ECS 120: Theory of Computation

Midterm Exam

Instructions: This is a closed book, closed notes exam. Do all $\mathbf{3}$ problems. Do your best to communicate your ideas clearly and succinctly. Good luck. -Phil Rogaway

Name:

On problem	you got
1	
2	
3	
Σ	

1 Short Answer

1.1 Draw a DFA M for the language
$L=\left\{x \in\{a, b, c\}^{*}: x\right.$ contains exactly one a and exactly one $\left.b\right\}$.

Make your DFA have as few states as possible.
1.2 List the first five strings of this language (Problem 1.1) in lexicographic order. Assume $a<b<c$.
1.3 Write a regular expression for this language (Problem 1.1). Make it as short as possible.
1.4 Give a CFG for $L=(\mathrm{ab} \cup \text { aaa })^{*}$ baa. Make your grammar use as few rules as possible.
1.5 Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be an NFA with no ϵ-arrows. We can convert M into a DFA $M^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime},\left\{q_{0}\right\}, F^{\prime}\right)$ whose language is $L(M)$ by setting
$Q^{\prime}=\square$ and $\delta^{\prime}(S, a)=\square$
and $F^{\prime}=\{T \subseteq Q: T \cap F \neq \emptyset\}$.
1.6 Using the procedure shown in class, convert the following NFA into a regular expression for the same language.

2 Justified True or False

Put an \mathbf{X} through the correct box. Then provide a brief justification. Where appropriate, make the justification a counter-example.
2.1 Every regular language can be accepted by an NFA with only a single final state.
$\begin{array}{lll}\text { Justification: } & \text { True } & \text { False }\end{array}$
2.2 The complement of a regular language is context free. \quad True \quad False Justification:
2.3 Let $h: \Sigma \rightarrow \Sigma^{*}$ be a function and define $h\left(a_{1} \cdots a_{n}\right)=h\left(a_{1}\right) \cdots h\left(a_{n}\right)$ and $h(L)=$ $\{h(x): x \in L\}$. Suppose $h(L)$ is not regular. Then L is not regular.

Justification:
True False
$\begin{array}{lll}\text { 2.4 There is a language } L \text { for which } L=L^{*} . & \text { True } & \text { False } \\ \text { Justification: } & & \end{array}$
2.5 Every nonempty regular language L is generated by some ambiguous CFG. Justification:

True
False

3 Classify

3.1. Let $L=\left\{w w: w \in\{0,1\}^{*}\right\}$. Is L regular? Prove your answer.
3.2. Let $L=\left\{w \in\{0,1\}^{*}: w\right.$ contains an equal number of 01 's and 10 's $\}$. Is L regular? Prove your answer.

