Problem Set 2

Problem 1. Give DFAs for the following languages. Assume an alphabet of $\Sigma = \{0, 1\}$.

(a) The set of all strings with 010 as a substring.

- (b) The set of all strings which do not have 010 as a substring.
- (c) The set of all strings which have an even number of 0's or an even number of 1's.
- (d) The complement of $\{0, 01\}^*$.

(e) The binary encodings of numbers divisible by 3: $\{0\}^* \circ \{\varepsilon, 11, 110, 1001, 1100, 1111, \ldots\}$.

Problem 2 State whether the following propositions are true or false, proving each answer.

Part A. Every DFA-acceptable language can be accepted by a DFA with an even number of states.

Part B. Every DFA-acceptable language can be accepted by a DFA whose start state is never visited twice.

Part C. Every DFA-acceptable language can be accepted by a DFA no state of which is ever visited more than once.

Part D. Every infinite DFA-acceptable language can be accepted by a DFA that, for some string $x \in L$, visits the start state twice on input x.

Part E. Every DFA-acceptable language can be accepted by a DFA with only a single final state.

Problem 3. Let $Extend(L) = \{x \in L : \text{ there exists a } y \in \Sigma^+ \text{ for which } xy \in L\}.$

Part A. What is *Extend*($\{0, 1\}^*$)? What is *Extend*($\{\varepsilon, 0, 1, 00, 01, 111, 1110, 1111\}$)?

Part B. Prove that if L is DFA-acceptable then Extend(L) is too.

Problem 4.

Part A. Recall the DIOPHANTINE EQUATION problem: given a multivariate polynomial P with integer coefficients (e.g., $P(x, y, z) = x^2 - 5xy + 3yz^2 + xyz$), decide whether or not P has an integer root. I claimed without proof that there is no algorithm to answer this question. But suppose I provide you with a "magic box" that answers the question. In a single computational step, it says *yes* or *no* according to whether or not P has a root. Given such a magic box, describe an algorithm that *finds* an integer root of any multivariate polynomial that has one (and the algorithm answers *No Root* if the polynomial provided doesn't have an integer root).

Part B. Let s(n) be the maximum number of computational steps that your algorithm takes to run (on some fixed, magicbox-containing computer) when the polynomial P contains at most n variables and each coefficient is between -n and n. Explain why there is no algorithm to compute S(n) for any function S such that $S(n) \ge s(n)$ for all n.