
ECS 120: Theory of Computation Handout PS #2
UC Davis — Phil Rogaway April 3, 2007

Problem Set 2

Problem 1. Give DFAs for the following languages. Assume an alphabet of Σ = {0, 1}.

(a) The set of all strings with 010 as a substring.

(b) The set of all strings which do not have 010 as a substring.

(c) The set of all strings which have an even number of 0’s or an even number of 1’s.

(d) The complement of {0, 01}∗.

(e) The binary encodings of numbers divisible by 3: {0}∗ ◦ {ε, 11, 110, 1001, 1100, 1111, . . .}.

Problem 2 State whether the following propositions are true or false, proving each answer.

Part A. Every DFA-acceptable language can be accepted by a DFA with an even number of states.

Part B. Every DFA-acceptable language can be accepted by a DFA whose start state is never visited
twice.

Part C. Every DFA-acceptable language can be accepted by a DFA no state of which is ever visited
more than once.

Part D. Every infinite DFA-acceptable language can be accepted by a DFA that, for some string x ∈ L,
visits the start state twice on input x.

Part E. Every DFA-acceptable language can be accepted by a DFA with only a single final state.

Problem 3. Let Extend(L) = {x ∈ L : there exists a y ∈ Σ+ for which xy ∈ L}.

Part A. What is Extend({0, 1}∗)? What is Extend({ε, 0, 1, 00, 01, 111, 1110, 1111})?

Part B. Prove that if L is DFA-acceptable then Extend(L) is too.

Problem 4.

Part A. Recall the Diophantine Equation problem: given a multivariate polynomial P with integer
coefficients (e.g., P (x, y, z) = x2 − 5xy + 3yz2 + xyz), decide whether or not P has an integer root. I
claimed without proof that there is no algorithm to answer this question. But suppose I provide you with
a “magic box” that answers the question. In a single computational step, it says yes or no according
to whether or not P has a root. Given such a magic box, describe an algorithm that finds an integer
root of any multivariate polynomial that has one (and the algorithm answers No Root if the polynomial
provided doesn’t have an integer root).

Part B. Let s(n) be the maximum number of computational steps that your algorithm takes to run (on
some fixed, magicbox-containing computer) when the polynomial P contains at most n variables and each
coefficient is between −n and n. Explain why there is no algorithm to compute S(n) for any function S
such that S(n) ≥ s(n) for all n.


