Problem Set 4

Problem 1. Find a regular expression representing the encoding of binary numbers divisible by 3 . Show your work in systematically devising this regular expression, starting from a DFA for the same language.

Problem 2. Suppose you have a (fully parenthesized, concatenation-explicit) regular expression of α of length n over the binary alphabet. Exhibit (and justify) an explicit bound $b(n)$ such that there is a regular expression $\beta,|\beta| \leq b(n)$, such that $L(\beta)=\overline{L(\alpha)}$.

Problem 3. (Assigned last week) For $n \geq 0$, let $L_{n}=\left\{1^{i}: 0 \leq i<n\right\}$ (where $1^{0}=\varepsilon$). Prove that there is a DFA M_{n} having n final states that accepts L_{n}. Then prove that L_{n} cannot be accepted by any DFA having fewer accept states.

Problem 4. Show that the following languages are not regular.
Part A. $L=\left\{w w w: w \in\{a, b\}^{*}\right\}$.
Part B. $L=\left\{a^{2^{n}}: n \geq 0\right\}$.
Part C. $L=\left\{0^{n} 1^{m} 0^{n}: m, n \geq 0\right\}$.

