Quiz 1

1. Draw a DFA that accepts $L=\left\{x \in\{1,2\}^{*}: x\right.$ has exactly two 2 's $\}$.
2. List, in order, the lexicographically-first four strings of $(111)^{*}(11111)^{*}$.
3. Write a regular expression for the language $\overline{(\mathrm{aa})^{*}}$. The complement is relative to the alphabet $\Sigma=\{\mathrm{a}\}$.
4. Every NFA-acceptable language can be accepted by an NFA with just a single final state.

True
5. Every subset of a regular language is regular.

True	False
True	False

6. L^{*} is infinite.
7. If $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is a DFA and $F=Q$ then $L(M)=\Sigma^{*}$.
8. If L is accepted by an n-state NFA then L is accepted by some 3^{n}-state DFA.
9. If L is a not-regular language and F is a finite language then $L \cap F$ is a regular language.

True False
10. $\left(L^{*}\right)^{*}=L^{*}$.

True
False
11. For α a regular expression, there is an algorithm to decide if $x \in L(\alpha)$ that is efficient enough to run in a reasonable amount of time on reasonable length x, α.
12. Let $M=\left(Q,\{0,1\}, \delta, q_{0}, F\right)$ be a DFA and suppose that $\delta^{*}\left(q_{0}, x\right)=\delta^{*}\left(q_{0}, y\right)$. Then $x \in L(M)$ if and only if $y \in L(M)$.

True False

