Problem Set 8 – Due Thursday, November 29, 2012

This is a crucial problem set; with it, you should be coming to understand one of the most important concepts in this class: reductions.

With this problem set, you are back to doing problem sets on your own.

Problem 1.¹ Classify each of the following languages as either **recursive**, or **r.e.** but not not co-r.e., or **co-r.e.** but not r.e., or **neither** r.e. nor co-r.e. (For ease of grading, please use these four labels.) You should be able to prove all of your claims, but, to keep things short, please provide a proof only for problems marked with a star. Proofs that a language is not r.e. or not co-r.e. must take the form of a reduction.

A $\{\langle M \rangle : M \text{ is a TM that accepts some string of prime length}\}.$

 $\mathbf{B}\star \{\langle M,k\rangle: M \text{ is a TM that accepts at least one string of length }k\}.$

C $\{\langle M \rangle : M \text{ is a TM and } M \text{ has 100 states} \}.$

D $\{\langle M \rangle : M \text{ is a TM and } L(M) = L(M)^* \}.$

E $\{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset\}.$

 $\mathbf{F} \quad \{ \langle M \rangle : M \text{ is a TM and } L(M) \text{ is r.e.} \}.$

 $\mathbf{G} \star \{ \langle M, k \rangle : M \text{ is a TM that runs forever (loops) on at least one string of length } k \}.$

H $\{\langle M \rangle : M \text{ is a C-program that halts on } \langle M \rangle \}.$

 $\mathbf{I} \star \{ \langle M, k \rangle : M \text{ is a TM that accepts a string of length } k \text{ and diverges on a string of length } k \}.$ Assume that the underlying alphabet has at least two characters.

J $\{\langle M \rangle : M \text{ is a TM and } M \text{ will visit state } q_{20} \text{ when run on some input } x\}.$

 $\mathbf{K} \star \{ \langle M, w \rangle : M \text{ is a TM and } M \text{ that uses at most 20 tape cells when run on } w \}.$

L $\{\langle G \rangle : G \text{ is a CFG and } G \text{ accepts an odd-length string}\}.$

 $\mathbf{M} \quad \{ \langle G_1, G_2 \rangle : G_1 \text{ and } G_2 \text{ are CFGs and } L(G_1) = L(G_2) \}.$

 $\mathbf{N} \star \{ \langle M \rangle : M \text{ is a TM that accepts some palindrome} \}.$

Problem 2 Say that a language $L = \{x_1, x_2, \ldots\}$ is *enumerable* if there exists a two-tape TM M that outputs $x_1 \sharp x_2 \sharp x_3 \sharp \cdots$ on a designated *output tape*. The other tape is a designated work tape, and the output tape is write-only, with the head moving only from left-to-right. Say that L is *enumerable in lexicographic order* if L is enumerable, as above, and, additionally, $x_1 < x_2 < x_3 < \cdots$, where "<" denotes the usual lexicographic ordering on strings.

¹Will count as more than one problem.

A. Prove that L is r.e. iff L is enumerable. (This explains the name "recursively enumerable.") **B.** Prove that L is recursive iff it is enumerable in lexicographic order.

Problem 3 Prove or disprove each of the following claims.

A. $A \leq_{\mathrm{m}} A$.

- **B.** If $A \leq_{\mathrm{m}} B$ and $B \leq_{\mathrm{m}} C$, then $A \leq_{\mathrm{m}} C$.
- **C.** If $A \leq_{\mathrm{m}} B$ then $\overline{A} \leq_{\mathrm{m}} \overline{B}$.
- **D.** If A is r.e. and $A \leq_{\mathrm{m}} \overline{A}$ then A is recursive.
- **E.** If A is recursive, then $A \leq_{\mathrm{m}} a^* b^*$.
- **F.** If $A \leq_{\mathrm{m}} B$ then $B \leq_{\mathrm{m}} A$.
- **G.** If $A \leq_{\mathrm{m}} B$ and $B \leq_{\mathrm{m}} A$ then A = B.