Problem Set 10-Due June 10, 2004

Problem 1. Page 272, Problem 7.19.

Problem 2. A graph $G=(V, E)$ is said to be k-colorable if there is a way to paint its vertices using colors in $\{1,2, \ldots, k\}$ such that no adjacent vertices are painted the same color. When k is a number, by $k C O L O R$ we denote the language of (encodings of) k-colorable graphs. The language $3 C O L O R$ is NP-Complete. (You can assume this.) Use this to prove that the language $4 C O L O R$ is NP-Complete, too.

Problem 3. Page 273, Problem 7.24.

Problem 4. Page 274, Problem 7.26.

