Problem Set 8 - Due Thursday, November 29, 2012

This is a crucial problem set; with it, you should be coming to understand one of the most important concepts in this class: reductions.

With this problem set, you are back to doing problem sets on your own.

Problem 1. ${ }^{1}$ Classify each of the following languages as either recursive, or r.e. but not not co-r.e., or co-r.e. but not r.e., or neither r.e. nor co-r.e. (For ease of grading, please use these four labels.) You should be able to prove all of your claims, but, to keep things short, please provide a proof only for problems marked with a star. Proofs that a language is not r.e. or not co-r.e. must take the form of a reduction.

A $\{\langle M\rangle: M$ is a TM that accepts some string of prime length $\}$.
$\mathbf{B} \star\{\langle M, k\rangle: M$ is a TM that accepts at least one string of length $k\}$.
C $\{\langle M\rangle: M$ is a TM and M has 100 states $\}$.
D $\quad\left\{\langle M\rangle: M\right.$ is a TM and $\left.L(M)=L(M)^{*}\right\}$.
E $\quad\{\langle M\rangle: M$ is a TM and $L(M)=\emptyset\}$.
F $\quad\{\langle M\rangle: M$ is a TM and $L(M)$ is r.e. $\}$.
$\mathbf{G} \star\{\langle M, k\rangle: M$ is a TM that runs forever (loops) on at least one string of length $k\}$.
H $\quad\{\langle M\rangle: M$ is a C-program that halts on $\langle M\rangle\}$.
I夫 $\{\langle M, k\rangle: M$ is a TM that accepts a string of length k and diverges on a string of length $k\}$. Assume that the underlying alphabet has at least two characters.

J $\quad\left\{\langle M\rangle: M\right.$ is a TM and M will visit state q_{20} when run on some input $\left.x\right\}$.
$\mathbf{K} \star\{\langle M, w\rangle: M$ is a TM and M that uses at most 20 tape cells when run on $w\}$.
$\mathbf{L} \quad\{\langle G\rangle: G$ is a CFG and G accepts an odd-length string $\}$.
$\mathbf{M} \quad\left\{\left\langle G_{1}, G_{2}\right\rangle: G_{1}\right.$ and G_{2} are CFGs and $\left.L\left(G_{1}\right)=L\left(G_{2}\right)\right\}$.
$\mathbf{N} \star\{\langle M\rangle: M$ is a TM that accepts some palindrome $\}$.

Problem 2 Say that a language $L=\left\{x_{1}, x_{2}, \ldots\right\}$ is enumerable if there exists a two-tape TM M that outputs $x_{1} \sharp x_{2} \sharp x_{3} \sharp \cdots$ on a designated output tape. The other tape is a designated work tape, and the output tape is write-only, with the head moving only from left-toright. Say that L is enumerable in lexicographic order if L is enumerable, as above, and, additionally, $x_{1}<x_{2}<x_{3}<\cdots$, where " $<$ " denotes the usual lexicographic ordering on strings.

[^0]A. Prove that L is r.e. iff L is enumerable. (This explains the name "recursively enumerable.")
B. Prove that L is recursive iff it is enumerable in lexicographic order.

Problem 3 Prove or disprove each of the following claims.
A. $A \leq_{\mathrm{m}} A$.
B. If $A \leq_{\mathrm{m}} B$ and $B \leq_{\mathrm{m}} C$, then $A \leq_{\mathrm{m}} C$.
C. If $A \leq_{\mathrm{m}} B$ then $\bar{A} \leq_{\mathrm{m}} \bar{B}$.
D. If A is r.e. and $A \leq_{\mathrm{m}} \bar{A}$ then A is recursive.
E. If A is recursive, then $A \leq_{\mathrm{m}} a^{*} b^{*}$.
F. If $A \leq_{\mathrm{m}} B$ then $B \leq_{\mathrm{m}} A$.
G. If $A \leq_{\mathrm{m}} B$ and $B \leq_{\mathrm{m}} A$ then $A=B$.

[^0]: ${ }^{1}$ Will count as more than one problem.

