Midterm Exam

Instructions: This is a closed book, closed notes exam. Do all **3** problems. Do your best to communicate your ideas clearly and succinctly. Good luck. —Phil Rogaway

Name:

On problem	you got
1	
2	
3	
\sum	

1 Short Answer

1.1 Draw a **DFA** M for the language

 $L = \{x \in \{a, b, c\}^* : x \text{ contains exactly one } a \text{ and exactly one } b\}.$

Make your DFA have as few states as possible.

 ${\bf 1.2}\,$ List the first five strings of this language (Problem 1.1) in lexicographic order. Assume a < b < c.

1.3 Write a regular expression for this language (Problem 1.1). Make it as short as possible.

1.4 Give a CFG for $L = (ab \cup aaa)^*$ baa. Make your grammar use as few rules as possible.

1.5 Let $M = (Q, \Sigma, \delta, q_0, F)$ be an NFA with no ϵ -arrows. We can convert M into a DFA $M' = (Q', \Sigma, \delta', \{q_0\}, F')$ whose language is L(M) by setting

Q' =		and $\delta'(S, a) =$				
and $F' = \{T \subseteq Q : T \cap F \neq \emptyset\}.$						

1.6 Using the procedure shown in class, convert the following NFA into a regular expression for the same language.

2 Justified True or False

Put an X through the **correct** box. Then provide a brief justification. Where appropriate, make the justification a counter-example.

2.1	Every regular language can be accepted by an NFA with only a single final state.				
	Justification:	True	False		
2.2	The complement of a regular language is context free. Justification:	True	False		
2.3	Let $h: \Sigma \to \Sigma^*$ be a function and define $h(a_1 \cdots a_n) = h(a_1)$ $\{h(x): x \in L\}$. Suppose $h(L)$ is not regular. Then L is not regular.	$\cdots h(a_n)$ are egular.	nd $h(L) =$		
	Justification:	True	False		
2.4	There is a language L for which $L = L^*$.	True	False		
	Justification:				
2.5	Every nonempty regular language L is generated by some am	biguous CF	G		
	Justification:	True	False		

3 Classify

3.1. Let $L = \{ww : w \in \{0, 1\}^*\}$. Is L regular? Prove your answer.

3.2. Let $L = \{w \in \{0,1\}^* : w \text{ contains an equal number of 01's and 10's}\}$. Is L regular? Prove your answer.