Problem Set 4 - Due April 29, 2004

Problem 1. Consider applying the product construction to NFAs $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ and $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ in order to show that the NFA-acceptable languages are closed under symmetric difference.
Part A. Formally specify the product machine $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$.
Part B. Does the construction work-that is, is $L(M)=L\left(M_{1}\right) \oplus L\left(M_{2}\right)$?
Problem 2. Let α and β be regular expressions. Prove that there exists a number N, algorithmically computable given α and β, such that $L(\alpha)=L(\beta)$ whenever $L(\alpha) \cap\{0,1\}^{\leq N}=$ $L(\beta) \cap\{0,1\} \leq N$.

Problem 3. Page 86, Exercise 1.17, parts b and c.
Problem 4. Page 88, Problem 1.23, parts a and d.

