Problem Set 9 — Due Wednesday, May 30, at 3:30 pm

Problem 1. Prove whether each of the following languages is RECURSIVE, RE but not recursive, CO-RE but not recursive, or NEITHER r.e. nor co-r.e.

Part A. $L = \{ \langle M, w \rangle : M \text{ is a TM that uses at most 17 tape squares when run on } w \}.$

Part B. $L = \{ \langle M, k \rangle : M \text{ is a TM that accepts at least one string of length } k \}.$

Part C. $L = \{ \langle M, k \rangle : M \text{ is a TM that diverges on at least one string of length } k \}.$

Part D. $L = \{ \langle M, k \rangle : M \text{ is a TM that accepts a string of length } k \text{ and diverges on a string of length } k \}$. Assume that the underlying alphabet has at least two characters.

Part E. $L = \{ \langle M \rangle : M \text{ is a TM that accepts some palindrome} \}.$

Part F. $L = \{ \langle G_1, G_2 \rangle : G_1 \text{ and } G_2 \text{ are CFGs which generate the same CFL.} \}.$

Problem 2.

Part A. Give two languages L_1 and L_2 , each r.e. but not recursive, with empty intersection.

Part B. Give two languages L_1 and L_2 , each r.e. but not recursive, with union Σ^* .

Part C. Are there languages L_1 and L_2 meeting conditions (A) and (B) simultaneously? Why or why not?

Problem 3 Prove that L is decidable iff L is listable in lexicographic order. (A language is listable in lexicographic order if some program outputs $x_1 \sharp x_2 \sharp x_3 \sharp \cdots$, $L = \{x_1, x_2, x_3, \ldots\}$, and $x_1 < x_2 < x_3 < \cdots$ where "<" denotes the usual lexicographic ordering on strings.)