has long
been understood that stream ciphers could be faster than blockciphers, it was not anticipated, at
least by us, that a wide-blocksize blockcipher could be about as cheap as a conventional blockcipher.

No hidden weaknesses. The designers have not hidden any weaknesses in this cipher. The
authors do not know any technical means by which one could intentionally weaken the design of
a scheme like AEZ. The authors excoriate intelligence-agency efforts to subvert security standards
and mass-market implementations.

6 Intellectual Property

The submitters have not applied for any patents in connection with this submission and have no
intention to do so. As far as the inventors know, AEZ may be used in an application or context
without IP-related restrictions. If any of this information changes, the submitters will promptly
(and within at most one month) announce these changes on the crypto-competitions mailing list.
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7 Consent

The submitters hereby consent to all decisions of the CAESAR selection committee regarding the
selection or non-selection of this submission as a second-round candidate, a third-round candidate,
a finalist, a member of the final portfolio, or any other designation provided by the committee. The
submitters understand that the committee will not comment on the algorithms, except that for
each selected algorithm the committee will simply cite the previously published analyses that led
to the selection of the algorithm. The submitters understand that the selection of some algorithms
is not a negative comment regarding other algorithms, and that an excellent algorithm might fail to
be selected simply because not enough analysis was available at the time of the committee decision.
The submitters acknowledge that the committee decisions reflect the collective expert judgments
of the committee members and are not subject to appeal. The submitters understand that if they
disagree with published analyses then they are expected to promptly and publicly respond to those
analyses, not to wait for subsequent committee decisions. The submitters understand that this
statement is required as a condition of consideration of this submission by the CAESAR selection
committee.

8 Revision History

Below we record each public version of AEZ since its inception.

AEZ v1 (2014.03.15): Initial definition. Submitted to the CAESAR competition.

AEZ v1.1 (2014.04.29): A minor revision. Corrected typos in the document above.

AEZ v2 (2014.08.17): A major revision, we replaced the enciphering algorithm that had
been used for adequately long strings, MEM, by a new algorithm, EME4. While no problems
were ever found with MEM, the move facilitated two major gains: (a) the amortized cost was
reduced from from 1.8 times that of AES to 1.0 times that of AES, while (b) all use of the
AES-inverse operation was removed from AEZ. Also, EME4 was simpler, and we found ways
to correspondingly simplify the entire spec.
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