Problem Set 6

Problem 1. Prove that

$$
L=\{x \neq y: x \text { and } y \text { are binary strings and } x \neq y
$$

is context free by describing a PDA for it. You needn't specify your PDA in full; an English-language description is fine.

Problem 2. A regular grammar is a context-free grammar $G=(V, \Sigma, R, S)$ in which every rule is of the form $A \rightarrow \varepsilon$ or $A \rightarrow a B$, where a is a terminal and A and B are variables. Show that L is regular iff L is generated by a regular grammar.

Problem 3. Consider the grammar G defined by $S \rightarrow A A, A \rightarrow A A A|b A| A b \mid a$.
(a) Carefully and precisely describe the $L(G)$ in an easy-to-recognize form.
(b) Is $L(G)$ regular? Prove your answer either way.
(c) Is G ambiguous? Prove your answer either way.
(d) Is $L(G)$ inherently ambiguous? Give a convincing argument either way.

