Problem Set 9 - Due Wednesday, May 30, at 3:30 pm

Problem 1. Prove whether each of the following languages is RECURSIVE, RE but not recursive, CO-RE but not recursive, or NEITHER r.e. nor co-r.e.

Part A. $L=\{\langle M, w\rangle: M$ is a TM that uses at most 17 tape squares when run on $w\}$.
Part B. $L=\{\langle M, k\rangle: M$ is a TM that accepts at least one string of length $k\}$.
Part C. $L=\{\langle M, k\rangle: M$ is a TM that diverges on at least one string of length $k\}$.
Part D. $L=\{\langle M, k\rangle: M$ is a TM that accepts a string of length k and diverges on a string of length $k\}$. Assume that the underlying alphabet has at least two characters.
Part E. $L=\{\langle M\rangle: M$ is a TM that accepts some palindrome $\}$.
Part F. $L=\left\{\left\langle G_{1}, G_{2}\right\rangle: G_{1}\right.$ and G_{2} are CFGs which generate the same CFL. $\}$.

Problem 2.

Part A. Give two languages L_{1} and L_{2}, each r.e. but not recursive, with empty intersection.
Part B. Give two languages L_{1} and L_{2}, each r.e. but not recursive, with union Σ^{*}.
Part C. Are there languages L_{1} and L_{2} meeting conditions (A) and (B) simultaneously? Why or why not?

Problem 3 Prove that L is decidable iff L is listable in lexicographic order. (A language is listable in lexicographic order if some program outputs $x_{1} \sharp x_{2} \sharp x_{3} \sharp \cdots, L=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$, and $x_{1}<x_{2}<x_{3}<\cdots$ where " $<$ " denotes the usual lexicographic ordering on strings.)

