Problem Set 2 - Due Thursday, October 11, 2012

Problem 1 Given a mapping $\delta: Q \times \Sigma \rightarrow Q$, we defined $\delta^{*}: Q \times \Sigma^{*} \rightarrow Q$ by asserting that $\delta^{*}(q, \varepsilon)=q$ and $\delta^{*}(q, a x)=\delta^{*}(\delta(q, a), x)$. Carefully justifying each step, prove that $\delta^{*}(q, x y)=\delta^{*}\left(\delta^{*}(q, x), y\right)$.

Problem 2 State whether the following propositions are true or false, proving each answer.
(a) Every DFA-acceptable language can be accepted by a DFA with an even number of states.
(b) Every DFA-acceptable language can be accepted by a DFA whose start state is never visited twice.
(c) Every DFA-acceptable language can be accepted by a DFA no state of which is ever visited more than once.
(d) The language $L=\left\{x \in\{a, b\}^{*}: x\right.$ starts and ends with the same character $\}$ can be accepted by a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ for which $\delta^{*}\left(q_{0}, w\right)=q_{0}$ for some $w \neq \varepsilon$. Assume and alphabet of $\Sigma=\{a, b\}$.

Problem 3 A homomorphism is a function $h: \Sigma \rightarrow \Gamma^{*}$ for alphabets Σ, Γ. Given a homomorphism h, extend it to strings and then languages by asserting that $h(\varepsilon)=\varepsilon, h\left(a_{1} \cdots a_{n}\right)=h\left(a_{1}\right) \cdots h\left(a_{n}\right)$ (for $a_{1}, \ldots, a_{n} \in \Sigma$), and $h(L)=\{h(x): x \in L\}$.
(a) Prove: for any homomorphism h, if L is DFA-acceptable, then so is $h(L)$.
(b) Disprove: for any homomorphism h, if $h(L)$ is DFA-acceptable, then so is L.

Problem 4 Recall the Diophantine Equation problem: given a multivariate polynomial P with integer coefficients, decide whether or not P has an integer root.
(a) In the first lecture I claimed without proof that there is no algorithm to answer this question. But suppose I provide you with an oracle (a "magic box") that did answer the question. In a single computational step, it says yes or no according to whether or not P has an integer root. Given such an oracle, describe an algorithm that finds an integer root of any multivariate polynomial that has one (and reports No Root otherwise).
(b) Let $s(n)$ be the maximum number of computational steps that your algorithm takes to run (on some fixed, oracle-containing computer) when the polynomial P is described by a string of length n. Explain why there is no algorithm to compute $S(n)$ for any function S such that $S(n) \geq s(n)$ for all n. (In brief, some functions just grow too fast to be computable.)

Problem 5 Let $\operatorname{Extend}(L)=\left\{x \in L\right.$: there exists a $y \in \Sigma^{+}$for which $\left.x y \in L\right\}$.
(a) What is $\operatorname{Extend}\left(\{0,1\}^{*}\right)$? What is $\operatorname{Extend}(\{\varepsilon, 0,1,00,01,111,1110,1111\})$?
(b) Prove that if L is DFA-acceptable then $\operatorname{Extend}(L)$ is too.

