Problem Set 6

Problem 1. Prove that

 $L = \{x \neq y : x \text{ and } y \text{ are binary strings and } x \neq y\}$

is context free by describing a PDA for it. You needn't specify your PDA in full; an English-language description is fine.

Problem 2. A regular grammar is a context-free grammar $G = (V, \Sigma, R, S)$ in which every rule is of the form $A \to \varepsilon$ or $A \to aB$, where a is a terminal and A and B are variables. Show that L is regular iff L is generated by a regular grammar.

Problem 3. Consider the grammar G defined by $S \to AA$, $A \to AAA \mid bA \mid Ab \mid a$.

- (a) Carefully and precisely describe the L(G) in an easy-to-recognize form.
- (b) Is L(G) regular? Prove your answer either way.
- (c) Is G ambiguous? Prove your answer either way.
- (d) Is L(G) inherently ambiguous? Give a convincing argument either way.