Problem Set 4 – Due Thursday, October 25, 2012

Problem 1. Let α be a regular expression of length n.

(a) Using procedures shown in class, if we convert α into a regular expression β such that $L(\beta) = \overline{L(\alpha)}$, how long might β be? Give a reasonably tight upperbound.

(b)* Can you define an infinite family of regular expressions $\{\alpha_n\}, |\alpha_n| \in O(n)$, but where the shortest regular expression for $\overline{L(\alpha_n)}$ will have length $\Omega(2^n)$?¹

Problem 2. Using the pumping lemma, show that the following languages are not regular.

- (a) $L = \{www: w \in \{a, b\}^*\}.$
- **(b)** $L = \{a^{2^n} : n \ge 0\}.$
- (c) $L = \{0^n 1^m 0^n : m, n \ge 0\}.$
- **Problem 3.** Define $A = \{x \in \{a, b, \sharp\}^* : x \text{ contains an equal number of } a$'s and b's or x contains consecutive \sharp s or consecutive letters $\}$.
- (a) Can you use the pumping lemma to prove that A is not regular? Explain.
- (b) Prove that A is not regular.
- **Problem 4.** Are the following statements true or false? Either prove the statement or give a simple counter-example.
- (a) If $L \cup L'$ is regular then L and L' are regular.
- (b) If L^* is regular then L is regular.
- (c) If LL' is regular then L and L' are regular.
- (d) If L and L' agree on all but a finite number of strings, then one is regular iff the other is regular.
- (e) If R is regular, L is not regular, and L and R are disjoint, then $L \cup R$ is not regular.
- (f) If L differs from a non-regular language A by a finite number of strings F, then L itself is not regular.
- **Problem 5.** Carefully describe an algorithm to answer the following question: given a regular expression α , is $L(\alpha) = (L(\alpha))^R$? What is the asymptotic running time of your algorithm?

Problem 6. For any language L let

 $\mathcal{F}(L) = \{ w \in L | \text{ no proper prefix of } w \text{ is a member of } L \}$

Prove or disprove: the regular languages are closed under \mathcal{F} .

 $^{^{1}}$ This problem is intended for, at most, the top students. If you can find an elementary solution without consulting the literature, please give it directly to Prof. Rogaway.